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Predicting language recovery 
in post‑stroke aphasia using 
behavior and functional MRI
Michael Iorga1,2,3*, James Higgins1,3, David Caplan1,4, Richard Zinbarg1,5, Swathi Kiran1,6, 
Cynthia K. Thompson1,7,8, Brenda Rapp1,9 & Todd B. Parrish1,3

Language outcomes after speech and language therapy in post-stroke aphasia are challenging 
to predict. This study examines behavioral language measures and resting state fMRI (rsfMRI) as 
predictors of treatment outcome. Fifty-seven patients with chronic aphasia were recruited and treated 
for one of three aphasia impairments: anomia, agrammatism, or dysgraphia. Treatment effect was 
measured by performance on a treatment-specific language measure, assessed before and after three 
months of language therapy. Each patient also underwent an additional 27 language assessments 
and a rsfMRI scan at baseline. Patient scans were decomposed into 20 components by group 
independent component analysis, and the fractional amplitude of low-frequency fluctuations (fALFF) 
was calculated for each component time series. Post-treatment performance was modelled with 
elastic net regression, using pre-treatment performance and either behavioral language measures or 
fALFF imaging predictors. Analysis showed strong performance for behavioral measures in anomia 
(R2 = 0.948, n = 28) and for fALFF predictors in agrammatism (R2 = 0.876, n = 11) and dysgraphia 
(R2 = 0.822, n = 18). Models of language outcomes after treatment trained using rsfMRI features may 
outperform models trained using behavioral language measures in some patient populations. This 
suggests that rsfMRI may have prognostic value for aphasia therapy outcomes.

Aphasia is an acquired impairment in language production and/or comprehension which manifests in one 
third of stroke survivors1–3. Post-stroke aphasia is managed with speech and language therapy (SLT), which 
addresses language impairments through patient-specific, targeted training in order to improve functional 
communication4,5. Despite strong evidence that SLT is an effective therapy for post-stroke aphasia, a majority 
of patients with acute aphasia will continue to experience aphasia chronically6,7. As aphasia significantly lowers 
functional independence and health-related quality of life, there is a need to improve the currently available 
therapeutic options for post-stroke aphasia2,8,9. While the efficacy of alternatives to and variations of SLT has 
been investigated, there is currently not enough evidence to recommend one therapy over another4. Improving 
aphasia therapy is difficult due to high variability in patient response: some patients fully recover while others 
experience little benefit10–13. Overcoming this variability in response may be possible by personalizing aphasia 
therapy, however the precise relationships between patient-level factors and recovery trajectories are not cur-
rently known14.

It has been shown that aphasia impairment, aphasia severity, stroke lesion location, and stroke lesion volume 
all influence a patient’s response to therapy9,15. Attempts at modelling recovery trajectories have therefore focused 
on interpreting these variables, among other patient-level factors. For example, one study modeled patient per-
formance on the Aphasia Severity Rating Scale after one year of SLT using measures of language impairment, 
functional disability, age, education, and stroke type (R2 = 0.56, n = 147)16. Another study modeled improve-
ments on a composite score of comprehension, repetition, and naming measures at two weeks after stroke using 
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baseline performance on these measures as well as the lesion load, volume, and diffusion metrics (R2 = 0.73, 
n = 20)17. While these models capture most of the variance in functional outcomes, further improvements could 
be realized through an enhanced quantitative description of the baseline aphasia profile. To capture the impact 
of lesion distribution on specific functional deficits, Halai et. al. developed a model which considers the overlap 
of lesions with known core language areas to predict individual patient performance on a battery of 21 aphasia 
measures (mean R2 = 0.48, n = 70)18. This and earlier work suggest that a profile of aphasia impairments and sever-
ity can be inferred from lesion location and extent at the patient-level19,20. However there remains considerable 
unexplained variance in patient outcomes, and prognostic model performance may benefit from inclusion of 
additional functional variables21,22.

Functional neuroimaging has been applied extensively to assess and further understand the neural under-
pinnings of aphasia. Models which interpret neuropsychological measures alongside data-driven and/or multi-
modal neuroimaging features have been successful in assessing aphasia severity23–26. Resting-state functional 
MRI (rsfMRI) has demonstrated particular potential as an aphasia assessment tool. Patients with aphasia can be 
distinguished from healthy controls by measuring differences in functional connectivity of resting networks27–29. 
Resting network activity can be used to infer the aphasia severity profile, and changes in global connectivity track 
the extent of language recovery30–33. These findings suggest that rsfMRI may serve as a complementary tool to 
traditional behavioral and anatomical assessments of aphasia. Models which predict patient response to aphasia 
therapy may therefore benefit from inclusion of functional imaging features18.

In this study, we examine the extent to which rsfMRI can predict aphasia severity after SLT, as compared 
to conventional behavioral measures. We first establish the baseline performance of prognostic models using a 
large battery of behavioral measures across three aphasia impairments: anomia, agrammatism, and dysgraphia. 
We next develop a second set of models for each impairment, using baseline aphasia severity and data-driven 
rsfMRI features. The performance of these prognostic models is discussed relative to models using only language 
and cognitive measures as predictors, as well as to prior work.

Methods
Recruitment and assessment.  Patients with chronic aphasia were recruited from the Aphasia Research 
Laboratory at Boston University (BU), the Aphasia and Neurolinguistics Laboratory at Northwestern Univer-
sity (NU), and the Cognitive and Brain Sciences Laboratory at Johns Hopkins University (JHU). Patients were 
independently recruited, diagnosed, and treated for one aphasia impairment at each site: anomia at BU (N = 28), 
agrammatism at NU (N = 11), and dysgraphia at JHU (N = 18). The diagnosis of aphasia was made using the 
mean score on the Western Aphasia Battery revised (WAB-R)34. All patients presented with aphasia resulting 
from a single left-hemisphere thromboembolic or hemorrhagic stroke (see Supplementary Fig. S1 for the aggre-
gate lesion map), were at least one-year post-stroke, and had no other impairments that impacted the ability to 
complete the behavioral or neural tasks (e.g. vision and hearing was within normal limits). All were monolingual 
English-speaking, had at least a high school education, and completed a written consent form approved by every 
site’s Institutional Review Board (IRB). All patients included in this study were right-handed, as determined 
through the Edinburgh Handedness Inventory. All experiments and protocols described in the upcoming sec-
tions were performed in accordance with the guidelines and regulations put forth by the IRB from each partici-
pating institution.

Aphasia is primarily diagnosed and assessed through language assessments, such as the Western Aphasia 
Battery (WAB)34. However, the WAB lacks sensitivity to lexical-semantic deficits, sentence processing deficits, 
and spelling deficits, so supplementary language measures must also be performed to capture the full range 
of aphasic deficits35–37. While many language measures have been developed to test specific language deficits, 
relatively few have been assessed for psychometric validity38–41. As a result, there is a lack of consensus on the 
optimal aphasia assessment battery, and the prognostic utility of existing language measures are largely unknown. 
In order to be inclusive of potentially prognostic measures, we collected a broad range of 27 behavioral measures 
from eleven language and cognitive assessments (see Table 1). Each patient was also assessed on one of three 
treatment-specific measures (TSMs, defined below), which served as the primary metric for evaluating the 
baseline aphasia severity and the response to SLT. Patients also underwent comprehensive multi-modal imaging 
assessment, including T1 structural MRI, perfusion, diffusion, task-based and resting-state fMRI. The present 
study only examines the rsfMRI data.

Speech and language therapy.  Following baseline testing, each patient received a three-month course 
of SLT. The TSM was measured both before and after completion of the treatment protocol to estimate the treat-
ment response. Detailed treatment protocols have been described previously and are summarized here.

Patients with anomia underwent a typicality-based semantic treatment42. Each patient participated in a 
computer-based task where they were presented with pictures from five semantic categories: birds, vegetables, 
fruit, clothing, and furniture. Patients sorted images into categories, then attempting to name each image. Nam-
ing was confirmed using written and auditory verification, before a second naming attempt was made. Training 
occurred weekly and each patient was assigned two half-categories for review. Assessment of treatment progress 
was made using a comprehensive naming test of items from 3 of the five categories (Anomia TSM).

Patients with agrammatism received sentence comprehension and production treatment through a Treatment 
of Underlying Forms program43. In this treatment the patient was shown an action picture that depicts a scene. 
The patient was then given a set of cards with verbs, and asked to point to the action verb that describes that 
scene. The examiner then built an active verb sentence using the action verb card and an active sentence template, 
and demonstrated to the patient how the active sentence can be changed into a passive verb sentence. Next, the 
patient formed the passive sentence and read it aloud. This treatment occurred twice per week for 90 min per 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8419  | https://doi.org/10.1038/s41598-021-88022-z

www.nature.com/scientificreports/

session. Assessment of treatment progress was made using a sentence production test. Patients were shown two 
action pictures, and given a sentence describe one of them. The patient then had to produce a similar sentence 
for the other picture. The produced sentences were recorded and subsequently assessed for semantic similarity 
to the prompt sentence (Agrammatism TSM).

Patients with dysgraphia underwent a spell-study-spell treatment protocol44. Each patient was given a set of 
40 training words to learn to spell. Word sets were customized by patient such that each word has a baseline letter 
accuracy between 25 and 85%. Treatment consisted of a patient hearing the word, repeating it, and attempting 
to write it out. This was repeated until the word was spelled correctly, up to a maximum of three attempts per 
word. The patient was shown the correct spelling of the word regardless of accuracy. Training occurred twice 
per week for 90 min per session. Assessment of treatment progress was made by measuring the letter accuracy 
across the entire training set (Dysgraphia TSM).

Image acquisition.  MRI scans were acquired using 3.0 T scanners (Siemens Skyra at BU, Siemens Trio/
Prisma at NU, and Philips Intera at JHU). Imaging protocols were harmonized across the sites to provide 
similar quality and timing. Structural images were collected using a 3D T1-weighted sequence (TR = 2300 ms, 
TE = 2.91 ms, flip angle = 9°, resolution = 1 mm3 isotropic). Whole brain functional images were collected using a 
gradient-echo T2*-weighted sequence (TR = 2 or 2.4 s, TE = 20 ms, flip angle = 90°, resolution = 1.72 × 1.72 × 3 mm, 
210 or 175 volumes). Initial studies (first 5 NU subjects) used a 2 s TR, but additional coverage was required 
to obtain whole brain data so TR was increased to 2.4 s. While NU and BU had one scan of 210 volumes, JHU 
subjects received 2 runs of 175 volumes each, and only the scan with the highest temporal signal-to-noise ratio 
(tSNR) was included for analysis.

Image preprocessing.  All images were archived on NUNDA (Northwestern University Neuroimaging 
Data Archive, https://​nunda.​north​weste​rn.​edu) for storage and data analysis. Upon arrival in the archive, image 
quality assurance (QA) was performed using automatic pipelines for functional and structural data. For fMRI 
data, a slice-wise tSNR was calculated as the ratio of the mean signal to the standard deviation of the time course 
data from each slice, weighted by the number of brain voxels in the slice. Poor-quality scans (tSNR < 100) were 
repeated or excluded from analysis.

Image preprocessing was performed using the NUNDA “Robust fMRI preprocessing pipeline”, which employs 
custom scripts built upon functions from AFNI, FSL, and SPM software45–47. First, the fMRI time series were 
despiked (AFNI 3dDespike) and coregistered to the mean image (AFNI 3dvolreg). Normalization to standard 

Table 1.   Aphasia assessment battery. All 27 behavioral measures comprising 11 language and cognitive 
assessments are shown. Each measure has a corresponding acronym constructed by hyphenating the 
assessment acronym with the individual measure acronym (i.e. the WAB-IC correspond to the Western 
Aphasia Battery, Information Content), except for measures in the NAVS which are referred to only by their 
measure acronym.

Assessment (acronym) Measure (acronym)

Western Aphasia Battery (WAB)34

Information Content (IC)
Fluency (FL)
Comprehension (CO)
Repetition (RE)
Naming (NA)

Northwestern Naming Battery (NNB)72

Noun Comprehension (NC)
Verb Comprehension (VC)
Noun Production (NP)
Verb Production (VP)

Northwestern Assessment of Verbs and Sentences (NAVS)73

Canonical Sentence Comprehension Test (SCT-C)
Noncanonical Sentence Comprehension Test (SCT-N)
Canonical Sentence Production Priming Test (SPPT-C)
Noncanonical Sentence Production Priming Test (SPPT-N)

Psycholinguistic assessments of language processing in aphasia (PALPA) 174 Phonological Discrimination

PALPA 35 Reading Regular (RE)
Reading Exception (EX)

PALPA 40 Spelling High Frequency Words (HF)
Spelling Low Frequency Words (LF)

PALPA 51 Semantic Association: High Imageability (HI)
Semantic Association: Low Imageability (LI)

Pyramids & Palm Trees (PPT)75 Semantic Association

Doors & People (D&P)76 Explicit Memory

Cinderella Story (CIND)77
Words per Minute (WPM)
Mean Length of Utterance—Words (MLW)
Mean Length of Utterance—Morphemes (MLM)

Digit Span (DS) Forwards (FOR)
Backwards (BAC)

Treatment-specific Measure (TSM)
Object Naming or
Sentence Comprehension & Production or
Spelling Words

https://nunda.northwestern.edu
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MNI space was performed in a concatenated two-step procedure. A transformation aligning the first image in the 
fMRI time series to the T1 was created using boundary based registration (FSL BBR)48. This was combined with 
the nonlinear warp of the T1 to an MNI template of 2 × 2 × 2mm resolution (SPM Dartel Toolbox)49. Structural 
images were corrected using enantiomorphic lesion transplant (SPM Clinical Toolbox) to minimize distor-
tion effects caused by warping brains with lesions50,51. Using the lesion mask as a reference, right hemisphere 
homologous tissue was mirrored into the lesioned space to create a lesion-corrected left hemisphere. The optimal 
transform, calculated using the lesion-corrected brain, was then applied to the native brain.

rsfMRI analysis.  The rsfMRI features which predict aphasia recovery are currently unknown, encouraging 
a data-driven approach. Group independent component analysis (GICA) is a data-driven method of decompos-
ing signals into underlying spatial and temporal components. Applied to rsfMRI, GICA may identify statistically 
independent patterns of brain activity across subjects. These patterns may then be compared across subjects, 
permitting analysis of network activity within and across groups. GICA also offers intrinsic noise filtering, as 
noise which is statistically independent of the signal filters into its own component. These components can be 
filtered out to perform group artifact removal, which has been demonstrated to be more reliable than artifact 
removal at the subject level52. Subjects from all sites were processed together to attenuate the impact of single-
scanner artifacts on final components.

GICA was performed through the GIFT toolbox for MATLAB53. Data were decomposed using default param-
eters (20 components, InfoMax algorithm). Component projections clustered strongly across 100 random param-
eter initializations, indicating the chosen parameters were stable in our analysis54. GICA components were then 
backprojected, producing 20 spatial components and 20 corresponding time series for each subject. Component 
maps which have been aggregated across subjects are displayed in Supplementary Fig. S3.

Measurement of low-frequency oscillations is broadly used as a generalized activity metric in fMRI analyses, 
including studies in both stroke55,56 and aphasia57,58. The fractional amplitude of low-frequency fluctuations 
(fALFF) is the ratio of power in the 0.01–0.08 Hz band to the total power59. The fALFF was calculated for each 
time series of each component for each subject, then standardized such that the sum of a subject’s 20 fALFF val-
ues equals one. This permits comparison of relative component power within a subject, and normalizes activity 
ranges prior to regression analyses. We combined fALFF with GICA as a data reduction technique, whereby a 
series of functional volumes is summarized by an activity measure of 20 components. This approach helps avoid 
overfitting by reducing problem dimensionality, and makes regression more feasible with the given sample sizes.

Model construction and validation.  Prediction of post-treatment primary dependent measures was 
modeled using elastic net regression. This model was chosen because linear models are relatively robust to lower 
sample sizes, and tend to generalize well when trained with regularization. Elastic net regression utilizes a com-
bination of LASSO (L1-norm) and ridge (L2-norm) regularization penalties, and reduces overfitting by limiting 
coefficient magnitudes60. Regularization hyperparameters were determined by leave-one-out cross-validation 
(LOOCV). To facilitate equitable interpretation of model coefficients, all input variables underwent z-score nor-
malization prior to training. Model training and validation was performed with the caret package in R. Missing 
data were imputed using the randomForest package in R61. Imputation hyperparameters were selected to mini-
mize output variance. All results from subsequent analyses with missing data were repeated using data from 
1000 imputations, and the summary statistics across imputations are shown for each.

Model performance was assessed by comparing the post-treatment TSM predicted through LOOCV versus 
the actual post-treatment TSM. If the model predicted a value outside of the known range of a TSM (i.e. over 
100% or below 0% accuracy), the result was rounded to within the test’s dynamic range. We measured error in 
model predictions using the median absolute deviation (MAD) between predicted and actual values. The MADs 
of each model were compared to the MADs between predicted post-treatment TSMs and their mean (zero-order 
model) using a paired Wilcoxon test to assess if the model performed better than chance. This nonparametric 
approach was taken due to non-normality and heteroscedasticity in the dataset. Second, we measured the per-
cent of variability in post-treatment TSMs explained by each model using the square of the Pearson correlation 
coefficient (R2). We then tested if each correlation value is significantly larger than zero using a correlation 
coefficient hypothesis test.

Ethics approval and consent to participate.  All participants provided written informed consent 
according to Institutional Review Board policies at Boston University, Johns Hopkins University, and North-
western university. All experiments in this study were performed in accordance with the guidelines and regula-
tions put forth by these Institutional Review Boards.

Results
Participants.  Demographics and aphasia severity for the 57 recruited participants are shown in Table 2. 
Of the participants who entered the study, one dropped immediately and one passed away before complet-
ing testing. Both of these participants were completely excluded from analyses. Of the remaining participants, 
one dropped out and one suffered a hematoma during therapy. For these participants the baseline language 
measures were used, and the post-treatment dependent measures were imputed. In addition, two agrammatism 
participants were scanned with a different sequence, and these subjects were removed from fALFF-based analy-
ses. All baseline TSM data were collected, and 3.3% of the other baseline language measurements were missing 
due to incomplete testing and/or lack of follow-up. Patient performance on the TSM increased significantly 
over the course of treatment for all therapy groups: Anomia (p = 2.8E−6), Agrammatism (p = 0.005), Dysgraphia 
(p = 1.0E−4) (one-sided Wilcoxon Signed Rank Test).
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Significant differences were found to exist across the deficit groups in age, years of education, and overall 
aphasia severity. However, the outcome after treatment was modelled independently for each aphasia impair-
ment, limiting the confounding effect of demographic differences between groups.

Behavioral measures.  Correlations between the behavioral measures included in our aphasia assessment 
battery are displayed in Fig. 1A. Hierarchical clustering was performed, using one minus the Kendall’s Tau-b 
correlation as a distance metric between tests (Fig. 1B). Almost all measures correlated positively with all other 
measures, except for the PALPA 1 and Doors & People measures. These measures clustered independently in 
the dendrogram. Correlations are especially high within a language measure group (i.e. WAB), and submeasures 
cluster together. The observed multicollinearity across measures is expected, since nearly all measures test an 
aspect of language ability.

Modeling with behavioral measures.  We predicted performance on the post-treatment TSM using the 
pre-treatment TSM score as well as all 27 behavioral measures from our aphasia assessment battery (28 predictors 
per patient). One model was trained on each dataset imputation, and the median output values across all imputa-
tions are shown in Fig. 2. The prognostic model for anomia (N = 28) demonstrated low error (MAD = 0.042, 95% 
CI: 0.018–0.064, p < 0.01) and explained much of the variability in outcomes (R2 = 0.948, 95% CI: 0.890–0.981, 
p < 0.01). The prognostic model for agrammatism (N = 11) had relatively high error (MAD = 0.089, 95% CI: 
0.032–0.207 p = 0.232) and inadequately explained the variability in outcomes (R2 = 0.257, 95% CI: 0.032–0.800, 

Table 2.   Subject demographics and WABAQ by language-specific deficit. Counts by attribute and aphasia 
impairment are shown for categorical variables. Categorical variable p values are calculated with a two-sided 
Fisher’s Exact Test. For continuous variables, median ± median absolute deviation is shown. Continuous 
variable p values are calculated with a Kruskal–Wallis one-way analysis of variance. Significant p values are 
bolded (p < 0.05).

Attribute
Anomia
(N = 28)

Agrammatism
(N = 11)

Dysgraphia
(N = 18) p

Gender F: 9
M: 19

F: 4
M: 7

F: 6
M: 12 1.000

Age 63.5 ± 10.4 51.0 ± 3.0 62 ± 11.1 0.008

Education (Years) 16 ± 1.5 18 ± 1.5 16 ± 3.0 0.004

months post
stroke 27.5 ± 23.0 39 ± 28.2 52.5 ± 38.5 0.283

Aphasia severity (WABAQ) 62.2 ± 31.4 72.0 ± 17.3 86.8 ± 15.5 0.018

Figure 1.   Multicollinearity across Behavioral Measures. (A) A shaded color-plot of the correlation matrix 
across all 27 behavioral measures is shown. Due to imbalance in sample sizes, correlations were first calculated 
within each impairment group, and then averaged. Box colors correspond to pairwise Kendall’s Tau-b values 
(red is positive, blue is negative correlation). Only pairwise complete observations were used (no imputation). 
(B) An association dendrogram of behavioral measures is shown. Correlation distance is one minus the absolute 
pairwise Kendall’s Tau correlation. The dendrogram was created by analyzing correlation distances using 
hierarchical clustering (Unweighted Pair Group Method with Arithmetic Mean).
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p = 0.111). Similarly, the prognostic model for dysgraphia (N = 18) had relatively high error (MAD = 0.070, 95% 
CI: 0.041–0.096, p = 0.335) and poorly explained the variability in outcomes (R2 = 0.029, 95% CI: 0.000–0.308, 
p = 0.495).

Coefficient values and their range across all model imputations are displayed in Table 3. In the anomia 
model, the highest predictors of positive outcome were the PALPA 35 EXC (0.092), PALPA 40 HF (0.130) and 

Figure 2.   Predicting scores on the post-treatment TSM with behavioral measures. Linear models which predict 
the TSM after therapy were constructed for each aphasia impairment: anomia, agrammatism, and dysgraphia. 
The dashed line represents a perfect prediction (predicted score = actual score). Black circles show the median 
predicted score for each patient across all 1000 imputations during LOOCV.

Table 3.   Coefficients for models using language and cognitive assessments. The median model coefficient for 
each behavioral model is shown, followed by the range of minimum and maximum coefficients across 1000 
data imputations.

Variable Anomia Agrammatism Dysgraphia

WAB-IC 0.014 (0.008, 0.020) 0.006 (0.004, 0.039)  − 0.007 (− 0.008, − 0.006)

WAB-FL  − 0.103 (− 0.106, − 0.099) 0.014 (0.005, 0.045) 0.002 (0.002, 0.003)

WAB-CO 0.010 (− 0.003, 0.013)  − 0.010 (− 0.020, 0.048) 0.005 (0.005, 0.006)

WAB-RE 0.001 (− 0.005, 0.006) 0.030 (0.024, 0.116)  − 0.006 (− 0.006, − 0.006)

WAB-NA  − 0.015 (− 0.021, − 0.001)  − 0.003 (− 0.009, 0.036) 0.002 (0.001, 0.002)

NNB-NC 0.023 (0.015, 0.027)  − 0.010, (− 0.018, 0.025)  − 0.009 (− 0.010, − 0.008)

NNB-VC  − 0.035 (− 0.043, − 0.026) 0.010 (0.004, 0.063)  − 0.007 (− 0.009, − 0.006)

NNB-NP  − 0.009 (− 0.012, 0.007) 0.006 (0.003, 0.056) 0.020 (0.019, 0.020)

NNB-VP  − 0.029 (− 0.040, − 0.017) 0.019 (0.014, 0.087) 0.021 (0.020, 0.024)

SCT-C 0.027 (0.023, 0.029)  − 0.015 (− 0.025, − 0.003) 0.013 (0.012, 0.013)

SCT-N  − 0.146 (− 0.151, − 0.137)  − 0.004 (− 0.006, 0.059)  − 0.003 (− 0.004, − 0.003)

SPPT-C 0.037 (0.032, 0.042) 0.015 (0.011, 0.109) 0.022 (0.021, 0.023)

SPPT-N  − 0.081 (− 0.084, − 0.078)  − 0.023 (− 0.026, 0.045) 0.020 (0.019, 0.020)

PALPA1 0.041 (0.036, 0.048) 0.018 (0.009, 0.039) 0.029 (0.028, 0.029)

PPT 0.037 (0.035, 0.039) 0.026 (0.019,0.044) 0.009 (0.009, 0.010)

PALPA35-RE 0.057 (0.051, 0.062) 0.001 (− 0.005, 0.058) 0.020 (0.017, 0.021)

PALPA35-EX 0.092 (0.096, 0.098) 0.027 (0.021, 0.109) 0.027 (0.023, 0.028)

PALPA40-HF 0.130, (0.122, 0.137) 0.009 (− 0.001, 0.094) 0.024 (0.023, 0.024)

PALPA40-LF  − 0.034 (− 0.038, − 0.032)  − 0.026 (− 0.033, 0.048) 0.017 (0.017, 0.018)

PALPA51-HI 0.054 (0.050, 0.056) 0.035 (0.030, 0.060) 0.016 (0.016, 0.017)

PALPA51-LI 0.009 (0.006, 0.013)  − 0.031 (− 0.041, − 0.021) 0.014 (0.014, 0.015)

CIND-WPM  − 0.015 (− 0.022, − 0.006)  − 0.081 (− 0.107, − 0.074)  − 0.005 (− 0.009, − 0.002)

CIND-MLW 0.030 (0.009, 0.052) 0.018 (0.014, 0.073) 0.010 (0.008, 0.013)

CIND-MLM  − 0.007 (− 0.017, 0.034) 0.016 (0.013, 0.077) 0.005 (0.002, 0.007)

D&P  − 0.032, (− 0.037, − 0.029)  − 0.002 (− 0.016, 0.036) 0.021 (0.020, 0.021)

DS-FOR 0.007 (− 0.003, 0.010) 0.028 (0.027, 0.096)  − 0.007, (− 0.008, − 0.006)

DS-BAC 0.082 (0.072, 0.085)  − 0.006 (− 0.016, 0.073) 0.010 (0.009, 0.012)

TSM 0.149 (0.129, 0.154) 0.049 (0.045, 0.126) 0.016 (0.016, 0.017)
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the pre-treatment TSM (0.149), while the highest predictor of negative outcome was the SCT-N (-0.146). Coef-
ficient values were overall well distributed across predictors, with no single predictor exceeding 11% of total 
coefficient magnitudes. In the agrammatism model, the most impactful predictors of positive outcome were the 
CIND-WPM (-0.081) and the pre-treatment TSM (0.049), which together represented one quarter of the total 
coefficient magnitudes. In the dysgraphia model, there were no coefficients which stood out significantly amongst 
the rest, and the pre-treatment TSM achieved a coefficient of 0.016.

Modeling with GICA fALFF.  We next built prognostic models using fALFF values of independent compo-
nents and baseline aphasia severity as measured by the pre-treatment TSM (Fig. 3). These models did not con-
tain any of the 27 additional behavioral measures used in the above models. The prognostic model for anomia 
(N = 28) again demonstrated low error (MAD = 0.109, 95% CI: 0.095–0.172, p < 0.01) and explained much of 
the variability in outcomes (R2 = 0.816, 95% CI: 0.698–0.900, p < 0.01). The prognostic model for agrammatism 
(N = 11) also had low error (MAD = 0.051, 95% CI: 0.016–0.095, p = 0.012) and explained much of the vari-
ability in outcomes (R2 = 0.876, 95% CI: 0.402–0.992, p < 0.01). The prognostic model for dysgraphia (N = 18) 
had low error (MAD = 0.017, 95% CI: 0.008–0.051, p < 0.01) and explained much of the variability in outcomes 
(R2 = 0.822, 95% CI: 0.621–0.922, p < 0.01).

Coefficients for each model are displayed in Table 4. The largest coefficients in the anomia model were due 
to the pre-treatment TSM (0.272) and fALFF of Component 18 (0.132). In the agrammatism model, the coef-
ficients for fALFF of Component 5 (0.062), fALFF of Component 1 (0.057), and the pre-treatment TSM (0.037) 
were largest. Coefficients in the dysgraphia model were overall more evenly distributed, with only the fALFF of 
Component 19 (0.080) standing out.

Discussion
Behavioral assessment multicollinearity.  We have found strong multicollinearity across behavio-
ral measures (Fig. 1), which has been observed previously62. All behavioral measures show a consistent weak 
correlation with nearly all other measures (median pairwise correlation of 0.36), suggesting that there is sub-
stantial overlap in the information being collected across assessments. In addition, measures from within the 
same assessment have even higher association, such as in the PALPA 40 where the correlation in spelling scores 
between high-frequency and low-frequency words is 0.88. This is significant because comprehensive aphasia 
testing is laborious for both patients and practitioners, and there is a need for shorter-form aphasia probes 
that can deliver adequate assessments63. The quick aphasia battery is a potential solution which can be rapidly 
administered and has high correlation with corresponding WAB measures41. Our analysis shows that there is 
high correlation between WAB measures, suggesting that further efficiency gains in clinical aphasia assessment 
may be realized by prioritizing orthogonal measures.

While multicollinearity is strongest between language assessments, there is also some correlation with the 
Digit Span, an assessment of verbal short-term memory. Relatively few language assessments correlate with the 
Doors & People assessment, which is also a verbal memory assessment (median pairwise correlation of 0.13). 
However, Doors & People correlates weakly with the WAB Information Content measure, which has one of the 
highest median correlations with all other assessments (0.43). It is therefore possible that there is some unique 
information shared between the D&P and the WAB-IC measures that is not shared between the WAB-IC and 
most other language assessments. These observations support the current understanding that post-stroke aphasia 
is a multidimensional disorder that may present with a range of language and cognitive impairments as a result 
of damage to multiple brain areas19,64.

Figure 3.   Predicting scores on the post-treatment TSM with GICA fALFF and pre-treatment TSM. Linear 
models which predict the TSM after therapy were constructed for each aphasia impairment (anomia, 
agrammatism, and dysgraphia) using a combination of the pre-treatment TSM and the fALFF for each GICA 
component. The dashed line represents a perfect prediction (predicted score = actual score). Black circles show 
the predicted score for each patient using LOOCV. For the agrammatism model, the circles represent median 
values across 1000 imputations.
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Model performance.  Prognostic models using initial severity and behavioral measures performed best in 
the anomia group. The behavioral model for anomia relied most on the pre-treatment TSM, PALPA 35 EXC, 
and PALPA 40 HF measures, suggesting that pre-treatment reading and spelling ability were approximately as 
important as initial anomia severity in prognosis. This is not entirely surprising, as patients who perform better 
on nonspecific language assessments may have more intact language networks prior to therapy. Patients with 
improved baseline language function will tend to score higher than those with more impaired baseline language 
function, even after therapy. This may help explain why the majority of coefficients across the behavioral models 
were positive. However, higher initial performance on some language metrics indicated poorer outcome (i.e. 
SCT-N and SPPT-N in the anomia model). There is a pattern in the anomia model where paired measures have 
opposite coefficient signs (i.e. SCT-N and SCT-C) indicating that anticorrelated performance on measures which 
are typically correlated may carry some prognostic information. However, it is challenging to derive strong con-
clusions about individual predictor variables based on model coefficients due to the interactions between model 
regularization and multicollinearity. Ridge (L2-norm) regularization will incentivize the model to distribute 
coefficient magnitude across predictor variables during training. When multicollinearity is present, there is rela-
tively more shared information between predictor variables, so model coefficients tend to be small even if some 
predictor variables are strong individual predictors.

Prognostic models using initial severity and GICA fALFF activity performed best in the agrammatism and 
dysgraphia groups. While the anomia model demonstrated strong performance as well, much of this can be 
attributed to the pre-treatment TSM, further suggesting that behavioral assessments were more valuable than 
rsfMRI in the anomia group. As GICA selects components to be statistically independent of one another, fALFF 
values are not multicollinear and have clearer interpretation of model coefficients when regularization is used. 
The GICA component maps generated in this analysis do not resemble known language networks, but rather 
demonstrate strong weighting in the ventricles and brain regions known to be sensitive to physiological motion. 
This reflects our minimal image preprocessing pipeline and inclusion of all voxels within the brain. When analysis 
is repeated using rsfMRI data that was filtered to remove cardiac-driven physiological motion, the predictive 
power of the models is lost. We hypothesize that the data-driven patterns picked up by our GICA components and 
the fALFF-based prognostic models are functioning as proxy variables for regional cerebral blood flow (rCBF).

Arterial spin labeling studies have shown that the patterns of cerebral blood flow are known to be aberrant 
in both the acute and chronic phases of stroke recovery65,66. Alterations in regional cerebral blood flow (rCBF) 
have been tied to cognitive functioning in numerous neuropsychiatric conditions such as Alzheimer’s Disease, 
frontotemporal dementia, adolescent ADHD, and schizophrenia67–70. In post-stroke aphasia, one study has shown 
that low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) drives an increase in local rCBF that 
is proportional to the degree of language recovery71. Furthermore, the areas which experienced changes in rCBF 
extended beyond where LF-rTMS was applied. In our models, the coefficients are overall well distributed and 

Table 4.   Coefficients for models using baseline severity and component fALFF. The median model coefficient 
for each behavioral model is shown. For the agrammatism model, the range of minimum and maximum 
coefficients is shown across 1000 data imputations. The anomia and dysgraphia models had no missing data for 
this analysis, so no imputations were computed for the corresponding groups.

Variable Anomia Agrammatism Dysgraphia

fALFF 1 0.024 0.057 (0.039, 0.074)  − 0.028

fALFF 2  − 0.016 0.013 (− 0.002, 0.028) 0.007

fALFF 3  − 0.090  − 0.022 (− 0.025, − 0.017) 0.019

fALFF 4 0.022  − 0.008 (− 0.009, − 0.006)  − 0.036

fALFF 5 0.072  − 0.062 (− 0.071, − 0.053)  − 0.008

fALFF 6  − 0.035 0.027 (0.016, 0.041)  − 0.009

fALFF 7 0.008 0.004 (0.003, 0.005) 0.001

fALFF 8 0.008  − 0.014 (− 0.014, − 0.013)  − 0.009

fALFF 9  − 0.038 0.001 (− 0.019, 0.021)  − 0.033

fALFF 10  − 0.038 0.012 (− 0.005, 0.030) 0.027

fALFF 11  − 0.055  − 0.030 (− 0.036, − 0.026) 0.008

fALFF 12 0.062  − 0.023 (− 0.044, 0.000) 0.000

fALFF 13 0.026  − 0.031 (− 0.039, − 0.024) 0.034

fALFF 14 0.003 0.030 (0.020, 0.038)  − 0.001

fALFF 15  − 0.069 0.006 (0.003, 0.011)  − 0.023

fALFF 16  − 0.042 0.035 (0.030, 0.040)  − 0.047

fALFF 17  − 0.020  − 0.013 (− 0.033, 0.003) 0.029

fALFF 18 0.132 0.031 (0.005, 0.061) 0.017

fALFF 19 0.029  − 0.011 (− 0.015, − 0.005) 0.080

fALFF 20 0.004  − 0.002 (− 0.009, 0.007)  − 0.038

TSM 0.272 0.037 (0.033, 0.043) 0.003
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no one component explains the majority of variance in outcomes. It is possible that global patterns of aberrant 
rCBF are valuable in predicting response to SLT in chronic post-stroke aphasia.

Limitations.  There were several limitations present in this study. First, we encountered challenges in model 
selection due to sample size. While we recognize that the relationship of baseline aphasia severity to treatment 
outcomes likely has nonlinear components, we were limited to linear models with heavy regularization to over-
come the challenge of having more predictor variables than subjects. Furthermore, model validation would 
have benefited from an independent validation set, however this would have strained training further to where 
LOOCV was the most viable approach. Recruitment was limited in part by the extensive imaging and behavioral 
testing that was performed for each subject alongside hours of treatment. Second, while subjects were admitted 
to the study based on a singular aphasia impairment (anomia, agrammatism, or dysgraphia), this design was 
based on treatment assignment and did not take into account the possibility of overlapping impairment and 
any possible nonlinear effects treatment. Third, while we model responses to three treatment protocols, there 
are many other protocols for aphasia therapy. We have demonstrated large variability in model performance 
across protocols, and this variability likely extends to protocols not examined here. Fourth, while we model 
performance on the TSM after treatment as our primary outcome, it may be more precise to instead model the 
individual change in TSM performance instead (post-treatment TSM—pre-treatment TSM). However, we were 
constrained by ceiling effects where subjects with high baseline performance did not have substantial room for 
improvement due to the dynamic range of the assessments used. When individual performance changes are 
considered, patients with known positive prognostic factors (i.e. high baseline performance) are interpreted 
during training as experiencing little performance gain. This convolutes model training leading to decreased 
performance, as our linear model lacks the capacity to condition the effects of other favorable prognostic vari-
ables on baseline severity (a nonlinear interaction).

Conclusions
High-performance predictive models of individual response to therapy were trained for each aphasia impair-
ment. Models based on GICA fALFF were overall higher performing and more consistent than models based on 
behavioral measures alone. Furthermore, the average performance of the GICA fALFF models (R2 = 0.816–0.876) 
is competitive when compared to prior work modelling aphasia outcomes (R2 = 0.56, 0.73) which have relied on 
behavioral or anatomical variables16,17. This encourages further study of rsfMRI as a prognostic tool for post-
stroke aphasia. Continued effort on developing prognostic models which estimate treatment response trajectories 
may ultimately improve treatment. A series of high-performance prognostic models could be used to estimate 
the distribution of outcomes for a variety of therapeutic options, opening the door to personalized treatment. 
This approach may help overcome the unexplained variability in response to aphasia treatment, giving patients 
and practitioners more agency in the treatment selection process.

rsfMRI has several advantages over conventional language measures in assessment and prognosis. Language 
assessments have a limited dynamic range and therefore a limit of deficit severity to which they are sensitive. 
This could make assessment of treatment response difficult in patients with near the assessment ceiling or floor, 
and this challenge was observed in our dataset. In contrast, features based on rsfMRI are more continuous and 
may have higher dynamic range, offering potential to equitably assess a wider range of aphasia severity. Creating 
quantitative profiles of aphasia severity from rsfMRI may be easier in practice than refining a battery of existing 
language measures due to the high dimensionality of rsfMRI data. However, there are challenges facing clinical 
adoption of rsfMRI for aphasia. Imaging is relatively expensive, and accessibility to quality scanning varies across 
patient populations. It is challenging to image patients who are claustrophobic or unable to keep still. Clinical 
adoption of rsfMRI may become feasible with further advancements in imaging technology and/or support 
from healthcare systems.

Data availability
The minimal dataset needed to interpret, replicate, and build on the findings reported in this paper are available 
from the corresponding author on reasonable request.

Code availability
Source code for the methods applied in this work is available at https://​github.​com/​miorg​a7 (repository: apha-
sia_prediction, R code).
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