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Background: Oxycodone, which is one of the most commonly used opiates in postoperative 

pain management, has a different affinity for μ-opioid receptors (MOR), κ-opioid receptors 

(KOR), and δ-opioid receptors (DOR). Accumulating research has suggested that neurotrophins 

(NTs) are involved in opioid analgesia. In the current exploratory study, we aimed to investigate 

the underlying mechanisms of the analgesic effects of oxycodone on post-surgery pain in rats 

and to determine whether neurotrophic factors and receptors were involved in these effects.

Methods: Mechanical and thermal sensitivity tests were used to evaluate the validity of the 

postoperative pain rat model and to determine the analgesic effect of oxycodone. Quantitative 

PCR and  Western blot analysis were used to detect the changes in the expression of three types 

of opioid receptors and NTs and their high-affinity receptors in the spinal cord after surgery 

and oxycodone administration.

Results: Oxycodone showed an analgesic effect on plantar incision (PI)-induced hyperalgesia, 

especially thermal hyperalgesia. We detected an obvious increase in MOR expression levels but 

insignificant changes in KOR and DOR levels in the spinal cord after PI. Moreover, we found 

that oxycodone was able to reverse the increased expression of nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor (TrK) A, and TrkB and the 

decreased expression of NT-3 and TrkC, after PI. Pretreatment with oxycodone also altered the 

expression of these mediators.

Conclusion: Based on the results, possible underlying mechanisms for the antinociceptive 

properties of oxycodone in acute postoperative pain include the activation of MOR downstream 

signaling and the regulation of NTs and receptor expression through attenuation of glial activa-

tion and fortification of antinociceptive mediators in the spinal cord. This study may provide 

new insights into the molecular mechanisms underlying the analgesic action of oxycodone.
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Introduction
Acute post-surgery pain after different surgical procedures still remains a significant 

clinical challenge due to delayed rehabilitation and development of chronic postopera-

tive pain, which is intensely troublesome and difficult to cure.1 The need for preventa-

tive strategies and effective management of postoperative pain continues to go unmet. 

Tissue or nerve damage induced by surgical procedures has been shown to result in the 

activation of nociceptive pathways that lead to neuroinflammation and neuroimmune 

responses in the spinal cord.2–5 Glial cells surrounding the nerve cells produced both 

pro- and anti-inflammatory cytokines as well as algesic and analgesic mediators such 
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as chemokines and neurotrophins (NTs) after activation.6 The 

activation of NTs has been proposed to contribute to hyper-

excitability of nociceptive neurons in the spinal cord.7–9 NTs 

are a family that consists of four structurally and function-

ally related proteins, including nerve growth factor (NGF), 

brain-derived neurotrophic factor (BDNF), NT-3, and NT-4, 

which is also known as NT-5 (NT-4 or NT4/5). NTs have an 

extensive effect on the nervous system; for example, NTs 

regulate the growth, maintenance, and apoptosis of healthy 

and injured neurons in the developing nervous system and 

also regulate survival, proliferation, differentiation, axonal 

growth, synaptic plasticity, and sensitivity to pain.10,11 NTs 

are synthesized in dorsal root ganglia (DRG) and transported 

to the dorsal horn of the spinal cord anterogradely. NTs were 

activated by binding to two types of receptors, the general 

neurotrophin receptor (NTR) p75 and neurotrophic tyrosine 

kinase receptors (Trks). Briefly, all NTs bind to p75NTR 

with similar affinity, NGF binds to TrkA with high affinity, 

BDNF and NT-4 bind to TrkB with high affinity, and NT-3 

can bind to all NTRs, but with high affinity to TrkC.12 It has 

been described that several gene changes persisted in the 

primary afferent sensory neurons of the DRGs, following a 

surgical incision, and then affected nociceptor activation and 

immune response. Thereinto, gene expression of NGF was 

increased in incised skin and muscle, which is in agreement 

with several reports demonstrating the importance of NGF 

in the development of pain hypersensitivity.13–15 Levels of 

BDNF, another factor that has been shown to increase after 

surgery, were increased in the spinal cord within primary 

nerve terminals.9 Taken together, it suggested that NTs 

play an important role in the initiation and maintenance of 

peripheral sensitization, which leads to subsequent post-

surgery pain.

Opioids remain the most effective analgesics for post-

surgery pain management despite a host of side effects such 

as addiction and tolerance. Oxycodone is one of the most 

commonly used opiates to control mild-to-moderate pain, 

including postoperative pain. The analgesic effect of oxy-

codone appears to be 1.5–2.0 times more potent than that of 

morphine.16 However, like most opioids, the most frequently 

reported side effects of oxycodone are drowsiness, constipa-

tion, fatigue, and dizziness.17 Oxycodone is a semisynthetic 

opioid receptor agonist that produces a highly effective anal-

gesic effect on pain by acting on G protein-coupled opioid 

receptors.18 Although the details of the receptor binding pro-

file remain ambiguous, it has been reported that oxycodone 

has a relatively high affinity for μ-opioid receptors (MORs), 

relatively little affinity for κ-opioid receptors (KORs), and 

little to no affinity for δ-opioid receptors (DORs).19–21 Since 

various cells in the central and peripheral nervous system, 

immune system, and neuroendocrine system express opioid 

receptors, their function can be modulated by endogenous 

and exogenous opioids.22,23 Miranda et al, using in vivo elec-

trophysiology, found that oxycodone reduced the response 

of spinal dorsal horn neurons to noxious knee joint rotation 

in monosodium iodoacetate-sensitized rats, suggesting a 

regulatory effect of oxycodone in the spinal cord.24 A previ-

ous study by Hassan et al that involved microarray profiling 

and gene mapping analysis clarified that oxycodone indeed 

modulated gene expression and regulated many biological 

processes such as immune response and the transmembrane 

receptor tyrosine kinase signaling pathway in rats repeatedly 

treated with oxycodone.25 A recent study used unbiased RNA 

sequencing to examine gene expression in a mouse model of 

14-day oxycodone self-administration and found that oxy-

codone administration altered the expression of numerous 

inflammatory and immune-related genes in the striatum. In 

particular, gene expression of NGF receptor was significantly 

downregulated in the ventral striatum after chronic oxyco-

done administration.26 In addition, a recent study suggested 

that opiate agonists can attenuate the upregulation of BDNF 

in the DRG and the spinal cord in a rat surgical pain model.27 

However, the effect of oxycodone on NTs and receptors in 

the spinal cord needs further investigation.

Although the abirritation of oxycodone on post-surgery 

pain is well known, the mechanisms underlying the effects of 

oxycodone in the incision-sensitized spinal cord are poorly 

understood. Accumulating evidence indicates that NTs have 

essential modulatory roles in opioid analgesia.28 Given the 

remarkable function of NTs in opioid analgesia, it is crucial 

to determine if the expression of these mediators in the spi-

nal cord is regulated by oxycodone. The current exploratory 

experiment aimed to identify which opioid receptor subtypes 

contributed to the effects of oxycodone on post-surgery pain 

in rats and whether oxycodone has an effect on NTs and their 

high-affinity receptors.

Materials and methods
animal care
All experiments were performed on Sprague Dawley rats 

(weight: 250–300 g), which were raised in the animal cen-

ter of Tongji Hospital. All animals were housed in group 

cages with rodent chow and water available ad libitum. 

Rats were habituated to their environment (temperature: 

22°C–24°C; humidity: 50%–60%; light: 12-hour light/

dark cycle) at least 3 days before the experiments. All 
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experiments were performed using protocols approved by 

the Institutional Animal Care and Use Committee of Tongji 

Hospital, Huazhong University of Science and Technology in 

accordance with the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals (NIH Publications 

No 80–23), revised in 1996. The study is also approved by 

the ethical committee of Tongji Hospital, Tongji Medical 

College, Huazhong University of Science and Technology.

animal behavioral test
Three days before the test, rats were singly placed in Plexiglas 

chambers, which were elevated by a wire mesh or glass floor, 

for 30 minutes daily to acclimatize to the testing environment. 

Mechanical sensitivity was assessed by an electronic Von 

Frey filament (Model 38450; Ugo Basile, Gemonio, Italy). 

Measurements ranged from 0 to 200 g. The paw withdrawal 

threshold (PWT) was measured by applying the filament to 

the plantar surface of the right hind paw vertically, adjacent 

to the wound. Thermal sensitivity was assessed using the 

Hargreaves Apparatus (Model 37370; Ugo Basile). The paw 

withdrawal latency (PWL) was determined by applying an 

infrared radiant heat beam focused on the plantar area of 

the right hind paw. The intensity of heat was adjusted to 

produce baseline latencies of 15–20 seconds in normal rats. 

The infrared value used in this experiment was 95 units. The 

cutoff time was set at 30 seconds to avoid tissue damage. 

All stimuli were conducted when animals were calm but 

not grooming or sleeping, and data were calculated from the 

average of the three tests.

acute postoperative pain model
The plantar incision (PI) surgery was performed as previously 

described.29 Briefly, after anesthetized with 2% isoflurane 

through a nose cone, the surface of the right hind paw was 

prepared under sterile conditions. A 1 cm incision was made 

longitudinally through the skin and fascia of the surface of 

the right hind paw, beginning 0.5 cm from the proximal edge 

of the heel toward the toes. Keeping the muscles’ origin and 

insertion intact, the flexor muscle was elevated and incised. 

Gentle pressure was applied for hemostasis. A mattress suture 

of 5–0 nylon was used to suture the incision. An antibiotic 

was applied to the wound. The rats in the control group 

received anesthesia but did not receive an incision.

experimental design
The rats were randomly assigned to four groups, each with 

eight animals: 1) control group, ie, after anesthesia, 2 mL/kg 

of saline was administered intraperitoneally; 2) PI group, ie, 

after anesthesia, a PI was performed on the right hind paw and 

then 2 mL/kg of saline was administered intraperitoneally; 3) 

postoperative oxycodone group (PI+OXY), ie, single oxyco-

done (2 mg/kg diluted in saline; 30044090.40, Mundipharma, 

Beijing, China) was administered intraperitoneally 15 min-

utes after incision; and 4) preoperative oxycodone group 

(OXY+PI), ie, 2 mg/kg of oxycodone was intraperitoneally 

injected preoperatively. Fifteen minutes after drug admin-

istration, the animals underwent incision surgery. Baseline 

assessments of withdrawal thresholds were performed prior 

to surgery for 3 days. Afterward, the mechanical and thermal 

withdrawal thresholds of all incision groups were measured at 

1, 2, 4, 6, 8, 12, and 24 hours after incision, while the control 

group was examined after recovery from anesthesia. After 

the last behavioral test, the rats were sacrificed under deep 

anesthetic conditions, and tissue samples were collected for 

further analysis. Following decapitation, the spinal columns 

were opened to expose the lumbar spinal cord. The lumbar 

enlargement of the spinal cord was cut, collected rapidly, 

and stored at –80°C for subsequent analysis after freezing 

in liquid nitrogen.

Real-time quantitative PcR (RT-qPcR)
Total RNA was isolated from the lumbar enlargement of the 

spinal cord with RNAiso Plus kit (Takara, Dalian, China) 

using the manufacturer’s recommended protocols. Spectro-

photometric analysis of the total RNA was conducted using 

a Nano Drop Lite (Thermo Fisher Scientific, Waltham, 

MA, USA). The samples with an A260/A280 ratio greater 

than 1.7 were reverse transcribed to synthesize cDNA using 

the Prime Script RT reagent Kit (Takara) according to the 

manufacturer’s directions. RT-qPCR was performed using 

a StepOne machine (StepOne; Thermo Fisher Scientific) 

with SYBR Premix Ex Taq II (Takara). Each gene was run 

to obtain dissociation curves to test the amplicon specificity. 

The primer sequences were as follows (forward and reverse): 

MOR: 5′-GCCCTCTATTCTATCGTGT-3′ and 5′-TATGGC-

TAAGGCATCTGC-3′; NGF: 5′-CATCGCTCTCCTTCA-

CAGAGTT-3′ and 5′-TGCCTGTACGCCGATCAAAA-3′; 
BDNF: 5 ′-TTACCTGGATGCCGCAAACA-3 ′  and 

5′-TGGCCTTTTGATACCGGGAC-3′; NT-3: 5′-CCTCAGC-

CATTGACATTCGG-3′ and 5′-TCAGTGCTCGGACGTAG-

GTTT-3′; TrkA: 5′-GCATCCTGTCGTGAGACCTG-3′ and 

5′-AGATCCCGCTGGTTTTCCAC-3′; TrkB: 5′-ACCAAAC-

CAATCGGGAGCAT-3′ and 5′-CTGGGCCTTTCATGC-

CAAAC-3′; TrkC: 5′-ACATCGCCAGTCAGATAGCC-3′ 
and 5′-TGATGCTGCTAGCCTCTGTT-3′; and GAPDH: 

5′-ACAGCAACAGGGTGGTGGAC-3′ and 5′-TTT 
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GAGGGTGCAGCGAACTT-3′. Data were quantified by the 

comparative CT method with the mathematical formula as 

described previously: DCt = Ct (gene of interest) – Ct (house-

keeping gene); DDCt = DCt – average DCt (control group); and 

fold change =2^(-DDCT).

Western blot analysis
The lumbar enlargement of the spinal cord was homogenized 

in a RIPA buffer and protease inhibitor cocktail. The homog-

enates were centrifuged at 12,000×g for 15 minutes at 4°C. 

Protein concentrations were determined by Pierce™ BCA 

Protein Assay Kit (Thermo Fisher Scientific). The superna-

tants of the homogenates were boiled at 100°C in loading 

sample buffer for 5 minutes. The samples contained 35 μg 

proteins, were electrophoresed on 10%–12% SDS/PAGE gel, 

and then transferred to polyvinylidene fluoride membranes 

(EMD Millipore, Billerica, MA, USA). Membranes were first 

blocked with 5% (w/v) defatted milk in 0.1% Tween 20 (TBST; 

2 mmol/L Tris–HCl, 50 mmol/L NaCl, pH 7.4) for 2 hours at 

room temperature and followed by incubation overnight at 4°C 

with specific primary antibody for OPRM1 (1:1,000, A7264; 

ABclonal, Wuhan, China), NGF (1:1,000, ab52918; Abcam, 

Cambridge, UK), BDNF (1:500, DF6387; Affinity, Whhan, 

China), NT-3 (1:1,000, DF6105; Affinity), TrkA (1:200, 

BA0404; Boster, Wuhan, China), TrkB (1:200; Affinity), and 

TrkC (1:500, A14033; ABclonal, Wuhan, China). After being 

thoroughly rinsed with TBST, membranes were incubated with 

HRP-conjugated goat anti-rabbit (EMD Millipore) or goat anti-

mouse secondary antibody (EMD Millipore; diluted in 1:5,000) 

for 2 hours at room temperature. After being thoroughly washed 

with TBST, the specific antibody binding was visualized using 

the ECL system (Thermo Fisher Scientific). The protein bands 

were quantified based on gray value using an image analysis 

software (Image Lab) and normalized to β-actin.

Drugs
The Oxycodone Hydrochloride Injection was obtained from 

Beijing Mundipharma Pharmaceutical Co., Ltd. (Beijing, 

China).

statistics and data analysis
Results were expressed as mean±standard error of the mean 

(SEM) and error bars represented SEM. Behavioral tests were 

performed using a two-way ANOVA with repeated measures, 

followed by post hoc Bonferroni tests. The expressions values 

of genes and proteins were analyzed using a one-way ANOVA 

for multiple comparisons, followed by post hoc Bonferroni 

tests. All data were analyzed with GraphPad Prism 5.01 

software (GraphPad Software, Inc., La Jolla, CA, USA). 

A value of P<0.05 was considered statistically significant.

Results
Behavioral experiments
As shown in Figure 1, there were no significant differences 

in baseline mechanical and thermal withdrawal thresh-

olds among groups (P>0.05). The mechanical withdrawal 

threshold and thermal withdrawal latency were significantly 

decreased after PI in the PI group from 1 hour (7.5±0.47 g; 

7.7+0.61 seconds) to 24 hours (10.7±1.02 g; 13±0.94 sec-

onds), indicating that incision surgery induced hyperalgesia 

of the right hind paw. The results of the behavioral tests 

showed that the maximum analgesic effect of single oxyco-

done administration, postoperatively or preoperatively, was 

reached within the first 2 hours (PI+OXY: 1 hour: 54.8±9.39 g 

Figure 1 Mechanical and thermal hyperalgesia induced by Pi and the analgesic effect of oxycodone.
Notes: (A) The mechanical withdrawal thresholds. (B) The thermal withdrawal thresholds. **P<0.01, ***P<0.001 vs control group; #P<0.05, ##P<0.01, ###P<0.001 vs Pi group 
(two-way anOVa followed by Bonferroni’s multiple comparison post hoc test, n=8 rats per group). each value represents mean±seM. Pi+OXY, postoperative oxycodone 
group; OXY+Pi, preoperative oxycodone group.
Abbreviations: Bl, baseline; Pi, plantar incision; seM, standard error of the mean.
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and 30.1±0 seconds; 2 hours: 20.1±1.43 g and 21.4±2.14 sec-

onds; OXY+PI: 1 hour: 23.6±1.87 g and 20.5±0.84 seconds; 

and 2 hours: 16.5±0.94 g and 19.4±0.87 seconds) (Figure 1).

The expression of MOR was upregulated 
in the spinal cord after Pi
We assayed mRNA and protein expression of three opioid 

receptors (MOR, DOR, and KOR) in the spinal cord 24 hours 

post-surgery using quantitative PCR and Western blotting. 

We did not detect significant changes in DOR and KOR gene 

and protein expressions in PI, PI+OXY, and OXY+PI groups 

after surgery, compared to the control group (data not shown). 

We did, however, observe an increase in MOR levels after PI 

in PI, PI+OXY, and OXY+PI groups when compared to the 

control group (Figure 2A: P=0.0014, F=10.04; Figure 2B: 

P=0.0025, F=8.653). Compared to the PI group, there was 

an insignificant increase in MOR expression after oxycodone 

administration (P>0.05).

altered expression of nTs in the spinal 
cord 24 hours after Pi and oxycodone 
application
We measured mRNA and protein expressions of NTs (NGF, 

BDNF, NT-3, and NT-4). We found distinct expression 

profiles of NTs after PI and oxycodone administration. The 

mRNA and protein expressions of NGF and BDNF showed 

a remarkable upregulation, and NT-3 showed a remarkable 

downregulation after surgery, whereas oxycodone showed 

an inhibition effect on NGF (Figure 3A: P=0.000, F=20.85; 

Figure 3B: P=0.0002, F=14.87) and BDNF (Figure 3C: 

P=0.0091, F=6.403; Figure 3D: P=0.000, F=64.05) and an 

elevation effect on NT-3 (Figure 3E: P=0.0006, F=14.33; 

Figure 3F: P=0.000, F=49.15) both in gene and protein levels. 

We did not detect significant changes in gene and protein 

expression of NT-4 (data not shown).

altered expression of neurotrophic 
receptors in the spinal cord 24 hours 
after Pi and oxycodone application
As shown in Figure 4, we measured mRNA and protein 

expression of high-affinity receptors of NTs, including 

TrkA, TrkB, and TrkC. Statistical comparison between the 

PI group and the control group showed that the mRNA and 

protein expression of TrkA and TrkB in the PI group were 

significantly higher than that of the control group, while 

the expression of TrkC was decreased. When statistically 

compared with the PI group, TrkA (Figure 4A: P=0.0011, 

F=11.23; Figure 4B: P=0.0007, F=17.72) and TrkB (Figure 

4C: P=0.0003, F=17.61; Figure 4D: P=0.0004, F=13.12) 

expressions in the PI+OXY and OXY+PI groups were signifi-

cantly lower. Conversely, the expression of TrkC (Figure 4E: 

P=0.0027, F=8.972; Figure 4F: P=0.000, F=32.92) displayed 

a noticeable increase in the PI+OXY and OXY+PI groups.

Oxycodone suppresses the activation of 
glial cells in the spinal cord
The mRNA levels of GFAP and Iba1 after 24 hours of PI 

were significantly upregulated in the PI group and were 

Figure 2 Pi induced the activation of MOR in the spinal cord.
Notes: (A) The mRNA levels of MOR were significantly increased in PI, PI+OXY, and OXY+Pi groups. (B) The upper panel represents results of the Western blot analysis. 
The lower panel shows the semi-quantitative analysis of MOR after normalization to the corresponding β-actin. The expression of MOR was significantly increased in PI, 
Pi+OXY, and OXY+Pi groups (*P<0.05, **P<0.01, ***P<0.001 vs control group, one-way anOVa followed by Bonferroni’s multiple comparison post hoc test, n=3–4 rats 
per group). each value represents mean±seM. Pi+OXY, postoperative oxycodone group; OXY+Pi, preoperative oxycodone group.
Abbreviations: MOR, μ-opioid receptor; Pi, plantar incision; seM, standard error of the mean.
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Figure 3 The altered expression of nTs in the spinal cord 24 hours after Pi and the effects of oxycodone on nTs.
Notes: (A, C, and E) The mRna level of ngF, BDnF, and nT-3. (B, D, and F) The upper panels represent results of the Western blots. The lower panels show the semi-
quantitative analysis of ngF, BDnF, and nT-3 after normalization to the corresponding β-actin (*P<0.05, **P<0.01, ***P<0.001 vs control group; #P<0.05, ##P<0.01, ###P<0.001 
vs Pi, one-way anOVa followed by Bonferroni’s multiple comparison post hoc test, n=3–4 rats per group). each value represents mean±seM. Pi+OXY, postoperative 
oxycodone group; OXY+Pi, preoperative oxycodone group.
Abbreviations: BDnF, brain-derived neurotrophic factor; ngF, nerve growth factor; nT, neurotrophin; Pi, plantar incision; seM, standard error of the mean.
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Figure 4 The altered expression of neurotrophic receptors in the spinal cord 24 hours after Pi and the effects of oxycodone on neurotrophic receptors.
Notes: (A, C, and E) RT-qPcR was performed to examine the mRna level of Trka, TrkB, and Trkc. (B, D, and F) The upper panels represent results of the Western 
blots. The lower panels show the semi-quantitative analysis of Trka, TrkB, and Trkc after normalization to the corresponding β-actin. (*P<0.05, **P<0.01 vs control group; 
#P<0.05, ##P<0.01, ###P<0.001 vs Pi, one-way anOVa followed by Bonferroni’s multiple comparison post hoc test, n=3–4 rats per group). each value represents mean±seM. 
Pi+OXY, postoperative oxycodone group; OXY+Pi, preoperative oxycodone group.
Abbreviations: Pi, plantar incision; RT-qPcR, real-time quantitative PcR; seM, standard error of the mean; Trks, tyrosine kinase receptors.
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downregulated in the PI+ OXY and OXY+PI after oxyco-

done application (Figure 5A: P=0.000, F=19.31; Figure 5B: 

P=0.0017, F=12.01).

Discussion
Although a considerable number of drugs are used for 

clinical analgesia, acute post-surgery pain is still highly 

prevalent. Surgical procedures in patients usually include 

skin incisions and muscle separation and retraction to 

remove inflamed organs or tumors. If an experimental 

model can mimic the etiology and pathophysiology of a 

disease, then the underlying mechanisms may be better 

understood and the treatments may be improved. For PI in 

rats, the paw skin and fascia were incised, and underlying 

flexor muscle was elevated and subsequently incised. Thus, 

the injury after PI mimicked the somatic injury of many 

patients who undergo surgery. In our results, mechanical 

and thermal hyperalgesia were present on the affected limb 

within 1 hour and persisted for 24 hours post-surgery in 

the PI group. Both mechanical and thermal hyperalgesia 

are present in surgery patients.30,31 According to previous 

studies and our preliminary experiment, incision-induced 

mechanical and heat hyperalgesia were greatest the day 

of the incision. Thus, we chose 24 hours after incision as 

the experiment end point.13 Primary afferent activation and 

peripheral sensitization were profound early after surgery 

and most changes in protein expression occurred when pain 

behavior was most pronounced.32,33 Therefore, we examined 

the neurobiological changes in the spinal cord 24 hours 

post-surgery. We intraperitoneally administered a moderate 

dosage (2 mg/kg) of oxycodone in PI+ OXY and OXY+PI 

groups 15 minutes post- and pre-surgery. A moderate dose 

of oxycodone was chosen to avoid opioid-induced hyperal-

gesia and central nervous system depression.34,35 Oxycodone 

induced a reversal of mechanical hyperalgesia in rats that had 

been subjected to surgery; the maximal reversal lasted for 

2 hours post-administration. However, oxycodone reduced 

and gradually eliminated thermal hyperalgesia up to the end 

point. Pretreatment with oxycodone also had an impact on 

mechanical and thermal hyperalgesia, with a lower peak 

effect than with posttreatment. Similar to humans, in rats, 

mechanical sensitivity requires a considerably longer time 

to resolve than heat hypersensitivity.36,37 The differences 

in recovery time between heat sensitivity and mechanical 

sensitivity indicated distinct neuronal pathways.

We assayed the mRNA and protein levels of three opioid 

receptors in the spinal cord following incision and admin-

istration of oxycodone. Compared to the control group, our 

results indicated enhanced MOR levels after PI. However, 

oxycodone acts as an opioid receptor agonist and exerts its 

effect via activating opioid receptors without affecting the 

expression of opioid receptors. Therefore, compared to the 

PI group, there were insignificant changes in the expression 

of opioid receptors after the administration of oxycodone in 

PI+OXY and OXY+PI groups. Previous studies have shown 

that inflammation results in an enhanced MOR G-protein 

coupling and MOR agonist efficacy by increasing MOR 

binding and immunoreactivity within DRG.38–40 Our results 

are consistent with the theory that tissue injury activates 

pain inhibitory systems following the increased expression 

of MOR to limit the intensity and duration of pain hyper-

sensitivity associated with the incision.41 The upregulated 

expression of MOR after injury resulted in enhanced opioid 

susceptibility. Most importantly, we did not detect changes 

in the expression of KOR and DOR after PI, suggesting 

that oxycodone’s analgesic effect acts on MOR. It has been 

reported that the analgesic effect of oxycodone in some pain 

models may be mediated through activation of the MOR.42,43 

Furthermore, the antinociceptive effect was antagonized by 

naloxone but not antagonized by selective κ-antagonist nor-

binaltorphimine.43 Consistent with previous studies,42,43 our 

results indicate that the effect of oxycodone in rat incision-

induced pain can be attributed to the activation of MOR.

Next, we examined the mRNA and protein levels of 

all NTs and their high-affinity receptors in the spinal cord 

following incision and administration of oxycodone. In 

our results, compared to the control group, the expression 

of NGF, BDNF, and their high-affinity receptors TrkA 

and TrkB were increased in the spinal cord post-surgery. 

NTs can transport from the lumbar DRG into spinal cord 

Figure 5 The inhibiting effect of oxycodone on glial activation.
Notes: (A) The mRNA level of GFAP was significantly increased in PI and decreased 
in Pi+OXY and OXY+Pi groups. (B) The mRNA level of Iba1 was significantly 
increased in the Pi group and decreased in the Pi+OXY and OXY+Pi groups 
(*P<0.05 vs control; #P<0.05, ##P<0.01, ###P<0.001 vs Pi, one-way anOVa followed 
by Bonferroni’s multiple comparison post hoc test, n=3–4 rats per group). each 
value represents mean±seM. Pi+OXY, postoperative oxycodone group; OXY+Pi, 
preoperative oxycodone group.
Abbreviations: GFAP, glial fibrillary acidic protein; Iba1, ionized calcium-binding 
adaptor molecule 1; Pi, plantar incision; seM, standard error of the mean.
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 anterogradely,  suggesting that they may play a role in the 

modulation of nociceptive signaling in the spinal cord.44,45 

It is well known that NGF and its interaction with TrkA 

are critical mediators of pain initiation and maintenance.7 

NGF levels were reported to be elevated in inflammation, 

peripheral nerve injury, and neuropathic pain, and NGF-

sequestering antibodies are effective in many pain models. 

In addition, an increasing number of studies are providing 

evidence for the functional role of NGF in the activation 

and sensitization of nociceptors in rodents and humans 

via intradermal  injection.46–48 NGF also led to transcrip-

tional changes through the binding of TrkA, causing the 

elevated expression of pro-nociceptive neurotransmitters 

such as substance P (SP), calcitonin gene-related peptide 

(CGRP), and BDNF, which were released after nocicep-

tors were activated and acted as a central modulator.46,49 It 

has been well characterized that the critical role of spinal 

BDNF involves inflammatory and neuropathic pain.9,50 The 

expression of BDNF peaked at 24–48 hours in the spinal 

dorsal horn in the rat neuropathic pain model. Furthermore, 

neutralizing the increased expression of spinal BDNF could 

alleviate pain.51 In this study, on the one hand, the elevated 

expression of BDNF may be caused by the activation of 

nociception after PI or it may be due to increased NGF. 

NT-4, a ligand for TrkB such as BDNF, is synthesized in 

DRGs and expressed predominantly by motor neurons in 

the ventral horn of the spinal cord. NT-4 plays a role in the 

maintenance and survival of motor neurons, which is very 

different from the role of BDNF.52–55 Moreover, several 

studies have provided evidence to support that NT-4 may 

play a less significant role in nociceptive transmission and 

neuropathic pain than other NTs, but this finding requires 

further investigation.53,55,56 In parallel with these reports, 

we did not detect changes in NT-4 expression in our rat 

model of post-surgery pain. After applying oxycodone in 

PI+OXY and OXY+PI groups post- and pre-surgery, the 

increased expression of NGF, BDNF, TrkA, and TrkB was 

reversed, demonstrating that oxycodone could mediate the 

expression of NTs and receptors in acute surgery pain in 

rats. We found that pretreatment with oxycodone could also 

alter the expression of these mediators, suggesting that a 

prophylactic drug that reduces the magnitude of postopera-

tive pain could be useful. Joseph and Levine57 demonstrated 

that MOR localized on a functionally important population 

of TrkA-positive nociceptors, suggesting that MOR played 

a regulated role in NGF-induced hyperalgesia. This find-

ing indicated that oxycodone plays a role in regulating NT 

and receptor expression. Accordingly, the second possible 

mechanism we conjecture is that the antinociceptive effect 

of oxycodone in acute post-surgery pain may involve the 

regulation of NTs and receptors.

Nevertheless, the underlying mechanism of NT regulation 

by oxycodone warrants further investigation. According to 

classical opioid-induced signaling, oxycodone acted as an 

opioid agonist and activated MOR in nociceptors, followed 

by the inhibition of cyclic adenosine monophosphate (cAMP) 

and the decreased production of downstream proteins includ-

ing NTs and receptors. However, many opioids also acted 

through non-opioid receptors and novel modulatory mecha-

nisms. It is well known that the injury of both peripheral and 

central nerves gives rise to the activation of astrocytes and 

microglia.58 Microglia are the main immune cell type in the 

central nervous system, which change in morphology and 

synthesize several mediators during neuronal injury.59,60 Both 

activated astrocytes and microglia can secrete pro- and anti-

inflammatory cytokines, chemokines, neurotrophic factors, 

and many other molecular modulators.61 Oxycodone could 

suppress the glial activation and pro-inflammatory cytokines 

in mice models of neuropathic pain.62 Most importantly, the 

inhibiting effect of oxycodone on glial activation takes place 

in the early stages of drug administration.62 A recent study 

showed that medium and high concentrations of oxycodone 

could regulate the pro-inflammatory and anti-inflammatory 

molecules released by activated microglia in vitro.63 We also 

examined the mRNA levels of GFAP and Iba1, which are 

astrocytic and microglial markers, respectively. In parallel 

with these studies, our results showed that oxycodone had 

an inhibitory effect on glial activation, suggesting that the 

effect of oxycodone on NTs may be mediatory by suppress-

ing the activation of glial cells. NTs have been reported to 

lead to both pro-nociceptive and antinociceptive effects, 

suggesting a complex mechanism involving NTs in initial 

pain and pain maintenance.64–66 NT-3, another NT, acted in a 

manner that antagonized nociceptive phenotypes in sensory 

neurons. Applying NT-3 to neuropathic pain in rats could 

prevent and attenuate thermal hyperalgesia in injured hind 

paws with a negative effect on mechanical hyperalgesia.45 

Our data showed that the expression of NT-3 and its high-

affinity receptor TrkC were decreased in the spinal cord in 

the PI group, post-surgery, and after applying oxycodone, 

the expression of NT-3 and TrkC were increased. A study 

revealed that NT-3 functionally reduced the expression of 

TrkA, BDNF, transient receptor potential vanilloid receptor-1 

(TRPV1), SP, and CGRP in intact neurons, demonstrating 
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a beneficial role of NT-3 in inhibiting the pro-nociceptive 

effect of NGF.45 Interestingly, another study observed that 

the inhibition of SP release by NT-3 in the spinal cord of 

rats could be reversed with naloxone, suggesting the pres-

ence of cross-talk between opioidergic signaling and NT-3 

in the spinal cord.67 Thus, we propose that oxycodone may 

upregulate the expression of NT-3 and its high-affinity recep-

tor. Following this upregulation, the expression of NGF and 

TrkA are inhibited through the NT-3-TrkC pathway, inhibiting 

the downstream signaling and expression of the mediators 

induced by the NGF-TrkA pathway. However, the underly-

ing mechanism needs further investigation. Together, this 

study demonstrates that the analgesic effect of oxycodone 

may be achieved through the activation of MOR downstream 

signaling, attenuating glial activation, and fortifying antino-

ciceptive mediators in the spinal cord. Nevertheless, there are 

some limitations to our research. We did not further explore 

the possible mechanism underlying the effect of oxycodone 

on NTs and receptors, which should be investigated in future 

studies.

Conclusion
The results of this study revealed that the antinociceptive 

properties of oxycodone in a rat model of acute post-surgery 

pain can be attributed to the activation of MOR downstream 

signaling rather than KOR or DOR. The results of this study 

also suggested that the analgesic effect of oxycodone may be 

attributed to the regulation of the expression of NTs and their 

receptors in the spinal cord. The suppression of pro-nocicep-

tive molecules by oxycodone pretreatment provides another 

argument in favor of an early application of analgesic drugs 

to prevent post-surgery pain. This study, to a certain degree, 

will hopefully improve our understanding of the underlying 

mechanism of oxycodone in acute post-surgery pain and may 

provide new candidates for further investigations into the 

mechanism underlying the effects of oxycodone.
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