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Abstract: Congestive heart failure (CHF) is a chronic cardiovascular condition associated with
dysfunction of the autonomic nervous system (ANS). Heart rate variability (HRV) has been widely
used to assess ANS. This paper proposes a new HRV analysis method, which uses information-
based similarity (IBS) transformation and fuzzy approximate entropy (fApEn) algorithm to obtain
the fApEn_IBS index, which is used to observe the complexity of autonomic fluctuations in CHF
within 24 h. We used 98 ECG records (54 health records and 44 CHF records) from the PhysioNet
database. The fApEn_IBS index was statistically significant between the control and CHF groups
(p < 0.001). Compared with the classical indices low-to-high frequency power ratio (LF/HF) and IBS,
the fApEn_IBS index further utilizes the changes in the rhythm of heart rate (HR) fluctuations between
RR intervals to fully extract relevant information between adjacent time intervals and significantly
improves the performance of CHF screening. The CHF classification accuracy of fApEn_IBS was
84.69%, higher than LF/HF (77.55%) and IBS (83.67%). Moreover, the combination of IBS, fApEn_IBS,
and LF/HF reached the highest CHF screening accuracy (98.98%) with the random forest (RF)
classifier, indicating that the IBS and LF/HF had good complementarity. Therefore, fApEn_IBS
effusively reflects the complexity of autonomic nerves in CHF and is a valuable CHF assessment tool.

Keywords: congestive heart failure (CHF); autonomic nervous system (ANS); heart rate variability
(HRV); fuzzy approximate entropy of similarity-based information (fApEn_IBS)

1. Introduction

Congestive heart failure (CHF) is a clinical condition with inadequate ventricle filling
or manifestation of inadequate myocardial contraction (myocardial failure), caused by
changes in cardiac structure and function [1]. It has been identified as a major public health
concern and extensively studied within the past two decades. There are about 3 million
patients in the United States, nearly 1.5% of the adult population suffering from CHF [2].
The amount of CHF patients is rapidly growing because of the population aging and the
increase of survival after myocardial infarction [3]. In addition, CHF may also cause some
underlying heart disease [4], or bring structural and functional derangements to the liver
with congestion [5]. Thus, the diagnosis of CHF patients is critical.

A previous study proved that cardiac arrhythmias in CHF is associated with the
instability of autonomic nervous system (ANS) [6]. To this end, scholars usually extract
heart rate variability (HRV) indicators from ECG signals, which can reflect the function
of ANS, such as the vagal and sympathetic function, to estimate the activity of ANS in
CHF [7,8]. Traditionally, HRV analysis is usually based on frequency and time domain.
Takase et al. [9] reported that the HRV index on time-domain could successfully distinguish
patients and normal individuals. Rovere et al. [10] found that power in low-frequency LF
(0.04–0.15 Hz) can effectively predict the probability of sudden death in patients with CHF.
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However, these methods are effective, HR fluctuations are considered complex behaviors
derived from nonlinear and non-stationary processes [11–13]. So, the traditional linear
methods may not suit CHF studies because they would be disturbed by fluctuations and
cause experimental errors.

Therefore, many nonlinear HRV analysis methods have been extensively studied
in recent years, including the fractal dimension [14], Poincare diagram [15], complexity
analysis [16] and other methods, all of which have achieved certain results. However,
Li et al. [17] pointed out that few scholars have studied the dynamic changes of short-term
HR fluctuations, and most of them only evaluated the overall level of HRV. Nevertheless,
information-based similarity (IBS) was proved to be a valuable way of nonlinear methods to
study HRV [18,19], many scientists demonstrated that some underlying dynamics existed
in the complex fluctuations in the output signals of the physiological system [12,20]. IBS
method considers nonlinear dynamic characteristics of a physiological signal. It studies
the acceleration/deceleration mode of heart rate fluctuations based on the sequencing
frequency analysis. By transforming HR fluctuations into symbols, it can effectively
correct the noise made by the antagonism effect of sympathetic nerve system (SNS) and
parasympathetic nervous system (PNS) effectively [21]. In this way, the IBS method can
be applied to get the instantaneous HR fluctuation differences between CHF patients and
normal. Cui et al. [21] found that IBS index could correctly classify Atrial fibrillation (AF)
and normal heart rate. Yang et al. [22] used IBS to study β-AR polymorphism, which
reflected the underlying pattern of ANS and the difference between ANS changes and
dynamic heart rate changes.

Entropy is also a feasible method for CHF study for the complexity of heart rate fluc-
tuations [23,24]. Many studies proved the effectiveness of entropy in CHF screening [25],
which supported that the HRV analysis was helpful in CHF diagnosis. Moreover, intro-
ducing the concept of “fuzzy set”, fuzzy approximate entropy (fApEn) is an ideal tool to
measure the complexity of time series [26]. Li et al. [27] indirectly processed ECG signals
to expose ANS imbalance in OSA patients by introducing fuzzy approximate entropy to
calculate the complexity of slope series, rather than directly calculating the entropy value
of the ECG data. In this way, the fApEn could indirectly estimate the complexity of HR
fluctuations during a short time period. Sokunbi et al. [28] found that fApEn not only
depends heavily on data length, but also has a better performance in monotonicity, relative
consistency, and robustness to noise than other entropy methods when processing different
complexities signals.

Therefore, the combination of IBS and fApEn cannot only reveal the law of HR fluctua-
tions but also better study sympathetic disorders by measuring the complexity of different
wave patterns, and also reveal the mechanism of CHF patients. First, the IBS method was
used to convert the HRV signal into an IBS value. Secondly, fApEn_IBS was extracted to
study the complexity of short-term heart rate fluctuations. In addition, LF/HF was also
calculated as the contrast, the significance analysis of the three indicators was conducted.
Finally, the Fisher discriminant function was used for single index discrimination. Since
machine learning methods have been proven to be able to successfully detect and classify
heart failures [29–31], we decided to use machine learning classifiers for multi-feature
discrimination to improve screening accuracy. The samples were divided into normal and
CHF groups, and the accuracy, specificity and sensitivity were calculated.

2. System and Method

In this study, HRV characteristics of normal and CHF subjects were analyzed. The
framework of the system is shown in Figure 1. Firstly, the 24-h RR-interval signals were
extracted after collecting ECG signals. Then, the corrected 1-min RR-interval signals (RRI)
were obtained through preprocessing. Furthermore, the traditional HRV research methods
and the IBS method were used to calculate the indices. Finally, LF/HF ratio and IBS index
were used for statistical analysis and severe CHF detection.
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2.1. Data Collection

In this study, the 24-h RR interval signals of 54 healthy subjects (31 males and
23 females, aged 61.38 ± 11.63 years) were collected from the Normal Sinus Rhythms
RR Interval database, and 44 CHF subjects (19 males and 6 females, 19 subjects’ gender
were unknown, aged 55.51 ± 11.44) were acquired from the Beth Israel Deaconess Medical
Center (BIDMC) Congestive Heart Failure database (15 subjects) and the Congestive Heart
Failure RR Interval database (29 subjects). All these databases and ECG signals are open
source from the PhysioNet open database [32–34].

2.2. Preprocess

To reduce the affect produced by noise, the 24-h HRV signals were preprocessed. First,
we remove the first and last RR intervals of each 24-h record, as well as the RR intervals,
which are longer than 3 s, to remove singular value interference [35]. Then, we did not
choose to delete lower outliers because the RR intervals of healthy groups are usually
higher than CHF groups [9]. Many researchers considered 5-min series as a standard
interval of spectral HRV studies [36]. However, based on the situation the 1-min segments
would have a good real-time performance for efficiently capturing changes in heart rate. In
this way, RRI may also be suitable for CHF detection [37] and we separated the 24-h HRV
signals into non-overlapping 1-min RRIs.

2.3. Indices Calculation
2.3.1. Frequency Domain Analysis

In frequency domain, the low-frequency power (0.04–0.15 Hz, LF) is closely related
to the SNS activity, and the high-frequency power (0.15–0.4 Hz, HF) is usually associated
with the activity of the PNS. Then, the LF to HF ratio (LF/HF) can reflect the tension
balance between SNS and PNS [38]. In this study, a fast Fourier transform would be used
to compute the power spectral density for each RRI. The LF/HF ratio was calculated by
the LF and HF components index, which is widely accepted to reflect the ANS balance [39].
The formula is shown as:

LH Ratio =
LF power
LH power

(1)

2.3.2. Similarity Change Analysis

In the previous studies, information-based similarity (IBS) of RR-interval signals can
successfully analyze the similarity of the regularity in short-term HR fluctuation [21,40].
Then, fuzzy approximate entropy (fApEn) can reflect the complexity of short-term HR fluc-
tuations’ similarity. Based on similarity analysis and entropy measurement, the fApEn_IBS
was proposed as a novel HRV analysis method to determine the dynamic rhythm changes
of the ANS by observing the complexity changes of fluctuation patterns. The scheme of the
fApEn_IBS method is shown in Figure 2, and the details of the fApEn_IBS are as follows.
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Step 1 (RRI reconstruction): the raw RRI is defined as follows:

RRI = (r1, r2, r3, . . . , rk) k = 1, 2, . . . , n (2)

We assume that the coarse-grained is s, that is, the data of every s RR interval will be
classified into a set for non-overlapping mean coarse-grained processing. This means that
you will get a new variable yj, whose value is the average of the data in the corresponding set:

yj =
∑

j∗s
k=(j−1)∗s+1 rk

s
. j = 1, 2, . . . , n′. (3)

Through non-overlapping mean coarse-grained processing, the original RRI sequence
is reconstructed into a new sequence Y, which is formed by yj:

Y = (y1, y2, . . . , y n′) n′ =
[n

s

]
. (4)

Figure 3 illustrates the details of RRI reconstruction. As shown in Figure 3, the first s
RR interval data r1 to rs are classified into the first set, and y1 is obtained after averaging
these s data. By analogy, the new sequence Y composed of y1 to yn replaces the original
RRI sequence.
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Figure 3. An illustration of RRI reconstruction. (a) A 1-min RRI = (r1, r2, r3, . . . , rn). (b) Multiple
non-overlapping rks were divided from RRI. (c) The reconstructed sequence Y is composed of a time
duration of 1/s minute.

Step 2 (Construction of m-bit words sequence): The increase and decrease between the
yi and yi+1 were defined as 1 and 0, respectively. Based on this standard, the Y sequence
with n′ length would be converted into a 0–1 binary sequence of length n′-1. Then, a binary
sequence of length m is represented as a word, called a m-bit word. Each different m-bit
word could reflect a specific pattern of HR fluctuations [40]. In this way, by applying the
sliding-window method to Y, it became a series of m-bit words.

Step 3 (Distance calculation): By quantifying the number of each word in the sequence,
the frequency of occurrence of different words can be obtained. Moreover, finally, every
word’s position in the sequence would depend on its frequency after sorting. To calculate
the IBS value between sequences of adjacent words, the formulas are as follows [21]:

w(xi) =
[−p1(xi)log p1(xi)− p2(xi)logp2(xi)]

∑L
i=1[p1(xi)logp1(xi)− p2(xi)logp2(xi)]

(5)

where w is the weight of a decimal m-bit word xi, L represents the total number of different
m-bit words, and p denotes the possibility of each word.

D(R1, R2) =
∑L

i=1|K1(xi)−K2(xi)|w(xi)

L
(6)

D(R1, R2) denotes the distance between adjacent words sequences, as well as the IBS
value between adjacent raw RRIs. K denotes the rank of word.

Step 4 (Average calculation): After calculating the average of all IBS values between
adjacent RRIs in one recording, the IBS index would be obtained.

Step 5 (Space reconstruction & Space vectors distance calculation): From the time
series containing n IBS values in one recording u(t) = u(1), u(2), ..., u(N), the following
m-dimensional vector is defined as:

XXm
i = {u(i), . . . , u(i + m− 1)} − u0(i)

i = 1, 2, . . . , n−m + 1 (7)

where u0(i) is calculated as:

u0(i) =
∑i+m−1

k=0 u(k)
m

(8)
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Distance dm
ij between vectors XXm

i and XXm
j is based on maximum absolute difference

calculation. For a given similarity tolerance of function r, the similarity degree Dm
ij is

determined by a fuzzy membership function FZ(dm
ij , r), which employs the Gaussian

function.
Dm

ij = FZ
(

dm
ij , r
)

(9)

Step 6 (Approximation calculation): define the possibility of vectors XXm
i and XXm

j
will match as function ϕm

i ,

ϕm
i =

∑N−m
j=1 Dm

ij

N−m + 1
(10)

Moreover, define the function Φm(r) as follows:

Φm(r) =
∑N−m+1

i=1 ln(ϕm
i )

N−m + 1
(11)

Because the input IBS parameter is a finite time series [41],

fApEn(m, r, N) = Φm(r)−Φm+1(r)

= ln
(N−m+1)−1 ∑N−m+1

i−1 ϕm+1
i

(N−m)−1 ∑N−m
i−1 ϕm

i

(12)

Based on these, fApEn_IBS value could be calculated.

2.4. Indice Validation

To evaluate the HRV indices, first we calculate LF/HF ratio and IBS index as well as
fApEn_IBS index based on MATLAB (R2017b, MathWorks, Natick, MA, USA). Then, a
t-test was used to analyze the significant difference between the control and CHF groups
based on SPSS version 22.0.0.0 (SPSS Inc., Chicago, IL, USA), the results were expressed as
the mean ± SD. Moreover, p < 0.05 was considered statistically significant. Finally, to verify
the performance of these HRV indicators, Fisher linear discriminant of SPSS was used
for CHF screening. In addition, based on the Python 3.6.5 environment, we use support
vector machine (SVM) [42], k-nearest neighbor (KNN) [43], and Random forests (RF) [44] to
perform five cross-validation for multiple features. The results were expressed as accuracy,
sensitivity, and specificity. The receiver operating characteristic (ROC) curve and area
under the ROC curve (AUC) of the algorithms were calculated using MATLAB (R2017b,
MathWorks, Natick, MA, USA).

3. Results
3.1. HRV Analysis of the Difference between the Control and CHF Group

The analysis results of the frequency domain, IBS and fApEn_IBS indices are shown
in Table 1 as mean ± SD values. There were significant differences between the healthy
and CHF groups (p < 0.001) in the three indices, so LF/HF and IBS, fApEn_IBS indexes are
all considered as useful indices to distinguish the control and CHF groups.

Table 1. LF/HF, IBS and changes in the similarity of HR fluctuations indices for the CHF and normal
groups.

When m = 2; s = 2

Indices CHF Normal p-Value

LF/HF 1.2408 ± 0.57942 2.6092 ± 1.06902 0.000 ***
IBS 0.1770 ± 0.03744 0.2273 ± 0.01874 0.000 ***

fApEn_IBS 1.5710 ± 0.14279 1.7229 ± 0.03511 0.000 ***
LF/HF: low frequency (LF)/high frequency (HF) ratio; IBS: information-based similarity index; fApEn_IBS: fuzzy
approximate entropy of IBS index. CHF: CHF group; Normal: normal group. *** represents p < 0.001.
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Figure 4 shows the representative adjacent raw RRIs between the normal and CHF
group. Moreover, it also reveals that the regularity of HR fluctuations between adjacent
RRIs in the two groups was different, the regularity of HR fluctuations in CHF group
is more similar than normal people. Moreover, as shown in Figure 5, two records were
selected from the normal and CHF groups as typical examples to reflect the distribution
of IBS index in 24 h. The complexity of color distribution indicated that the degree of
disturbance of HR fluctuation was irregular between the two groups.
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3.2. CHF Sreening

Using the Fisher linear discriminant function, each sample was classified as normal
and CHF patient to access the performance of each index. The accuracy, sensitivity and
specificity are defined as the percentage of correctly classified normal or CHF patients, the
percentage of correctly classified CHF patients, and the percentage of correctly classified
normal samples, respectively. Table 2 shows that fApEn_IBS is the best screening indicator
with the highest accuracy (84.69%) and specificity (98.15%) for 98 samples. Therefore,
fApEn_IBS improves detection accuracy and is a more useful index than LF/HF and IBS.
As shown in Figure 6, two groups could be separated from three-dimensional observations,
proving the rationality of screening by three indicators.
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Table 2. Performance comparisons of CHF screening indicators by Fisher linear discriminant function.

Indices TN TP FN FP Acc (%) Sen (%) Spe (%)

LF/HF 38 38 6 16 77.55 86.36 70.37
IBS 49 33 11 5 83.67 75 90.74

fApEn_IBS 53 30 14 1 84.69 68.18 98.15
LF/HF: low frequency (LF)/high frequency (HF) ratio; IBS: information-based similarity index; fApEn_IBS: fuzzy
approximate entropy of IBS index. TP: true positive; TN: true negative; FP: false positive; FN: false negative; Acc:
accuracy; Sen: sensitivity; Spe: specificity.
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When the samples have multiple features and a large amount of data, machine learning
classifiers will have significant advantages over other methods [45]. We selected the
following three machine learning methods for multi-index screening:

(1) K Nearest Neighbor (KNN): KNN is a type of instance-based learning. New cases are
classified based on a similarity measure in the vector space model. Here the neighbor
number is defined as 5 [46].

(2) Random forest classifier (RF): RF is an ensemble learning method that consists of a
multitude of decision trees. The result is determined by the output model of a single
tree [47].

(3) Support Vector Machine (SVM): SVM is a supervised clustering method that maps
data points to high-dimensional space through kernel functions for classification. In
this paper, we select polynomial kernel function to classify data points [48].

Combining the above five-fold cross-validation analysis, the screening effect is better.
With multiple features, including IBS, LF/HF, and fApEn_IBS index, the random forest
classifier achieved the best classifier result, as shown in Table 3. Compared with other
classifiers, RF achieved a better classification performance under the same input conditions,
with the highest accuracy and more balanced sensitivity and specificity (98.98% accuracy,
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98.15% sensitivity and 100% specificity). The confusion matrix also points out that only
one CHF patient was wrongly identified, which proved that the RF classifier is an effective
method for CHF detection. Furthermore, Figure 7 also supports this conclusion through
the ROC curve that is the closest to the top with the largest area (AUC = 0.9996).

Table 3. Performance comparisons of CHF screening indicators by Fisher linear discriminant function.

Indices Classifier TN TP FN FP Acc (%) Sen (%) Spe (%)

LF/HF RF 54 43 1 0 98.98 97.73 100

IBS KNN 48 43 1 6 92.86 97.73 88.89

fApEn_IBS SVM 48 36 8 6 85.71 81.82 88.89
LF/HF: low frequency (LF)/high frequency (HF) ratio; IBS: information-based similarity index; fApEn_IBS: fuzzy
approximate entropy of IBS.
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3.3. Parameter Selection

When calculating the fApEn_IBS index, the influences of different bits of constructed
words and the coarse-grained scale s on the CHF screening performance are shown in
Figure 8. When s and m are 2 at the same time, the screening performance is optimal.
Therefore, s = 2 and m = 2 are selected as the average coarse-granulation scale and the
word length of the construction. When m = 2, it can better capture the relationship
between adjacent letters, and different numbers are more likely to appear. When s = 2, the
information of the original RR interval sequence can be preserved more finely and noise
would be eliminated. In conclusion, when s = 2 and m = 2, CHF detection performance is
the best and screening accuracy is improved. So, m = 2 and s = 2 are selected as the number
of bits of the words and coarse-grained scale to calculate the fApEn_IBS index for HRV
analysis.
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4. Discussion
4.1. Comparison and Summary

Previous studies have shown that LF/HF is a useful frequency domain indicator
for HRV analysis in CHF patients [49,50], and our results also confirmed that there is
a statistical difference in LF/HF between healthy people and CHF patients (p < 0.001).
However, as the study progressed, the screening accuracy of the LF/HF indicator was not
high enough (less than 80%), the single index screening accuracy of IBS and fApEn_IBS
was higher.

Furthermore, fApEn_IBS has the most significant performance in distinguishing
normal people and CHF patients. Compared with the IBS index, fApEn_IBS can not
only analyze the similarity of HR fluctuation, but also analyze the change of fluctuation
regularity. Table 2 shows that the accuracy of fApEn_IBS in CHF screening is 84.69%,
while the screening accuracy of IBS, LF/HF is 83.67% and only 77.55%, respectively. In
addition, the specificity and sensitivity of fApEn_IBS were 98.15% and 68.18%, respectively.
The high specificity indicates that fApEn_IBS has strong screening ability for patients
with congestive heart failure, and its low sensitivity may be due to the smaller number of
positive patients than normal people, so small fluctuations in the number have a greater
impact on the calculation of the index. In summary, the fApEn_IBS index is a valid index
for CHF screening.

4.2. Comparison with Previous Studies

To expand the sample size, we collected data from three databases. Focusing on study
methods and screening results, we compared them with related studies that analyzed ECG
data [25,51–54], as shown in Table 4.
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Table 4. Comparison of classification results between previous studies and our method.

Reference Feature Number of
Recordings

Length of RR
Segment Classifier Classification

Result

Pan et al. [25]
Single-feature—MFCN

(Multi-Frequency
Components Entropy)

98 5 min Fisher
Discriminant

Acc = 86.7%
Sen = 79.5%
Spe = 92.6%

Luo et al. [51]
Multi-feature—

LF/HF+TE(LF→HF)+TE(HF→LF)
Transfer Entropy (TE)

98 5 min Fisher
Discriminant

Acc = 83.7%
Sen = 86.4%
Spe = 81.5%

David et al. [52] Multi-feature—Renyi
Entropy+SDNN+RMSSD 33 13 min Nearest Neighbor

Acc = 87.9%
Sen = 80.0%
Spe = 94.4%

Chen et al. [53] Multi-feature—50 features 116 5 min

A two-layer deep
neural network

model based on an
SAE-based DL

algorithm

Acc = 72.4%
Sen = -
Spe = -

Wang et al. [54] No need 101 73.9 s Long Short-Term
Memory

Acc = 85.1%
Sen = 73.6%
Spe = 91.8%

Other method Multi-feature—
fApEn_IBS+IBS+LF/HF 98 1 min Random Forces

Acc = 99.0%
Sen = 97.8%

Spe = 100.0%

Some of the previous studies only focused on the screening by nonlinear methods [25,51]
and did not combine machine learning with improving the screening accuracy. Other studies
had smaller sample sizes or inadequate screening accuracy [52,53]. Compared with the
results of other studies, the classification accuracy of our method is higher than most with
the accuracy (99%), sensitivity (97.8%) and specificity (100%) all above 95%. These results
indicate that fApEn_IBS has a certain clinical reference value in evaluating ANS complexity
for CHF patients.

4.3. Method Propsed and Parameter Selection

A previous study has reported that 5-min series is the standard time interval for
HRV studies [36], but considering that RRI could be keenly aware of heart rate changes,
the 1-min segment has good real-time performance. Although the traditional classical
frequency-domain method [10] is feasible, the regularity and complexity of HR fluctuations
are considered more comprehensively. Therefore, the fApEn_IBS index was constructed by
a 1-min RR segment for CHF diagnosis in this paper.

It is found that the interval time series of heartbeats are correlated [55], and it can be
changed with some diseases [56]. As shown in Figure 6, CHF patient has more similar HR
fluctuations and a higher correlation between adjacent RRIs than normal subject. Therefore,
correlation analysis can be used to detect CHF. However, most studies did not quantify the
degree of correlation. As a method to measure the similarity between symbolic sequences,
IBS had been used effectively to quantify the correlation between interbeat interval time
series [18,40].

As a nonlinear system, the function of the cardiopulmonary coupling system is af-
fected by CHF, and the regulation of the system to HR through ANS is also nonlinear [57].
Considering that HRV also contains nonlinear components in signal generation and regula-
tion, compared with the linear method, more information can be obtained by processing
HRV signal with the nonlinear method [58]. IBS as a novel nonlinear method, before
and after using the numbers reflect the change of HR fluctuations, thus weakening the
influence of volatility. Moreover, after converting the 0–1 binary sequences into m-bit
words sequences, IBS is only associated with the relative proportion of letters that appeared
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instead of the absolute number and time node of occurrences of letters. Therefore, the IBS
method can analyze the similarity of nonlinear system signals by comparing the variation
rule, and this is a reasonable strategy to detect CHF by evaluating the similarity of HR
fluctuation regularity.

Complexity is a feature of normal cardiovascular regulation, and the nonlinear reg-
ulatory pattern of the cardiovascular system leads to the complexity and irregularity of
RRI [59]. As a complexity analysis method, fuzzy approximate entropy is not strongly
dependent on data length when processing different complex signals, and has better per-
formance in terms of robustness to noise [28]. Thus, after studying the HR fluctuation rule
by IBS sequences, the complexity of IBS sequence would be studied by combining fuzzy
approximate entropy algorithm, and the fApEn_IBS index was constructed to observe the
complexity difference HR fluctuation between normal people and CHF patients.

To improve index performance and detection accuracy, the parameters of different
bits of constructed words and the coarse-grained scale and fApEn were also analyzed.
Wu et al. [40] revealed that if the constructed words in sequences for RRI are too long, there
would be too few m-bit words. Therefore, we calculated the IBS index when M was 2–6.
If the degree of coarse granitization is too large, NAN value will be generated and noise
interference cannot be effectively eliminated. In addition, considering the result of retaining
original sample data when s value is 1, the value range of S is 1–7. Three parameters of
fApEn must be determined: parameter N, which represents the number of sequence points;
M is the embedding dimension of sequence reconstruction; r is the similarity tolerance of
the exponential function. Sun, Zheng et al. [60,61] proved the feasibility of the method
when the parameters N, M and r were set to 2, 2 and 0.25, respectively, and the results were
consistent with other results.

4.4. Physiological Significance

CHF is a chronic cardiovascular syndrome associated with ANS dysfunction [6], HRV
is a useful tool for evaluating ANS [7,8], and previous studies on the changes of HRV signal
energy have attempted to screen CHF patients. In this paper, three indexes of LF/HF, IBS
and fApEN_IBS were constructed to analyze the changes of HRV signal by evaluating the
balance of ANS function, the similarity and complexity of heart rate fluctuation rhythm.
Finally, according to p-value in the Table 1, it was concluded that there were significant
differences in three aspects between patients and healthy people.

4.4.1. Why Does ANS Balance Differ Significantly between the Two Groups?

The traditional HRV frequency domain method, LF/HF, reflects the balance of ANS;
that is, the level of sympathetic and parasympathetic nervous system activity, demon-
strating a significant difference between the normal group and CHF group in our study.
Valenza et al. [62] indicated that vagal activity was significantly reduced in patients with
CHF. Kishi et al. [63] found an imbalance between the sympathetic nerve and the vagus
nerve during a CHF attack. Hasking et al. [64] proposed that to compensate for the pump-
ing function of the heart, patients with CHF increase the level of norepinephrine through a
vicious cycle, thereby increasing the sympathetic outflow of the heart and leading to more
sympathetic nerve activity. These are the reasons for the statistically significant difference
in LF/HF between the two groups, which show a significant difference in ANS balance.

4.4.2. Why Does the Similarity of HR Fluctuations Change Significantly between the
Two Groups?

Rahko et al. [65] found that systolic cardiac function was obstructed in patients with
CHF, characterized by a significant abnormality in the total systolic interval. Moreover,
increased sympathetic activity is accompanied by increased heart rate and energy expendi-
ture, resulting in decreased myocardial oxygen delivery, gradual delay and deceleration of
diastole [66,67], which is closely associated with malignant arrhythmias [68]. All these con-
tribute to decreased ability of the autonomic nerve to regulate the change of heart rate and
the slow fluctuation of heart rate, leading to the significant difference in the similarity of
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HR fluctuation rule between the two groups. Figure 6 also confirms that patients’ adjacent
RR interval fluctuation is more similar.

Understanding from each point in time, IBS reflects the transient fluctuation of heart
rate; understanding from a period of time, and IBS reflects the similarity of the HR fluctua-
tion rule of the sample. CHF patients had lower IBS values, indicating that the adjacent RR
intervals fluctuated less and the fluctuation pattern was more similar. With the decrease of
oxygen intake, patients cannot change cardiac output by heart rate regulation. The heart
cannot fully discharge the venous return of blood from the heart, leading to blood stasis in
the venous system and blood perfusion in the arterial system [69]. This increased atrial
pressure, which in turn leads to increased capillary pressure, causes cardiac circulation
disorders such as congestion in the lungs, and thus patients with CHF are less able to adapt
to their environment [70,71].

4.4.3. Why Does the Complexity of HR Fluctuations Differ between the Two Groups?

Saul et al. [72] found that during heart failure, vagal activity decreased. However,
sympathetic modulation relatively increased, and these findings reflect that the regulation
of HR in CHF patients was significantly disorganized. Naturally, there is a difference in
the complexity of HR fluctuations between patients and normal, but dysregulated HR
regulation does not mean great complexity. Zhao et al. [73] pointed out that CHF subjects
would lose complexity due to pathology. Yin et al. [74] found that the nonlinear complexity
of the healthy group was higher than that of the CHF group because the complexity
of the cardiovascular system of patients would be reduced, and the entropy value of
the complexity of the ECG description would be correspondingly reduced. All of these
conclusions are consistent with our experimental results.

The fApEn_IBS of CHF patients was smaller, indicating that the complexity of short-
term HR fluctuations in the 24 h was reduced, reflecting that patients are accompanied
by impairment of cardiac function and decline of ventricular systolic and diastolic func-
tions [75], and that ANS injury is severe and imbalanced, leading to a relatively simple
pattern of short-term heart rate fluctuations. Autonomic nerves do not effectively regulate
HR to increase cardiac output and restore systolic/diastolic function [69].

Limitation:
There are some limitations to this study. Firstly, more databases should be used to

expand the sample size to verify the effect of the method. Secondly, we only studied the
validity of 1-min clips, and further studies on the length of time should be conducted in
the future. Thirdly, gender and age inconsistencies between the CHF and control groups
may also lead to differences in experimental results. Finally, the effect of drug use on CHF
patients should be valued and quantified, excluding the interference of irrelevant variables,
so this limitation should be considered in future studies.

5. Conclusions

In this study, the fApEn_IBS method was used to extract the information of different
RR intervals. This method not only evaluated the similarity of the HR fluctuation regularity
between adjacent RR intervals, but also reflected the complexity of the fluctuation rule,
thus significantly improving the CHF screening performance. Our results showed that
the similarity and complexity of HR fluctuation law between adjacent RRI in the CHF
group were significantly reduced, and the accuracy of fApEn_IBS in CHF detection was
84.69%, and the accuracy of fApEn_IBS, IBS and LF/HF combined with random forest
classifier was 98.98%. Therefore, the fApEn_IBS method can be used to analyze the changes
of short-term HR fluctuation regularity and detect the patients with CHF.
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