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Abstract: Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels.
It is considered to be closely associated with the development of many chronic diseases, such as obesity,
hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs
have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional
foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal
side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds
from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional
foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their
pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods
are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides,
and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic
effect is summarized into three classes, namely the inhibition of uric acid production, improved
renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current
and comprehensive review examines the use of bioactive compounds from plant-based functional
foods as natural remedies for the management of hyperuricemia.

Keywords: hyperuricemia; plant-based functional food; xanthine oxidase; adenosine deaminase;
uric acid transporter; bioactive compound

1. Introduction

Hyperuricemia (HUA) is a common metabolic disease caused by an imbalance between
endogenous production and excretion of urate [1]. Recently, considerable evidence has indicated
that uric acid (UA), an endogenous antioxidant present in low concentrations in the human plasma,
plays an active role in life processes [2,3]. However, the over-production of UA easily results in
the formation of monosodium urate crystals, which increases inflammation and causes gout [4].
In recent years, the incidence of HUA has been increasing every year worldwide, and the prevalence
of HUA is particularly high in China and the United States [5–7]. HUA is considered to be a major
risk factor of metabolic disorders after hypertension, hyperlipidemia, and hyperglycemia [8], and is
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considered to be the major pathological basis of gout, whereby approximately 5–12% of HUA patients
have the possibility of developing gout [9]. Moreover, a large number of epidemiological studies
have reported that HUA is closely related to diabetes, hypertension, obesity, cardiovascular disease,
and kidney disease [10–13], which suggests that complications associated with HUA may increase in
the coming years.

As mentioned above, HUA can be caused by either an increase in UA production or a decrease
in UA metabolism in the body, with reduced urate excretion being the most common mechanism,
accounting for about 90% of cases [9]. As a result, a means to reduce the body UA levels could be
considered an effective treatment. However, the production and metabolism of UA are complex
physiological processes. Endogenous UA is derived from the metabolism of nucleic acids within
the body, and accounts for 80–90% of the body’s total UA content [14,15]. Xanthine oxidase (XOD)
and adenosine deaminase (ADA) are key enzymes that catalyze the production of UA. XOD is known
to catalyze the oxidation of hypoxanthine to xanthine and xanthine to UA [16], while also converting
purines from protein-rich foods into UA. In addition, ADA catalyzes the conversion of adenosine
to inosine, which in turn is catalyzed to hypoxanthine and xanthine. Therefore, ADA plays a key
role in indirectly catalyzing the formation of UA [17]. The catalytic process for UA production is
presented in Figure 1. In contrast, exogenous UA is derived from the intake of purine-containing
foods. As previously reported, the consumption of seafood, animal giblets, eggs, soy products, wheat,
sugary beverages, and high-fructose foods will increase UA production, which is associated with a
high risk of gout and HUA [18–20]. During UA metabolism, approximately 70% of UA is eliminated
through kidneys and the other 30% by the intestinal pathway [21]. In humans, UA metabolism in
the body mainly takes place in the kidneys, involving processes such as reabsorption and secretion
(Figure 2). UA relies on the cooperative excretion of multiple transporters to complete metabolism,
whereby the urate transporter 1 (URAT1), the organic anion transporters 4 (OAT4), and the glucose
transporter 9 (GLUT9) mainly regulate UA reabsorption, while the organic anion transporters 1 (OAT1)
and 3 (OAT3) are responsible for regulating renal UA excretion [22–25]. Therefore, lowering UA levels
can be achieved by inhibiting UA synthesis and promoting UA metabolism, as well as encouraging
high-risk people to change their dietary structure can prevent and control HUA. Currently, the clinical
drugs available for HUA can be categorized into UA synthesis inhibitors (allopurinol, febuxostat, etc.)
and UA excretion promoters (probenecid, benzbromarone, etc.) [26]. Although these drugs aid in
reducing UA levels, many exhibit serious side effects, such as gastrointestinal reactions, skin rashes,
liver and kidney dysfunction, and hepatotoxicity [27]. It is therefore necessary to discover alternative
effective agents for the treatment of HUA.

Plant-based functional foods are derived from natural or unprocessed plant foods, or plant foods
modified via biotechnological means [28]. They are products that have a relevant effect on well-being
and health or reduce the risk of disease [29]. Interestingly, many such functional foods have been
links with lowered incidences of various health disorders, such as cardiovascular disease, diabetes,
cancers, and gout, and so there is growing interest in the research and development of plant-based
functional foods [30–33]. In recent years, with the increase in numbers of HUA patients, studies
into the treatment of HUA using plant-based functional foods have received increasing attention.
For example, sea buckthorn was found to exhibit high antioxidant capacity and XOD inhibition
capacity, while lemon water extract can directly promote the metabolism of excess UA, thereby
indicating a potential to treat HUA [34–36]. Previous studies have found that these functions are
associated with the presence of large quantities of phytochemicals, which are chemical compounds
originating from plants [37]. Furthermore, bioactive components from plant-based functional foods
have been extensively screened for their potential anti-HUA activities both in vivo and in vitro [32,38].
Table 1 briefly summarizes the animal models of HUA. The identified constituents can be divided into
six categories, namely flavonoids, phenolic acids, saponins, alkaloids, polysaccharides, and others.
This review highlights the biological components of plant-based functional foods towards the treatment
of HUA, as well as the mechanisms by which these components exhibit hypouricemic effects. We expect
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that the contents of this review will aid in the understanding of potential applications for plant-based
functional foods in the treatment of HUA.
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Table 1. Establishment of an animal model of Hyperuricemia (HUA) by drugs.

No. Drug Animal Dosage (mg/kg) Mode of Administration

A Potassium oxonate Mice - Intragastric administration
B Potassium oxonate Rats 200 Intragastric administration
C Potassium oxonate Mice 250 Oral gavage
D Potassium oxonate Mice 250 Intragastric administration
E Potassium oxonate Mice 270 Intragastric administration
F Potassium oxonate Mice 300 Intragastric administration
G Potassium oxonate Mice 500 Intragastric administration
H Adenine Mice 75 Intragastric administration
I Adenine + potassium oxonate Mice 100 + 250 Intragastric administration
J Adenine + ethylamine butanol Rats - Intragastric administration
K Inosine + potassium oxonate Rats 400 + 280 Intragastric administration
L Yeast + potassium oxonate Rats 1500 + 200 Intragastric administration
M Purine Mice 300 Intragastric administration
N Uric acid Rats 150 Intragastric administration
O Uric acid Rats 180 Intragastric administration
P High purine diet Rats - Oral gavage
Q Yeast Quails 6 mL Oral gavage
R High purine diet Quails - Oral gavage

2. Bioactive Components of Plant-Based Functional Foods

Flavonoids are polyphenols with a basic 2-phenyl-chromone structure [39], and they are found
widely in plants. Hence, flavonoids are introduced to the human diet through vegetables, fruits,
grains, tea, and other plant-derived foods [40]. Previous studies have demonstrated that they are also
known to be potent inhibitors of XOD and ADA, and they could significantly reduce the production
of UA [41]. Indeed, molecular docking results indicate that the hydrophobic action of flavonoids
plays an important role in the binding of such compounds to XOD, and various tested flavonoids
are competitive inhibitors. More specifically, the hydroxyl groups at the C-7 and C-5 positions,
in addition to the carbonyl group at the C-4 position, interact with a large number of XOD amino
acid residues, which promotes hydrogen bonding and electrostatic interactions with XOD [42,43].
Upon increasing the affinity between flavonoids and XOD, a stronger XOD inhibition ability was
achieved, whereby substitution at the C-7 position of the basic flavonoid structure was particularly
effective [40]. In addition, flavonoids have also been found to promote UA excretion through regulation
of the UA transporters in the kidneys, such as URAT1. The molecular virtual docking study has
revealed that the hydroxyl group of morusin can combine with the oxygen in the structure of URAT1 to
form a hydrogen bond, resulting in an inhibitory effect on the expression of URAT1, which is superior
to that of the known drug benzbromarone [44].

At present, only a few clinical studies have shown that flavonoids from plant-based functional foods
can effectively lower UA levels. For example, following the isolation of puerarin from Pueraria lobata
(Willd.) Ohwi and Wang et al. randomly divided 120 HUA patients into a control group, a myricetin
group, and a puerarin group. After injection with 5 mL/d puerarin injection and 5 mL/d myricetin,
the changes in the UA levels in patients with HUA were observed. The obtained results showed that
the serum uric acid (SUA) levels of the myricetin and puerarin groups decreased significantly (p < 0.05),
indicating that myricetin and puerarin present obvious therapeutic effects on HUA [45].

Quercetin, one of the major flavonols mainly found in onions and sophora japonica
(Sophora japonica L.), exhibits a variety of biological activities. In their study into the effect of quercetin
on HUA rats, whereby a rat model of HUA was induced via the administration of potassium oxonate.
Xie et al. found that after three weeks of administration, quercetin (10 mg/kg/d) significantly reduced
the levels of SUA and inhibited the activities of XOD and ADA in both serum and the liver (p < 0.05) [46].
In addition, one clinical trial investigated the effect of oral quercetin over four weeks on the SUA
levels in 22 healthy male volunteers with high baseline SUA. It was found that the oral administration
of 500 mg/d quercetin significantly lowered plasma UA levels 26.5 µM, while the extraction of UA
and the patient blood pressure were not affected [47]. Furthermore, molecular docking studies
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confirmed that quercetin could bind to the XOD active center, which prevents xanthine from entering
the XOD active center and thereby inhibits XOD activity [48]. Quercetin is therefore able to inhibit
the catalytic activities of both XOD and ADA to reduce the production of UA.

Ipomoea batatas L. possesses a high content of anthocyanins (ACNs) [49]. In one study, ACNs were
administered to potassium oxonate, inosine, and yeast-induced HUA mice model for three weeks,
and it was found that the groups treated with 400 and 800 mg/kg of ACNs exhibited significant
reductions in their SUA levels by 30.2% and 37.9%, respectively (p < 0.01), in addition to effective
decreases in the serum and liver XOD activities in mice (p < 0.05). Furthermore, treatment with high
doses of ACNs significantly down-regulated the mRNA expression levels of the URAT1 and GLUT9
(p < 0.001), while up-regulating the mRNA expression levels of OAT1, OAT3, and ATP-binding cassette
subfamily G member 2 (ABCG2) (p < 0.05) in the kidney. Moreover, ACNs treatment lowered blood
urea nitrogen (BUN) and serum creatinine (Scr) levels, while up-regulating the mRNA expression
levels of organic cation transporters (OCT1 and OCT2) and organic carnitine transporter (OCTN1
and OCTN2) compared with the model group (p < 0.01). It has also been suggested that ACNs exhibit
hepatoprotective activities and nephroprotective effects, thereby suggesting overall that ACNs are
potential treatments for HUA [50].

The hypouricemic effect of flavonoids has been studied in particular detail compared to other natural
products. Although the majority of previous studies have focused on the inhibition of XOD, the number of
studies on UA transporters are gradually increasing. Besides, studies on monomeric compounds remain
scarce, and in general, there is a lack of high-quality clinical research. For example, it has been shown
that stevia residue extract can reduce SUA levels in HUA mice, and this was attributed to the presence of
flavonoids [51], thereby indicating that the effects of flavonoids in the treatment of HUA require further
study. The established hypouricemic effects and mechanisms of action of the bioactive components
of flavonoids in plant-based functional foods are summarized in Tables 2 and 3, and the structures of
flavonoids obtained from these plant-based functional foods are illustrated in Figure 3.Foods 2020, 9, x FOR PEER REVIEW 6 of 28 
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Table 2. Experiment and mechanism of flavonoids bioactive components from plant-based functional foods on hyperuricemia.

Source Bioactive Compound Model Dose Effects Mechanisms Ref.

Apium graveolens L./Celery Apigenin C 40 and 80 mg/kg

SUA, urinary UA and the protein expression
of URAT1 levels were significantly decreased,
while 24 h urinary creatinine were
significantly increased

This is associated with promoting renal excretion
of UA by down-regulating the expression of
URAT1

[52]

Apium graveolens L./Celery Kaempferol E 150 and 300 mg/kg Significantly decreased SUA Inhibit UA production by inhibiting XOD [53]

Camellia sinensis var. Assamica/Pu-erh tea Myricetin D 4 mg/kg
Significantly lowered SUA level, it also
markedly inhibited liver XOD and ADA
activities

It is mainly involved in inhibiting UA production
by inhibiting XOD and ADA activities [54]

Glycyrrhiza uralensis Fisch/Liquorice Root Liquiritigenin G 10 mg/kg SUA level significantly reduced, fractional
excretion of UA was increased

This is related to promoting renal excretion of UA
by down-regulating the transport expression of
URAT1

[55]

Glycyrrhiza uralensis Fisch/Liquorice Root Isoliquiritigenin G 10 mg/kg SUA level significantly reduced, fractional
excretion of UA was increased

This is related to inhibiting UA reabsorption by
down-regulating the transport of OAT4 [55]

Glycyrrhiza uralensis Fisch/Liquorice Root Licochalcone A G 10 mg/kg SUA level significantly reduced, fractional
excretion of UA was increased

This is related to inhibiting UA reabsorption by
down-regulating the transport of OAT4 [55]

Vaccinium vitisidaea L./Lingonberry Flavonoids from fruit residues
of lingonberry B 100 and 200 mg/kg

SUA was significantly reduced at 100 mg/kg,
while 200 mg/kg inhibited the activity of XOD
in liver

It is mainly involved in inhibiting XOD activity [56]

Smilax china L./Rhizome Glabrous
Greenbrier Astilbin B 10 and 20 mg/kg

SUA, Scr, and BUN were significantly
reduced, and urinary UA and renal UA
excretion effectively increased

It is related to promoting renal excretion of UA by
suppressing role in GLUT9 and URAT1
expression and up-regulating the expression of
ABCG2, OAT1, OAT3

[57]

Pueraria lobata (Willd.) Ohwi/Pueraria Puerarin L 200 mg/kg SUA, and BUN were significantly reduced It is mainly involved in inhibiting XOD activity to
inhibit UA production [58]

Glycyrrhiza uralensis Fisch./Liquorice Root 3,5,2′,4′-tetrahydroxychalcone N 4 mg/kg SUA and the content of Hepatic XOD were
significantly reduced

It is mainly involved in inhibiting XOD activity to
inhibit UA production and down-regulating
the protein expression of GLUT9 to inhibit UA
re-absorption

[59]

Morus alba L./Mori Cortex Flavonoids of Mori Cortex H 1 mg/kg
URAT1 was significantly decreased,
the content of OAT1 mRNA was significantly
increased

It may be related to the down-regulation of
URAT1 and the up-regulation OAT1 to promote
renal excretion of UA

[60]

Morus alba L./Mulberry Leaf Morusin J 40 and 80 mg/kg Increased urinary UA/creatinine ratio
and resulting in reduction of SUA level

Down-regulated of renal mGLUT9 and mURAT1,
and increased urate secretion via up-regulating of
renal mOAT1 to promote renal excretion of UA

[44]
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Table 2. Cont.

Source Bioactive Compound Model Dose Effects Mechanisms Ref.

Morus alba L./Mulberry Leaf Mulberry leaf flavonoids H 50, 100, and 200 mg/kg SUA and urea nitrogen were effectively lowered,
XOD was inhibited

It is related to inhibiting the activity of XOD to
inhibit UA production [61]

Morus alba L./Mulberry Mulberry flavonoids H 200 mg/kg SUA were effectively lower It is related to inhibiting the activity of XOD to
inhibit UA production [56]

Crataegus pinnatifida Bge./Hawthorn Flavonoids of hawthorn leaves J 3, 6, and 9 mg/kg SUA was effectively lowered, XOD was inhibited It is related to inhibiting the activity of XOD to
inhibit UA production [62]

Sophora japonica L./Sophora Japonica Rutin D 50 and 100 mg/kg Significantly decreased SUA, BUN, and Scr,
and increased urine creatinine excretion

It is related to promoting renal excretion of UA
by down-regulating mRNA and protein levels
of URAT1 and GLUT9, and up-regulating
mRNA and protein levels of OAT1

[63,64]

Hippophae rhamnoides L./Seabuckthorn Isorhamnetin M 300 mg/kg Significantly reduced plasma and hepatic UA
level, also decreased hepatic XOD activity

It is related to inhibiting the activity of XOD to
inhibit UA production [65]

Table 3. In vitro experiment and mechanism of flavonoids bioactive components from plant-based functional foods on hyperuricemia.

Source Bioactive
Compound Model Dose IC50 Effects Mechanisms Ref.

Pueraria lobata (Willd.) Ohwi/Pueraria Puerarin Human renal proximal tubular
epithelial cells (HK2 cells) 100 mg/L 16.48 µM Effectively promoted ABCG2

protein expression in HK2 cells

It is related to up-regulating of
ABCG2 to promote renal excretion
of UA

[66]

Citrus aurantium L./Fructus Aurantii Hesperetin XOD inhibitor screening model in vitro 20 µM 16.48 µM Significantly inhibited XOD activity This is related to inhibit XOD to
inhibit UA production [67]

Citrus aurantium L./Fructus Aurantii Nobiletin XOD inhibitor screening model in vitro 20 µM 16.48 µM Significantly inhibited XOD activity This is related to inhibit XOD to
inhibit UA production [67]

Citrus reticulata Blanco/Citrus Acacatechin XOD model in vitro 100 µg/mL 27 ± 1.16 µg/mL Significantly inhibited XOD activity It showed competitive type of XOD
inhibition to inhibit UA production [68]

Citrus reticulata Blanco/Citrus Glycitein XOD model in vitro 100 µg/mL 12 ± 0.86 µg/mL Significantly inhibited XOD activity It showed competitive type of XOD
inhibition to inhibit UA production [68]

Citrus reticulata Blanco/Citrus Myricetin XOD model in vitro 100 µg/mL 26 ± 0.72 µg/mL Significantly inhibited XOD activity It showed competitive type of XOD
inhibition to inhibit UA production [68]

Carthamus tinctorius L./Carthami Flos Galuteolin XOD inhibitor screening model in vitro 100 µg/mL 12 ± 0.86 µg/mL Significantly inhibited XOD activity This is related to inhibiting XOD to
inhibit UA production [68]

Citrus reticulata Blanco/Citrus Naringenin XOD model in vitro 100 µg/mL 22 ± 0.64 µg/mL Significantly inhibited XOD activity It showed competitive type of XOD
inhibition to inhibit UA production [68]

Carthamus tinctorius L./Carthami Flos Kaemperfol XOD inhibitor screening model in vitro 100 µg/mL 12 ± 0.86 µg/mL Significantly inhibited XOD activity This is related to inhibiting XOD to
inhibit UA production [69]
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2.1. Phenolic Acids

Phenolic acids, which are secondary metabolites, are non-flavonoid phenolic compounds.
They represent a substantial part of the human diet [70]. In recent years, phytochemicals such
as phenolic acids have been found to exhibit XOD and ADA inhibitory activities, and are thought to be
applicable in the prevention and treatment of HUA. For example, compounds such as chicory acid,
caffeic acid, and chlorogenic acid, inhibit the activity of XOD [71].

In the context of chicory acid, which was isolated from Cichorium intybus L., Zhu et al. established
a quail HUA model to elucidate the active ingredients and mechanism of C. intybus L. in combating
HUA. After 21 days of administration, chicory acid (150 mg/kg/d) significantly reduced the quail SUA
(p < 0.05). Moreover, the quail serum ADA and XOD levels were also significantly reduced (p < 0.05),
which may be related to inhibition of the XOD and ADA activities. Overall, chicory acid significantly
reduced quail SUA levels by inhibiting the XOD and ADA activities [72,73].

Phenolic antioxidants, including phenolic acids, have been isolated from Adlay (Coix lachryma-jobi L.) [74].
Upon the administration of various doses of caffeic acid (i.e., 25, 50, and 100 mg/kg) to potassium
oxonate-induced HUA rats, the UA levels were reduced in the high-dose group (p < 0.05). Moreover,
the BUN and Scr levels were significantly reduced compared with the model control group, and caffeic
acid was found to reduce BUN to the normal range. Besides, an in vivo study showed that caffeic acid
regulated the transcription levels in a dose-dependent manner by up-regulating the expression of UA
secretory transporters OAT1 and ABCG2 mRNA, and down-regulating UA reabsorption transporters
URAT1 and GLUT9 mRNA. Furthermore, an in vitro study showed that caffeic acid can inhibit XOD
by competitively binding to xanthine, with an IC50 value of 53.45 µM being recorded [75]. Therefore,
it is believed that caffeic acid presents a dual effect in lowering UA levels, and so presents a potential
application for the treatment of HUA.

However, to date, despite extensive research into phenolic acids, few studies exist regarding
the regulation of UA transporters. In addition, there is a lack of anti-HUA clinical data, and few
reports have been published on the role of phenolic acids in regulating transport proteins. These issues
must, therefore, be solved to enhance the applicability of phenolic acids for the treatment of HUA.
The hypouricemic effects and mechanisms of action of the various bioactive phenolic acids found in
plant-based functional foods are listed in Table 4, and their structures are illustrated in Figure 4.
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Table 4. Experiment and mechanism of phenolic acid bioactive components from plant-based functional foods on hyperuricemia.

Source Bioactive Compound Model Dose Effects Mechanisms Ref.

Cichorium intybus L./Chicory Chlorogenic acid R 50 and 150 mg/kg SUA level significantly was reduced, XOD and ADA
levels showed different degrees of inhibition

This is related to promoting UA excretion by
down-regulating the expression of mURAT1
and inhibiting XOD and ADA

[76]

Glycyrrhiza uralensis Fisch/Liquorice Root Protocatechuic acid F 10 mg/kg SUA level significantly reduced, fractional excretion of
uric acid was increased

This is related to down-regulation
the transport activity of URAT1 by inhibiting
UA re-absorption

[55]

Coix lachryma-jobi L./Adlay Vanillic acid B 166 mg/kg SUA level significantly reduced, XOD was inhibited This is related to inhibiting the activity of XOD [74]

Coix lachryma-jobi L./Adlay Ferulic acid B 166 mg/kg SUA level significantly reduced, XOD was inhibited This is related to inhibiting the activity of XOD [74]
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2.2. Alkaloids

Alkaloids are a class of nitrogen-containing organic compounds that exist in many organisms [77].
Due to their complex structures and strong biological activities, their role in lowering UA should not
be ignored. Recently, it has been reported that alkaloids can not only inhibit XOD and ADA activities,
but also play a role in promoting UA excretion and inhibiting UA reabsorption [78].

Recently, Sang et al. evaluated the effective components present in a total alkaloid extract from
Nelumbinis folium (lotus leaf) for the lowering of the UA levels. UHPLC-Q-TOF-MS and 3D docking
analysis were employed to show that roemerine was a potentially active component. More specifically,
roemerine bound with XOD through hydrophobic interactions, inhibited the activity of XOD,
and reduced the production of UA [78,79]. Furthermore, nuciferine, a major aporphine alkaloid
of the lotus leaf, was found to decrease SUA levels and improve kidney function in potassium
oxonate-induced HUA mice. After seven days of treatment, the SUA, BUN, and Scr levels were
dramatically reduced (p < 0.05), and the excretion of UA increased significantly (p < 0.05) for
the high-dose nuciferine group (40 mg/kg). It has since been reported that the mechanism of
lowering UA is related to down-regulation of the expression of URAT1, GLUT9, and up-regulation of
the expression of OAT1 and ABCG2 in HUA mice [80].

Evodiamine is the main active component of Evodia rutaecarpa (Juss.) Benth, and has been shown
to exhibit an obvious effect on lowering SUA levels. Tao et al. established animal models of HUA in rats
and chickens to observe the effect of evodiamine on lowering SUA after 7 and 14 days of administration.
Compared with the model group, the low and high dosage groups (9 and 18 mg/kg) reduced SUA
values in rats, while the low dose group showed significantly reduced SUA values in HUA chicken [81].
Similarly, Song et al. studied the effects and mechanisms of evodiamine dispersing tablets (5 mg/kg)
on SUA in HUA chickens. Their results showed that after 14 days of the administration, UA levels
were significantly reduced, as were the activities of XOD and ADA. This experiment suggested that
evodiamine dispersible tablets could apply to the treatment of HUA by lowering UA levels in clinical
applications [82].

Although alkaloids have been shown to prevent and control HUA through a variety of mechanisms,
exhibiting a significant effect on lowering UA levels, due to a lack of clinical data, larger numbers of
studies must be conducted in the context of clinical trials and toxic doses. The hypouricemic effects of
alkaloid bioactive components in plant-based functional foods and their mechanisms of action are
summarized in Table 5, while their structures are illustrated in Figure 5.

Table 5. Experiment and mechanism of alkaloids bioactive components from plant-based functional
foods on hypouricemia.

Source Bioactive
Compound Model Dose Effects Mechanisms Ref.

Evodia rutaecarpa (Juss.)
Benth./Euodiae Fructus Evodiamine Q 8 mg/kg SUA and XOD could be

significantly reduced

This is related to inhibiting
the activity of XOD to inhibit
of UA production

[83]

Lycium barbarum L./Lycii Fructus Betaine D 10, 20, and 40 mg/kg

SUA, BUN, and Scr levels
significantly reduced,
fractional excretion of
uric acid was increased

This is related to
down-regulating mRNA
and protein levels of URAT1
and GLUT9,
and up-regulating mRNA
and protein levels of OAT1 to
promote uric acid excretion

[84,85]
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2.3. Saponins

Saponins are mainly distributed in terrestrial plants, and small amounts are also found in marine
life. Based on their different aglycones, saponins can be divided into steroidal saponins and triterpenoid
saponins. In recent years, studies have shown that saponins can reduce UA production by inhibiting
the activity of XOD and ADA, and that they can also increase UA excretion by regulating the expression
of UA transporters [86].

As an example, the anti-HUA mechanism dioscin, which is mainly distributed in
Dioscorea opposita L. [87], was investigated in HUA mice. More specifically, HUA mice were induced with
potassium oxonate (250 mg/kg), and dioscin was orally administered to HUA mice at dosages of 319.22,
638.43, 1276.86 mg/kg/d for 10 days. Following treatment, the SUA levels were significantly reduced,
and the Scr levels were lower than those found in the model group (p < 0.05). In addition, dioscin
significantly increased the 24 h cumulative urinary excretion of creatinine (p < 0.05), the protein level of
renal mOAT1 in HUA mice treated by dioscin increased significantly at high dosages (1276.86 mg/kg/d),
and the protein level of renal mURAT1 decreased. Thus, the mechanism by which dioscin lowers UA
levels involves transporter regulation [88].

HUA rats were also treated with saponins from Gynostemma pentaphyllum (Thunb.) Makino (GPS).
Compared with the model group, the low (15 mg/kg) and high dosage groups (60 mg/kg) exhibited
dramatically reduced SUA levels (p < 0.01, p < 0.05). Moreover, after being treated with a high dosage
of GPS, the UA level was close to normal (p < 0.01), and the levels of XOD and ADA in the serum
and liver decreased (p < 0.05). Treatment with GPS also increased the kidney index, downregulated
URAT1 and GLUT9 expression, and upregulated OAT1 expression in the kidney. GPS may, therefore,
be an effective treatment for HUA through the inhibition of XOD and ADA, and an increase in UA
excretion by regulation of the URAT1, GLUT9, and OAT1 transporters [89,90].

Overall, saponin extracts act by inhibiting UA generation, promoting UA excretion, and protecting
the kidneys. At present, research into the anti-HUA activities of saponin extracts are in their initial
stages, and the identification of additional pharmaceutically active monomer components is necessary.
Moreover, investigations into the pharmacological mechanisms of any monomeric species are desirable,
as is the development of safe and effective new drugs demonstrating anti-HUA properties.

2.4. Polysaccharides

Significant attention has been paid to the extraction and bioactivity of biomacromolecules, such
as polysaccharides. Polysaccharides obtained from natural sources tend to exhibit a low toxicity in
addition to various bioactivities, such as anti-bacterial, anti-inflammatory activities [91,92]. In recent
years, studies reporting their inhibition of UA production and enhancement of UA elimination have
been published, indicating that polysaccharides may be a candidate for the development of new natural
anti-HUA agents.

Lonicera japonica (Thunb) is recognized as a medicine food homology species. The L. japonica
polysaccharides have been studied for their hypouricemic effect in potassium oxonate-induced HUA
mice. Interestingly, with an increase in the polysaccharide dose, the level of UA was significantly
lowered, demonstrating that the oral administration of polysaccharides could treat HUA in a
dose-dependent manner. In particular, in the high-dose group, the level of SUA was reduced,
and compared with the model group, SUA levels in the middle and low dose groups decreased
by 47.93% and 43.41%, respectively (p < 0.01). The low, middle, and high dose groups (100, 200,
and 300 mg/kg) showed the capability to inhibit the activity of XOD (28.71%, 46.31%, and 54.69%,
respectively), thereby indicating that L. japonica (Thunb) polysaccharides could significantly attenuate
HUA in rats [93].

To further study the effect of pachman (polysaccharides of Poria Cocos, PPC) on HUA, Wang et al.
fed rats with potassium oxonate and ethambutol to establish an animal model for HUA, and then
treated with PPC. The high-dose PPC group (2.0 g/kg/d) exhibited an increase in the fractional excretion
of UA, while the level of SUA and any pathological changes in renal tubules were reduced compared
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with the model group (p < 0.05). The protein expression results showed that the expression of URAT1
was significantly down-regulated compared with the model group, while the expression of OAT1
was significantly increased. These results revealed that PPC increased the reabsorption of UA by
down-regulating the expression of URAT1, while up-regulating the expression of OAT1 to reduce
the re-secretion of UA [94].

Some polysaccharides have also been shown to play an important role in reducing UA. However,
previous studies have shown that a high fructose intake was associated with a higher risk of gout
and HUA. For example, Lecoultre et al. evaluated 16 healthy adults who were induced by a high
fructose, which found UA clearance rate was decreased and SUA was increased [95]. Moreover,
an increase in SUA induced by fructose metabolism could have some effects on kidney injury [96].
Cirillo et al. showed that fructose can induce proximal tubular injury in vitro by fructokinase to generate
oxidants and UA [97]. As a result, further studies into the pharmacological effects of polysaccharides
are required, as are the corresponding clinical trials.

2.5. Others

In addition to the above bioactive ingredients, other components (e.g., terpenoids, stilbene
glycosides, and coumarin) have also been found to exhibit UA-lowering effects. For example,
gardenoside and acteoside have been reported to present significant hypouricemic effects [98,99].
Moreover, Moriwaki et al. studied changes in SUA concentration after intake of oligonol in six
healthy subjects. Subjects were treated with 2 g/d oligonol, 1h UA excretion, and partial UA clearance
were significantly reduced, with decreased SUA concentration [100]. The UA-lowering effects
and mechanisms of action of these other components are summarized in Table 6, and their basic
structures are shown in Figure 6. Moreover, compounds-targets network diagrams for the plant-based
functional foods exhibiting hypouricemic effects were established using Cytoscape 3.7.1 software,
as shown in Figure 7. In Figure 7, the bioactive compounds of plant-based functional foods for
hyperuricemia are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins,
polysaccharides, and others. The compounds-targets results show that XOD is a major target for
UA reduction of plant-based functional foods active ingredients. Besides, except for polysaccharides,
other plant-based functional foods active ingredients of plants act on CLUT9 targets and all but
saponins on URAT1. Moreover, flavonoids, saponins, and phenolic acids can inhibit the activity of
ADA to inhibit the production of UA. In addition, saponins, phenolic acids, and polysaccharides can
act on OAT1 targets. Furthermore, among these components, only flavonoids could down-regulate
OAT4 and up-regulate OAT3 expression.
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Table 6. Experiment and mechanism of other bioactive components from plant-based functional foods on Hyperuricemia.

Source Bioactive Compound Model Dose Effects Mechanisms Ref.

Camellia sinensis L./Green tea Green tea polyphenols P 600 mg/kg Decreased SUA and increased excretion of
exceeding UA significantly It can inhibit XOD activities [101]

Plantago asiatica L./Plantaginis Semen Acteoside D 200 mg/kg

UA and creatinine levels were obviously
reduced and the activity of hepatic XOD
was inhibited. Furthermore, the mRNA
expression of URAT1 and GLUT9 were
obviously down-regulated

The mechanism of lowering SUA level can inhibit
XOD activity and down-regulate the mRNA
expression of URAT1 and GLUT9

[99,102]

Morus alba L./Mori Cortex Mulberroside A C 10, 20 and 40 mg/kg

Decreased SUA level and increased urinary
UA excretion and fractional excretion of UA.
Furthermore, down-regulated mRNA
and protein levels of mGLUT9
and mURAT1, and upregulated mRNA
and protein levels of mOAT1, mOCT1,
mOCT2, mOCTN1, and mOCTN2

Hypouricemic effect is achieved by down-regulating
mRNA and protein levels of mGLUT9 and mURAT1,
and upregulating mRNA and protein levels of
mOAT1 to promote UA excretion

[103]

Cichorium intybus L./Chicory Esculinhydrate M 50 and 150 mg/kg
SUA level significantly increased, XOD
and ADA levels showed different degrees
of inhibition

This is related to down-regulation the expression of
mURAT1 to promote UA excretion [76]

Gardenia jasminoides Ellis/Cape Jasmine Geniposide B 50 and 100 mg/kg

The protein and mRNA expression of
URAT1 and GLUT9 and serum UA
significantly decreased, while 24 h urinary,
the protein and mRNA expression of OAT1
were significantly increased

Down-regulated URAT1 and GLUT9,
and up-regulated OAT1 to promote UA excretion [98]

Mangifera indica L./Mango Mangiferin B 6 mg/kg

SUA and the protein expression of URAT1,
and GLUT9 were significantly decreased,
while 24 h urinary creatinine, the expression
of mABCG2 were significantly increased

This is related to down-regulation the protein
expression of URAT1, GLUT9 and up-regulation
the expression of ABCG2 to promote UA excretion

[104,105]

Mangifera indica L./Mango Norathyriol O 4 mg/kg Decreased SUA and markedly increased
the fractional excretion of UA

The mechanism of lowering SUA can inhibit XOD
activity and up-regulated OAT1. [106]

Curcuma longa L./Turmeric Curcumin G 20 and 40 mg/kg Decreased SUA markedly increased The mechanism of lowering SUA can inhibit XOD
activity [107,108]
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3. Uric Acid Reduction Effects of Plant-Based Functional Foods

As mentioned above, the bioactive components of plant-based functional foods prevent UA
disorders by inhibiting the enzyme responsible for UA production, by enhancing the excretion of UA,
and by preventing its reabsorption. These mechanisms of action are summarized as follows.

3.1. Inhibition of Uric Acid Production

XOD and ADA are key enzymes that catalyze the production of UA. XOD catalyzes the oxidation
of hypoxanthine to xanthine and xanthine to UA [16]. ADA plays a key role in indirectly catalyzing
the formation of UA [17]. Thus, inhibiting UA synthesis through XOD and ADA inhibition can be
considered a therapeutic target to reduce the level of UA in the body. Indeed, in vitro and animal
studies have indicated that bioactive components of plant-based functional foods could inhibit XOD
and ADA. Notably, increasing molecular docking studies have revealed that polyphenols could bind
to an amino acid of XOD and enter the molybdopterin center to form a complex, effectively inhibiting
XOD [109]. Further studies have shown that flavonoids and phenolic acids not only exhibit good
XOD inhibitory activities, but also present a certain ability to scavenge oxygen free radicals, which can
alleviate the damage caused to the body by peroxides generated by XOD [110].

Luteolin is mainly present in L. japonica Thunb. and Dendranthema morifolium (Ramat.) Tzvel.,
and exhibits its anti-HUA effect by inhibiting the excess production of UA [111]. Hao et al. showed that
the intragastric administration of luteolin (20, 40, and 80 mg/kg) to potassium oxonate-induced HUA
mice for seven days reduced the levels of UA and XOD in a dose-dependent manner. Compared with
the model group, the high-dose group showed significantly reduced levels of SUA, XOD, BUN, and Scr
(p < 0.01) [53]. In another study, Yan et al. found that luteolin presents a competitive inhibitory effect
on XOD. They postulated that the mechanism of this activity involves luteolin binding to amino acids
in the active site of XOD at a single binding site, which is mainly driven by hydrophobic interactions.
Molecular docking results revealed that a combination of luteolin and XOD changed the conformation
of XOD, and inhibited the synthesis of UA [112], thereby confirming the XOD inhibition activity
and hypouricemic effects of luteolin.
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Lipid emulsion-induced HUA rats have been used to study the effects of GPS on lowering UA
levels. In this study, the low (15 mg/kg) and high dosage groups (60 mg/kg) presented dramatically
reduced SUA levels (p < 0.01, p < 0.05), whereby the UA level was close to normal for the high dosage
group (p < 0.01). Moreover, the serum and liver levels of XOD and ADA also decreased (p < 0.05).
These results confirmed that GPS significantly reduced the production of UA through inhibition of
the XOD and ADA activities [90].

Galangin extracted from Rhizoma Alpiniae was used to treat HUA mice, with high and medium
dose groups (300 and 150 mg/kg) resulting in lower UA levels than for the model group (p < 0.05), and a
significantly decreased XOD activity for the high dose group (p < 0.05) [113]. Recently, Zhang et al.
reported the XO inhibitory mechanism of galangin, predicting that galangin could enter the Mo center
and occupy the catalytic center of XOD to inhibit the activity of XOD, thereby preventing xanthine
from entering the active center to block the generation of UA [114].

3.2. Regulation of the Renal Uric Acid Transporter

Physiologically, UA production and excretion are in a dynamic balance. However, when UA
excretion is reduced and excess UA is produced, thereby leading to HUA [98]. As a result, promoting
the excretion of UA could be an effective means to treat HUA. In the process of promoting excretion,
UA relies on the cooperative excretion of multiple transporters on the proximal tubular epithelial
cells of the apical and basolateral membranes [22]. In addition, various studies have confirmed that
the reabsorption of UA can be categorized into two steps, namely UA uptake into renal tubular
epithelial cells through the anion transporters SLC22A12 (URAT1) and SLC22A11 (OAT4), and release
into the blood through the anion transporter SLC2A9 (GLUT9) from the renal tubular epithelial
basolateral membrane [23–25]. GLUT9 has two splice variants, which are GLUT9a and GLUT9b.
GLUT9a of the renal tubular epithelial cell basolateral membranes is responsible for UA reabsorption,
while URAT1 and OAT4, localized in the apical membrane of proximal tubules, also control renal urate
reabsorption. In contrast, organic anion transporters on the basolateral membrane of renal proximal
tubules (e.g., SLC22A6 (OAT1) and SLC22A8 (OAT3)), in addition to GLUT9b on the apical membrane
of proximal tubules, play an important role in the secretion of UA [22].

Numerous studies have demonstrated that the bioactive components of plant-based functional
foods increase UA elimination by up-regulating (OAT1, OAT3) and down-regulating (URAT1,
OAT4, and GLUT9) UA transporters in the kidneys [33]. They also improve renal function by
regulating the transport and excretion of organic cations (OCTs) and carnitine transporters (OCTNs) in
the kidneys [115,116], and so are likely to be important agents in the treatment of HUA.

Theaflavins are important functional ingredients in black tea. Among them, studies have
shown that the three theaflavin monomer, namely theaflavin (TF), theaflavin-3-gallate (TF-3-G),
and theaflavin-3-3′-gallate (TFDG) exhibit significant hypouricemic effects on HUA mice. Compared
with the model group, the TF (20, 50, and 100 mg/kg), TFDG (50 and 100 mg/kg), and TF-3-G (100 mg/kg)
groups notably decreased SUA levels (p < 0.01), while TFDG (20 mg/kg) and TF-3-G (50 mg/kg) also
clearly reduced the SUA levels (p < 0.05). These results indicated that the hypouricemic effect of
TF was superior to those of TFDG and TF-3-G at the same dosage. With the exceptions of TFDG
(20 mg/kg) and TF-3-G (20 mg/kg), BUN was also reduced in other treatment dose groups (p < 0.01),
while TF(20 mg/kg), TFDG (20 and 50 mg/kg), and TF-3-G (20, 50, and 100 mg/kg) also decreased
Scr (p < 0.001). These components could, therefore, treat renal damage in HUA mice by decreasing
BUN and Scr levels. In addition, they down-regulated the expression of the genes and proteins of
GLUT9 and URAT1, while up-regulating the gene and protein expression of OCTN1, OCT1, OCT2,
OAT1, and OAT2 [117]. These findings indicated that TF, TFDG, and TF-3-G could exhibit potential
application prospects in the prevention and therapy of HUA.

The effects of licochalcone A from the Glycyrrhiza uralensis Fisch were also investigated in a 60 mice
model of HUA induced by potassium oxonate and xanthine. The results indicated that licochalcone
A can significantly reduce the level of SUA of HUA mice, increase the excretion of UA, and reduce
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the level of Scr and BUN. Besides, licochalcone A can notably inhibit the transport activity of OAT4 [55].
Besides, a further study has also investigated the effect of green tea polyphenols (GTP) on potassium
oxonate-induced HUA mice, and explored the underlying mechanisms of action. It was reported that
GTP significantly decreased the SUA levels of HUA mice in a dose-dependent manner (p < 0.05), while
GTP dosages of 300 and 600 mg/kg markedly reduced the XOD activities in the serum and liver of
HUA mice (p < 0.05). Furthermore, these dosages reduced the expression of URAT1 (p < 0.05), as well
as increasing the expression of OAT1 and OAT3 in the kidneys (p < 0.01). Overall, the results suggested
that GTP reduced UA levels by inhibiting UA production and increasing its excretion [101].

Furthermore, to examine the lowering UA effects of rutin from Sophora japonica (Sophora japonica L.),
a potassium oxonate-induced HUA model was established in mice. HUA mice were randomly divided
into six groups. Compared to that in control mice, treatment with rutin (50, and 100 mg/kg) caused
significant reduction SUA, Scr, and BUN, serum and kidney uromodulin levels, while elevating UA
excretion in HUA mice. Further, rutin was administered orally 1 h, significantly downregulated mRNA
and protein levels of mice GLUT9 and URAT1, and upregulated mRNA and protein levels of OAT1
and OCTs in the kidney of HUA mice. In conclusion, rutin exerted its hypouricemic and renal function
improvement by the regulation of renal organic ion transporters [64].

In addition, the SLC2A9 and SLC22A12 are mentioned as genes that have been found to play a role
in regulating SUA concentrations through urate reabsorption. However, genetic variants in SLC22A12
and SLC2A9 can result in hereditary renal hypouricemia 1 and 2, leading to severe hypouricemia [118].
In the study, hypouricemia reflected excessive UA excretion, which may lead to UA stones and acute
renal failure. In everyday life, people with hypouricemia should eat more foods rich in antioxidants,
such as glutathione, vitamin E, vitamin C, etc. At present, vitamin C and E have been isolated in
plant-based functional foods. For example, Vitamin C is found in blueberries. Moreover, sea buckthorn
berry is rich in vitamins C and E [119–121]. Therefore, these plant functional foods may also have
the potential to prevent hypouricemia.

3.3. Enhancement in Intestinal UA Secretion

Similar to the kidneys, the intestines also play an important role in the excretion of UA. To maintain
normal daily body UA levels, approximately two-thirds of UA is eliminated through the kidneys
while the other third is eliminated by the intestinal pathway [122]. Urate transport is a complex
process involving several transmembrane proteins that promote reabsorption (e.g., URAT1, GLUT9)
and secretion (ABCG2). ABCG2 plays a significant role in regulating UA transport in the gastrointestinal
tract and is a high-capacity urate transporter that is most active in the jejunum and the ileum [123].
It plays a crucial role in renal urate overload and extra-renal urate underexcretion. ABCG2 dysfunction
leads to the blockade of renal and intestinal urate excretion, thereby inducing HUA due to a renal
urate overload and its overflow into the kidney. The ABCG2 population-attributable percentage risk
for HUA has been reported to be 29.2%, which is significantly higher than those with more typical
environmental risks [124]. Stiburkova et al. studied 58 patients with primary HUA and 176 patients
with gout in the Czech Republic, among whom 17 patients with HUA and 14 patients with gout
were pediatric-onset patients. At the same time, 115 cases of normal anemia control group were
compared. Fifteen ABCG2 exons were amplified and sequenced. The chi-square fitting test was
used to compare the small allele frequencies, and the logarithmic rank test was employed to compare
the empirical distribution functions. The obtained results suggested that genetic factors affecting
the ABCG2 function should be considered routinely in the diagnosis of hyperuricemia/gout, especially
in pediatric patients [123].

However, the mechanisms involved in the elimination of UA from the intestine remain unclear.
To date, only a few studies have shown that ABCG2 is the main UA transporter to maintain serum UA
levels, with its most active expression being in the jejunum and the ileum [125].

In addition, Morimoto et al. found that the expression of ABCG2 in an HUA rat group
was up-regulated in the intestinal villi and crypt. They confirmed that ABCG2 is involved in
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the intestinal excretion of UA in humans and rats as an extrarenal excretion pathway, thereby
providing some clarification regarding UA metabolism along the intestine by focusing on a novel UA
exporter, ABCG2 [126]. Furthermore, Wang et al. [127] confirmed that chicory extract ameliorates
intestinal UA elimination by modulating the ABCG2 transporter. In 10% fructose-induced HUA rats,
the administration of chicory water extract (6.6 g/kg) significantly reduced SUA levels, and significantly
increased intestinal UA excretion (p < 0.05). Compared with the model group, ABCG2 was up-regulated
on the jejunum and the ileum. Further research showed that chicory can significantly increase ABCG2
mRNA expression to reduce UA levels in the jejunum and ileum.

4. Conclusions and Future Perspectives

HUA can lead to life-threatening disorders that are rapidly increasing in frequency worldwide,
and so the consumption of functional foods could be considered an alternative to medication to prevent
or treat HUA. In this context, plant-based functional foods are of particular interest since they contain
thousands of naturally beneficial phytochemicals. Numerous in vitro and in vivo experiments have
therefore been conducted to elucidate the mechanism by which these plant-based foods lower UA levels,
whereby active ingredients such as flavonoids, phenolic acids, and alkaloids reduce the production of
UA or promote its excretion. Indeed, it was confirmed that plant-based functional foods are very helpful
for the management of UA disorders; however, these studies have their limitations. For example,
although animal models can fully reflect the pharmacological actions and metabolic processes of active
ingredients, rapid and simple screening is challenging due to the long cycle, and current animal models
are limited due to differences in the UA metabolism in humans and animals. In addition, the majority
of in vitro experiments carried out to date mainly screen for XOD inhibition, and there is a lack of
comprehensive animal model base studies. Furthermore, the anti-HUA effects of many plants have
been examined without the determination of the bioactive compounds responsible for their activities,
and there is a lack of substantial clinical data and dose-toxicity data to support the applicability of
bioactive ingredients in humans. Moreover, there is a lack of relevant research data on intestinal UA
elimination by bioactive compounds, and studies focusing on the mechanisms by which such active
ingredients act are scarce and vague.

Novel approaches are therefore required to identify bioactive ingredients from plant-based
functional foods, evaluate their efficacy in human and animal models, and develop a sustainable
and natural means of treating or preventing HUA. In this context, molecular docking technology has
been used to elucidate the mechanism and structural characteristics of polyphenols inhibiting XOD,
which is of great significance for the development and synthesis of XOD inhibitors for the treatment of
HUA. Since the function of the UA transporter is essential for the maintenance of normal UA levels,
further studies into the function of the UA transporter will provide a new strategy for the treatment of
HUA and related diseases. In addition, the intestinal tract should be investigated in further detail as a
new route to UA secretion, providing a potential new target for the development of natural drugs
against HUA. In combination with clinical trials, a comprehensive study into the bioactive ingredients
present in plant-based functional foods is necessary, and the diets of patients at high risk from suffering
high UA levels should be altered. In conclusion, a large number of studies have confirmed that
many biologically active compounds from plant-based functional foods possess anti-HUA activities,
which therefore provides a theoretical basis for the synthesis of novel anti-HUA drugs, and suggests
the potential of plant-based functional foods for the future prevention and management of HUA.
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