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Abstract

It has recently begun to be considered that cancer is a systemic disease and that it must be studied at every level of
complexity using many of the currently available approaches, including high-throughput technologies and bioinformatics.
To achieve such understanding in cervical cancer, we collected information on gene, protein and phosphoprotein
expression of the HeLa cell line and performed a comprehensive analysis of the different signaling pathways, transcription
networks and metabolic events in which they participate. A total expression analysis by RNA-Seq of the HeLa cell line
showed that 19,974 genes were transcribed. Of these, 3,360 were over-expressed, and 2,129 under-expressed when
compared to the NHEK cell line. A protein-protein interaction network was derived from the over-expressed genes and used
to identify central elements and, together with the analysis of over-represented transcription factor motifs, to predict active
signaling and regulatory pathways. This was further validated by Metal-Oxide Affinity Chromatography (MOAC) and Tandem
Mass Spectrometry (MS/MS) assays which retrieved phosphorylated proteins. The 14-3-3 family members emerge as
important regulators in carcinogenesis and as possible clinical targets. We observed that the different over- and under-
regulated pathways in cervical cancer could be interrelated through elements that participate in crosstalks, therefore
belong to what we term ‘‘meta-pathways’’. Additionally, we highlighted the relations of each one of the differentially
represented pathways to one or more of the ten hallmarks of cancer. These features could be maintained in many other
types of cancer, regardless of mutations or genomic rearrangements, and favor their robustness, adaptations and the
evasion of tissue control. Probably, this could explain why cancer cells are not eliminated by selective pressure and why
therapy trials directed against molecular targets are not as effective as expected.
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Introduction

Cells are complex, dynamic systems, which use molecular

signaling circuits that govern basic cellular activities and coordi-

nate their actions [1]. The ability of cells to perceive and respond

in an appropriate manner to the microenvironment is the basis for

homeostasis, development, tissue repair and immunity. Errors in

information management are responsible for different cell-derived

conditions, such as autoimmune diseases, metabolic syndromes

and cancer [2–5].

Cancer requires a very complex set of conditions. It is driven by

a Darwinian model of evolution at the cellular level [6],

comprising all levels of cellular information (i.e., genetics,

epigenetics, transcriptional and translational regulation and

translational modifications). Accordingly, it involves communica-

tion between different cell types, and interactions between the

tumoral microenvironment and the whole organism [7,8]. Our

understanding of cancer has evolved because of this context and

acquired knowledge.

Hanahan and Weinberg suggested that all cancers have certain

essential alterations in cell physiology that coordinate the

malignant phenotype, which is characterized by self-sufficiency

in growth signals, insensitivity to growth inhibitors, evasion of

programmed cell death, increased replicative potential, sustained

angiogenesis, tissue invasiveness and metastasis, reprogramming of

energy metabolism and evasion of immune destruction. Moreover,

these hallmarks are accompanied by additional enabling features,

including mutations and genomic instability, and the promotion of

inflammation by tumors [9,10].

Cervical cancer represents an interesting opportunity for the

study of malignant transformation, mainly due to our understand-

ing of its etiologic agent, High-Risk Human Papilloma Viruses

(HR-HPVs), which are found in 90.7% of cases [11]. The HR-

HPV oncoproteins E6 and E7 are able to interact with the p53

and pRb tumor suppressors in addition to more than 300 other

known proteins. Of the more than 120 types of HPVs that infect

humans, only a few high-risk types are associated with carcino-
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genesis. HPV16 and HPV18 are the most prevalent high-risk

HPVs, and they are present in 54.6% and 11% of cervical

squamous cell carcinomas, respectively [12–14]. Patients with

cancer caused by these HPV types are the most widely studied.

The first established cervical carcinoma cell line, HeLa, is positive

for HPV18 and has served as the basis for most of our knowledge

regarding the underlying cell biology of cancer.

However, due to spontaneous elimination of the virus, not all

patients infected with HR-HPV develop cervical cancer. Most

HPV infections are subclinical, with only a small fraction

producing epithelial lesions, and an even smaller fraction of these

lesions developing into cancer [15]. Consequently, HR-HPV

infection is necessary but not sufficient for the development of

cervical cancer [16]. Thus, the conditions that allow the

development of cervical cancer both following HR-HPV infection

and in its absence are not thoroughly known.

Understanding biological complexity at different levels of

organization (which would be critical for a model such as cancer,

in which cellular dynamics are altered at the molecular and tissular

levels) requires combining the results obtained from various

experiments to recreate the system’s behavior [17,18]. The

molecular profiling methods known as ‘‘omics’’ (e.g., transcrip-

tomics, proteomics, and metabolomics) allow a global search of the

characteristics that define the system under study and the

integration of this knowledge into simple models with great

explanatory and predictive power. However, these models can and

must be contrasted against new experimental data. Currently, the

cellular signaling system represents the biggest challenge for

systems biology [19–21].

A signaling pathway consists of multiple sequential events,

including covalent modifications, recruitment, allosteric activation

or inhibition and protein binding [22]. However, as our

understanding of the interactions between signaling pathways

increases, it becomes more apparent that the signals do not

necessarily occur independently through parallel (and isolated)

linear pathways, but rather, through a large and complex network

of interconnected signaling pathways [23,24].

The complex architecture of signaling networks can be

understood as a set of interacting network motifs, which can

provide specific network properties and add a new level of

complexity to that which already exists within the spatio-temporal

organization and compartmentalization of signals [25,26].Network

theory approaches have been useful to discriminate components

that have a major overall effect on the system, given the number

and variety of pathways in which they are involved [27]. Such

highly-connected elements are relevant for both cellular homeo-

stasis and disease [Hao et al. 2009]. A large number of efforts are

being held in order to understand the key actors and pathways that

facilitate the appearance and maintenance of cancer cells, and

how these are physiologically related to the ten hallmarks

proposed by Weinberg and Hanahan [10].

In a previous study, the analysis of the proteomes of six different

cervical cancer cell lines and the protein-protein interaction

networks in which they participated led us to propose that the

delicate balance between the life and death decisions of cells, as

well as the neoplastic phenotype, might be due to the overregu-

lation of the transcription factors c-Myc and E2F1. This can

apparently result from both viral infection and the overexpression

of the protein 14-3-3Z, which has been shown to deregulate

apoptosis and promote the G1 to S phase transition. Furthermore,

it has been suggested to play an important role in the epithelial-

mesenchymal transition (EMT) [28].Our study also gave insights

into the multiple pathways that were orchestrated for the

stabilization of the cancerous phenotype, but the actual relations

among such pathways still needed to be analyzed from a broader

perspective. In addition, the connections with transcriptional

regulation were not fully exploited, and direct evidence of post-

translational modifications that were transferred throughout

signaling cascades was not yet provided.

The aim of the present study was to predict the behavior of

signaling pathways and regulatory networks, and determine the

molecular signature of cervical cancer in a HeLa cell line model.

We used data generated via sequencing, performed a differential

expression analysis and incorporated microarray data to predict

the response of transcription factors. This information allowed the

reconstruction of the signaling, metabolic and transcriptional

regulation pathways. Finally, we enriched phosphorylated proteins

using Metal-Oxide Affinity Chromatography (MOAC) and

identified them using tandem mass spectrometry (MS/MS), in

order to validate and build a model based on all these different

levels of biological information.

Results

We integrated different layers of complexity within the

dynamics of a HeLa cells in order to track the flow of information.

Using this procedure, we were able to obtain information

regarding the maintenance of the malignant state and the

differences between cancerous and normal cells (Fig. 1).

There are Different Gene Expression Profiles and Gene
Ontologies in the HeLa and NHEK Cell Lines

First, to assure the certainty of the gene expression profile of

HeLa cells, we used the RNA-Seq data set generated by Nagaraj

et al. [29]. This total expression analysis yielded a set of 19,974

transcripts. The principal difference between these analyses and

those from the Nagaraj group was that we performed quartile

normalization, which improves the accuracy of the differential

expression calls for low-abundance transcripts by eliminating the

bias of highly-expressed genes [30]. The distribution of the reads is

bimodal (Fig. 2a). A gene was considered transcribed if the

confidence interval lower boundary and the FPKM were greater

than zero. In total 53934 genes were mapped from which 20110

are proteins. With the resulting full expression data, we developed

a metric to elucidate the representation of cellular processes by

means of Gene Ontology (GO) [31] using the domain of cellular

components in level 3 (Fig. 2b). Importantly, the expression of

each GO term fulfills at least 97% of the total reported for that

term (Table S1 in File S1). We used this metric to establish the

biological quality of our analysis and to build our predictions from

these data, as well as to validate the differential expression analysis.

To understand the changes in gene expression in the HeLa cell

line compared with a normal cell, we next performed a differential

expression analysis via RNA-Seq, using the epithelial keratinocyte

cell line NHEK as our expression control. Out of 47498

ENCODE-annotated transcripts in total, we identified 3,360

over-expressed genes and 2,129 under-expressed genes (Fig. 3a;

Spreadsheet S1). Using this information, a GO enrichment

analysis was built with the web tool ConsensusPathDB [32] using

level 3 of the ‘‘Biological Process’’ domain. Even at this level of

resolution, it was clear that the differential expression of genes in

HeLa cells strongly favored cell proliferation over tissue organi-

zation (Table S2 in File S1). The categories with a clear over-

representation were ‘‘Cell cycle’’, ‘‘Gene expression’’, ‘‘Metabo-

lism building blocks’’ and ‘‘Cytoskeletal reorganization’’ (Fig. 3b).

The categories that were under-represented included ‘‘Tissue

development’’, ‘‘Organs and systems’’, ‘‘Signaling’’, ‘‘Cell adhe-

sion’’, ‘‘Lipid metabolism’’ and ‘‘Programmed cell death’’ (Fig. 3c).

Analysis of Pathways in HeLa by Systems Biology
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Figure 1. Pipeline. We have integrated different layers of information within biological cell dynamic that tracks the flow of information. First, we
performed an analysis of all transcripts in HeLa cells; this analysis provided an overview of gene expression. Subsequently, we performed a RNA-seq
differential expression analysis and a query of the over-representation of the activity of TFs. This allowed reconstruction of the metabolic pathways
and the signaling and cellular transcriptional regulatory pathways. Finally, we validated this reconstruction with a phosphoproteomic analysis.
doi:10.1371/journal.pone.0065433.g001

Figure 2. Gene expression patterns in the HeLa cells. a) The distribution of total transcripts shows that there are two populations, one low-
abundance population and a second larger, high-abundance population. This dichotomy shows that the parameters used to search for low
abundance transcripts was successful. b) A graphical representation of the cellular process that was distinguished based on Gene Ontology (GO),
using the domain of cellular components in level 3; the amount of retrieved elements was compared against the total size of the pathway.
doi:10.1371/journal.pone.0065433.g002

Analysis of Pathways in HeLa by Systems Biology
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Based on these results, we propose that there is a strong

tendency for HeLa cells to express genes that assist in the evasion

of tissue control, which affords a clear adaptive advantage to

proliferation without barriers.

The Regulatory Network of Transcription Factors that are
Differentially Expressed in HeLa Cells Controls
Fundamental Processes Maintaining the Neoplastic State

To understand the transcriptional network that governs gene

expression in HeLa cells, we used the Affymetrix microarray data

from HeLa cells and normal cervical epithelia generated by the

Scotto group [33] and deposited in the GEO database. These data

were loaded into the MARA web tool [34], which retrieves the

transcription factors with altered expression. 19,171 genes

(corresponding to the Affymetrix HG-U133A annotation) were

evaluated, and a total of 189 significantly-activated TFs were

reported. The transcriptional targets of E2F, ZNF143, YY1,

ELKA, GABP, NRF1, MYB, NFY, HIF1A, TFDP1 and ELF

were over-represented, whereas the transcriptional targets of ETS,

NFATc, NR1H4, SMAD, TFCP2, HIC1, AR, TBP, SRF and

KLF12 were under-represented. Next, we used the database

generated by the MARA transcriptional target analysis to establish

the network of regulation obtained from the differential expression

analysis. Targets were obtained for each TF, and their regulatory

networks were reconstructed. It should be noted that c-Myc,

hepatocyte nuclear factor 4-alpha, BRCA1, VHL and NEMO

were all involved in more than one transcription factor network

and were overexpressed.

After obtaining information from the TFs and their targets, we

performed a GO enrichment analysis using the web tool

ConsensusPathDB, and level 3 of the ‘‘Biological Process’’

domain. In the overexpressed-TF networks, we identified

103 GO terms (Table S3 in File S1), including ‘‘Cell prolifera-

tion’’, ‘‘Metabolism of building blocks’’, ‘‘Cellular organization’’,

‘‘Angiogenesis’’, ‘‘Central metabolism’’ and ‘‘Signaling’’ (Fig. 4a).

In the under-expressed-TF networks, we identified 159 GO terms

(Table S4 in File S1), which were largely related to ‘‘Tissue

homeostasis’’ or ‘‘Miscellaneous’’.

With the information generated by the TF network analysis,

interaction networks were built using Cytoscape software [35] and

the Hubba plug-in [36]. Hubs were defined using the node degree

(Fig. 4b) and betweenness centralities (Fig. 4c). Surprisingly, c-

Myc, HNF4A, BRCA1, VHL and NEMO were the nodes that

had the highest values for these measures. These results suggest

that a set of overexpressed genes in HeLa cells has control over a

particular regulatory network that is not present in normal cervical

epithelium. They also suggest reduced expression of some other

regulatory networks. This feature may be an important source of

Figure 3. Differential gene expression in HeLa Cells versus NHEK. a) A scatter plot showing the quality of the RNA-seq differential expression
analysis results, using the epithelial keratinocyte cell line NHEK as a control. There were a total of 3,360 overexpressed genes and 2,129 under-
expressed genes. b) The percentage distribution of the level 3 biological process domain GO terms represented by the over-expressed transcripts. c)
The percentage distribution of the level 3 biological process domain GO terms represented by the under-expressed transcripts. These charts were
constructed from a summary of all the similar GO terms in a functional cellular circuit.
doi:10.1371/journal.pone.0065433.g003
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the complexity that allows the strengthening of the cellular system

by selection pressure.

Identification of Under- or Over-represented Pathways
that Govern the Neoplastic Phenotype in HeLa Cells

To understand which pathways and processes are responsible

for maintaining the neoplastic phenotype, the complete list of

previously identified over- and under-expressed transcripts was

transformed into non-redundant UniProt identifiers [37]. A

pathway enrichment analysis was then performed on this list

using the ConsensusPathDB online tool. From the overexpressed

transcripts, 83 over-represented pathways were recovered through

the Pathway Interaction Database (PID) (Table S5 in File S1).

Among these pathways, there were many remarkable signaling

pathways, including those governed by ATR and Aurora A and B.

Some transcriptional regulatory networks were identified as well,

including ‘‘E2F’’, ‘‘MYB’’, ‘‘Targets of c-Myc transcriptional

Figure 4. Transcription factor expression networks. a) The percentage distribution of level 3 biological process domain GO terms represented
by the over-represented TF network, highlighting ’’Cell proliferation’’, ’’Metabolism of building blocks’’, ’’Cellular organization’’, ’’Angiogenesis’’,
’’Central metabolism’’ and ’’Signaling’’. This chart was constructed from a summary of all the similar GO terms in a functional cellular circuit. b) Hubs
that were obtained from the node degree centrality measure of the over-represented TF network. The color indicates the score, with red being the
highest and yellow the lowest. c) Hubs were obtained from the betweeness centrality measure of the over-represented TF networks. The color
indicates the score, with red being the highest and yellow the lowest.
doi:10.1371/journal.pone.0065433.g004

Analysis of Pathways in HeLa by Systems Biology
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activation’’ and ‘‘Direct p53 effectors’’. For the under-expressed

transcripts, 15 over-represented pathways were detected via PID

[38] (Table S6 in File S1). Some important pathways were the

‘‘Transcriptional targets of deltaNp63’’, ‘‘TAp63’’, ‘‘AP1 family

members Fra1 and Fra2’’, and ‘‘Direct p53 effectors’’. Notably,

both over- and under expressed transcripts were found within the

‘‘Direct p53 effectors’’ (Table S7 in File S1). Importantly, the

identification of under-expressed and over-expressed transcripts

from the same data set illustrates the power of our analysis, as it

enabled us to distinguish, at the genomic level, components of the

same network that promoted the neoplastic state either by actual

participation or by omission.

Another pathway enrichment analysis was performed with a

focus on the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[39] for both sets of transcripts; with this approach, we identified

17 pathways for the over-expressed genes (Table 1) and 25

pathways for the under-expressed genes (Table S8 in File S1).

These results offer a perspective on the diverse events that occur in

HeLa cells compared with non-malignant cells. Some of the highly

represented processes were involved in cell proliferation (e.g.,

‘‘DNA replication’’, ‘‘Cell cycle’’ and ‘‘Homologous recombina-

tion’’). Yet, other significant pathways included the ‘‘Fanconi

Anemia pathway’’, ‘‘Transcriptional misregulation in cancer’’ and

‘‘Small cell lung cancer’’. These findings provided direct evidence

of the conservation of malignant processes in different cancer

types. Surprisingly, within the under-expressed genes, there was an

over-representation of lipid metabolism pathways (particularly

those involved in the metabolism of steroids, linoleic acid,

arachidonic acid and the synthesis of unsaturated fatty acids),

and pathways involved in cellular adhesion and several pathogen

infections.

These data strengthened the results that were obtained from the

MARA microarray analysis. However, even though the pathway

enrichment analyses were important to our evaluation of the

biological significance of the changes in gene expression, there are

limits to these types of studies. For example, the same set of

transcripts can be considered part of different pathways. Conse-

quently, the results must be carefully evaluated and validated

before any definitive interpretations are made. Therefore, similar

to the current work, studies that involve different layers of

information and validation are strongly needed.

There is a Defined Pattern in the Activation of Cellular
Circuits in HeLa Cells that Involves Interconnections and
Crosstalk that could be Identified based on the
Differentially Expressed Genes, Regulatory Networks and
Pathways

To visualize the integration of the different layers of biological

information that were obtained in the present work, the PID Batch

Query tool was used. As an input, we used the list of transcripts

obtained in the differential expression analysis, as well as the list of

super-active TFs that was obtained from the MARA analysis. The

PID batch query yielded 64 pathways curated in the Biopax level 3

format [40], which displayed an increased amount of intercon-

nections and crosstalk among their cellular circuits. Such

interconnection and crosstalk could allow constant proliferation,

immortalization and cell migration by means of both the over- and

under-expression of different genes and a pattern of transcriptional

control that differed from that observed in normal cells.

To explore this hypothesis, we performed a reconstruction of

every one of the aforementioned networks using the Bisogenet

plug-in [41] in Cytoscape. Afterwards, we searched for the nodes

that served as interconnectors between the explored pathways, and

with the resulting data, we reconstructed two models. In the first

model, we built a network by using every component of each

pathway (Fig. 5). Node-degree and betweeness centralities were

analyzed, and with these values, we could determine the presence

of hubs in all the pathways. This lead to the observation that c-

Myc, BRCA1, VEGFA and E2F1 were the most interconnected

and influential nodes in all of the networks.

In our second model, we followed the hypothesis that there are

well-defined cellular circuits that can be extrapolated to other

malignant cells. Such circuits can be adapted to the concept of

‘‘Hallmarks of Cancer’’ that was originally proposed by Hanahan

and Weinberg, which we reshaped in what we called ‘‘meta-

pathways’’ (Fig. 6, Figure S1). Each one of the pathways that

appear in the figure possesses a certain degree of connection with

other pathways that was determined either by transcriptional

regulation, signaling, metabolism or a combination of these

mechanisms. This meta-network would be capable of maintaining

the neoplastic phenotype. In Figure 6, each of the pathways and

meta-pathways is related to its possible role in the generation of the

hallmarks of cancer.

To validate the data of pathway over- and under- representa-

tion that were obtained, we conducted a phosphoproteomic

analysis of the HeLa cell line via enrichment with Metal-Oxide

Affinity Chromatography followed by identification of the proteins

via LC/MS-MS. We identified a total of 271 phosphorylated

proteins (Table S9 in File S1), reported in 40 level 3 GO terms

(Table S10 in File S1), 21 PID pathways (Table S11 in File S1)

and 16 KEGG pathways (Table S12 in File S1). As expected, due

to the well-documented low correlation between transcript

Table 1. Enriched PID pathway–based sets of over expressed
transcripts.

Pathway name Set sizeCandidates P-value Q-value

DNA replication 36 28 (77.8%) 7.24E15 1.67E-12

Cell cycle 124 53 (42.7%) 9.42E11 1.09E-08

Homologous recombination 28 20 (71.4%) 7.71E10 5.94E-08

Systemic lupus erythematosus 138 51 (37.5%) 4.46E08 2.58E-06

Fanconi anemia pathway 52 26 (50.0%) 1.32E07 6.12E-06

Mismatch repair 23 15 (65.2%) 6.97E07 2.68E-05

Base excision repair 33 18 (54.5%) 2.27E06 7.49E-05

Transcriptional misregulation in
cancer

180 53 (29.8%) 6.84E05 0.00198

Lysine degradation 49 20 (40.8%) 0.00018 0.0037

Purine metabolism 166 49 (29.5%) 0.00016 0.0037

One carbon pool by folate 19 10 (52.6%) 0.00062 0.0135

RNA transport 157 44 (28.0%) 0.00113 0.0217

HTLV-I infection 263 67 (25.5%) 0.00124 0.0221

Nucleotide excision repair 46 17 (37.0%) 0.00172 0.0284

Pyrimidine metabolism 101 30 (29.7%) 0.00253 0.039

Spliceosome 127 35 (27.6%) 0.00463 0.0668

Small cell lung cancer 87 25 (28.7%) 0.00876 0.119

The set size refers to the number of transcripts that have a UniProt ID in the
corresponding PID pathway–based set at the ConsensusPathDB site. The
number of candidates contained refers to the number of proteins that are part
of the extended network and appear as part of the pathway. P-values were
calculated using a hypergeometric test; Q-values represent a correction of the
P-values for multiple testing using the false discovery rate method.
doi:10.1371/journal.pone.0065433.t001
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expression and protein expression, only 17% of the proteins had

their equivalence as a transcript. In contrast, we found that there

was a high correlation between the pathways which were based on

transcript/TF expression and those based on phosphorylated

proteins. Significantly, among these groups were ‘‘Validated

targets of c-Myc transcriptional activation’’, ‘‘Signaling events

mediated by HDAC Class III’’, ‘‘LKB1 signaling events’’, ‘‘Class I

P3K signaling events’’ and ‘‘FoxO family signaling’’. However, we

can find some important pathways that encompass members of the

three levels of biological information. For example, the ‘‘c-Myb

transcription factor network’’ and the ‘‘E2F transcription factor

network’’, whose targets were found within ‘‘c-Myc transcriptional

Figure 5. Network of interconnections and crosstalk among the cellular circuits. The network was made from data obtained by the analysis
of signaling pathways and regulation. The nodes represent proteins that make up each of the pathways; each pathway is indicated by using different
colors. The size of the node is determined by betweeness centrality measure, a larger size shows greater number of shortest paths that pass through
that node.
doi:10.1371/journal.pone.0065433.g005
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activation’’ and, simultaneously, in pathways of central metabo-

lism.

Finally, the entire data set that was extracted from the three

layers of information was used to reconstruct the signaling,

regulatory and metabolic networks that govern the HeLa cell line

and are different from the networks present in both normal

cervical epithelium and the NHEK keratinocyte cell line. For this

purpose, the KEGG Mapper tool [42] was used to assemble the

general metabolic map (Fig. 7), the cell cycle map (Fig. 8a) and the

adhesion molecules and focal adhesion maps (Fig. 8b). Based on

these maps, we were able to identify a clear pattern that could be

divided into at least three groups with the following characteristics:

1. An increase in cell proliferation, resulting from the overex-

pression of the MCM-complex genes and diverse cell-cycle–

associated proteins, which permitted sustained proliferative

signaling.

2. Over-activation of carbohydrate metabolism (e.g., glycolysis

and gluconeogenesis) (Fig. 9b), as well as an increase in the

expression of enzymes in the pentose-phosphate pathway,

which generates carbon skeletons for the synthesis of

nitrogenous bases and histidine. In addition, malonyl-CoA

can be obtained from pyruvate metabolism (Fig. 9a), which

matches the ‘‘deregulation of cellular energetics’’ hallmark of

cancer.

3. Activation of invasion and metastasis that was caused by the

loss/gain of expression of several cell adhesion proteins, such as

CLDN, OCLN and ESAM, the expression of which was

increased.

Discussion

In the present work, we performed an analysis of the different

layers of biological information available from HeLa cells. The

purpose of this analysis was to build a biological model of the

pathways and meta-pathways that would allow us to define the

relationships between this model and the hallmarks of cancer while

maintaining a systemic perspective.

Hanahan and Weinberg postulated the existence of an intricate

cellular circuitry that can be individually aligned with the

hallmarks of cancer. They also proposed that in the near future,

every circuit might be segmented into specialized sub-circuits that

support discrete biological properties in normal cells and are

reprogrammed in cancer cells, resulting in their hallmark

capabilities. The work presented here is an attempt to prove,

both theoretically and experimentally, the existence of these sub-

Figure 6. Meta-pathways analysis. An analysis was conducted combining the obtained signaling and transcriptional regulation pathways; the
edges indicate the regulatory or hierarchical relationship, and the nodes indicate the pathway. The colors denote each of the hallmarks of cancer,
with the two most representative hallmarks indicated per node. Additionally, we use a betwenness-weighed layout allowing the separation of dense
clusters and the identification of elements with high centrality.
doi:10.1371/journal.pone.0065433.g006

Analysis of Pathways in HeLa by Systems Biology

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e65433



circuits and their relationships to the specific pathways that afford

specific cellular functions. Previous studies have attempted to

integrate different levels of information for the prediction of

signaling pathways that are either a determinant of or an obstacle

to the malignant state.

Minn et al. [43] designed a novel methodology that permits the

definition of new signaling pathways. This methodology is based

on the initial identification of a gene that works as a master

regulator. Next, the available information is increased via a gene

set analysis (GSEA). Finally, the regulatory interactions are

functionally validated via the over-expression of some genes that

participate in the proposed pathway. This strategy can be coupled

to a systemic analysis, such as our own, to validate novel or non-

canonical pathways.

The validation step is critical because it has to be thoroughly

representative of the complete pathways network, and the most

frequently used technique for validation is the direct measurement

of mRNA or proteins [44]. Therefore, we decided to validate our

initial predictions using proteomics, with a special emphasis on

identifying phosphoproteins. The phosphoproteomic validation

was pursued because reversible phosphorylation of proteins is the

most widely known, and presumably the most frequently used,

post-translational modification in mammalian cells. Approximate-

ly 1.7% of the human genome encodes protein kinases [45], and at

any moment, approximately 30% of all proteins can be

phosphorylated [46]. Phosphorylation suggests that the protein is

in its active form (as is the case with several metabolic enzymes)

and that upstream signals are active. Alternatively, phosphoryla-

tion could result in a conformational change that allows the

modulation of specific activities [47].

The analysis of total transcripts in the HeLa cell line yielded a

notable result. A total of 19,974 genes were found to be

transcribed, and while this may appear to be an exaggerated

number, it has been demonstrated via RNA-Seq analysis that

approximately 16,245 genes are transcribed in several types of

breast cancer, and this number can vary from 14,648 to 18,290

[48]. When we conducted the GO analysis, we observed that the

transcripts covered at least 97% of the GO terms. This aided in

the evaluation of the quality of the information we obtained and

prepared us to make the comparisons with the differential

expression data.

When analyzing the differential-expression data from a classical

perspective, we observed over-expression of the typical oncogenic

proteins that participate in diverse types of cancer. These proteins

make up three groups: 1) the c-Myc and c-Myb transcription

factors, which are expressed in a great variety of tumors [49–52],

2) the DNA repair and recombination proteins BRCA1 and 2,

which are amplified in breast cancer and non-small-cell lung

cancer [53,54], and 3) the proteins assigned to mitotic checkpoints,

such as BUB1 and BUB3, which can result in genomic instability

when overexpressed [55,56].

Within the global perspective of this work, we found 3,360

overexpressed genes and 2,129 under expressed genes. The GOs

and pathways that resulted from the ConsensusPathDB analysis

showed a clear over-expression of genes that are coadjuvant in

Figure 7. Over-represented metabolic pathways. Metabolic maps were reconstructed based on the KEGG database and the over-represented
TF networks and identified phosphoprotein analyses, resulting in a map of general metabolism. The over-expressed transcripts are displayed in green,
the under-expressed transcripts in red and the identified phosphoproteins in purple.
doi:10.1371/journal.pone.0065433.g007
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maintaining the sustained proliferative signaling cancer hallmark

at the transcriptional, signaling or metabolic levels.

Similarly, when we analyzed the data regarding all the

hyperactive transcription factors, we clearly found that the E2F,

c-Myc and c-Myb pathways were positively regulating a large

number of genes that initiate mitosis and allow cell cycle

progression [57–59]. The over-expression of the FOXM1

transcription factor network has been associated with increased

cell proliferation in animal models of prostate carcinoma [60].

Through the integration and validation of these data via the

phosphoproteomic analysis, we found that over 70% of the

components of the ‘‘Cell Cycle’’ KEGG pathway (Fig. 7a) and all

of the components of the Minichromosome Maintenance Com-

plex, whose increased levels have been observed in two other

cancer models [61,62], were over-expressed.

Regarding the deregulation of cellular energetics, we observed a

clear increase in glycolysis and pyruvate/lactate metabolism,

which is expelled from the cell, resulting in the acidification and

remodeling of the extracellular matrix [63,64]. However, the

energetic inefficiency of using glycolysis to obtain ATP is

compensated by the synthesis of substrates to create cellular

building blocks (i.e., lipids, nitrogenous bases and peptides) from

carbon skeletons that are obtained from glucose [65,66] (Fig. 6).

One of the key enzymes in cancer is Pyruvate Kinase M2

because it possesses an extra tyrosine that is phosphorylated, which

allows its detection in the phosphoproteomic analysis. This

phosphorylation inhibits the positive regulation resulting from

the fructose-1,6-bisphosphate level, stimulating the pathway and

leaving a large amount of phosphorylated intermediates that can

be used for anabolic synthesis and cell growth [67]. On the other

hand, the huge quantity of glucose that is required by the cell to

obtain energy is facilitated by the over-expression of the genes that

encode the membrane glucose transporters GTR3, GTR4, GTR8

and GTR14 [68]. Glucose remains inside of the cell because it is

phosphorylated and converted into glucose-6-phosphate by

HXK2, which is also over-expressed in HeLa cells. During this

step, glucose-6-phosphate is shunted into the pentose-phosphate

pathway and is used for nitrogenous base metabolism, and we

found that the enzymes responsible for turning glucose-6-

phosphate into riboses and deoxyriboses [69] (i.e., G6PI, K6PF,

DEOC, RBSK, KPRA, KPRB and PRPS1) were all over-

expressed. At the transcriptional level, most of metabolic enzymes

are regulated by the action of the c-Myc and HIF-1-alpha

transcriptional regulatory networks [70], which were over-

expressed at the transcriptional, TF and phosphoprotein levels.

The ‘‘Activation, Invasion and Metastasis’’ hallmark of cancer is

profoundly complex because it reflects the differential expression

of diverse adhesion molecules, such as the Claudins. These

molecules are involved in a highly complex interplay and have

been reported to be both over- and under-expressed in other

malignancies (Fig. 7b) [71]. One indication of metastatic potential

is the appearance of EMT markers. In the present study, we

detected the over-expression of OCLN, VIME and 14-3-3Z

[72,73]. As for transcriptional regulation, the Endotelins pathway

was over-regulated due to the expression of EDN2 and EDNRA,

which resulted in the crossroads between migration and cell

proliferation. Finally, the ‘‘Signaling events mediated by VEGF’’

pathway was over-activated because of the over-expression of

VEGFA and VEGFB. This pathway permits angiogenesis,

vasculogenesis and endothelial cell growth. Furthermore, it

represents a crosstalk among various cancer hallmarks because it

induces endothelial cell proliferation, promotes cell migration,

inhibits apoptosis and induces permeabilization of blood vessels

[74].

At the protein level, the family of 14-3-3 signal transducers plays

an important role, given that their differential expression affects

Figure 8. Cell cycle and cell adhesion molecules pathways. a) A reconstruction of cell cycle and MCM complex pathways. b) A reconstruction
of cell adhesion molecules. Both maps were constructed based on the KEGG database and the transcriptomics, over-represented TF networks and
identified-phosphoprotein analyses. The overexpressed transcripts are displayed in green, the under-expressed transcripts in red and the identified
phosphoproteins in purple.
doi:10.1371/journal.pone.0065433.g008
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cell proliferation, evasion of apoptosis, cell adhesion, mitogenic

signaling and the EMT [75–78]. The 14-3-3S isoform was found

to be under-expressed in the differential expression analysis. This

decreased expression supports most models that suggest that this

protein functions as a tumor suppressor, and its loss or reduced

expression is strongly correlated with a poor prognosis [79]. It is

induced by DNA damage and is required for stable G2 arrest. It is

directly regulated by p53 and has been found to be silenced or

diminished in the majority proportion of carcinomas. The

inactivation of 14-3-3S also leads to the immortalization of

primary keratinocytes [80].

At the phosphoprotein level we identified the 14-3-3B, 14-3-3E,

14-3-3F, 14-3-3G, 14-3-3S and 14-3-3Z isoforms. The 14-3-3Z

isoform antagonizes the 14-3-3S isoform; the amount of the latter

diminishes because of the decrease in the expression of p53 in

breast cancer, and its overexpression has been correlated with the

EMT, metastasis and cell proliferation. Thus, it has been proposed

that this family of signal-transducing proteins is critical for the

malignant phenotype [81,82].

After conducting the integrative analysis, we discovered that a

large number of spliceosome genes were over-expressed. Constit-

uents of the U2 component, including SRSF1, which is considered

oncogenic itself, were particularly over-expressed. It has been

suggested that any change in the stoichiometry or activity of

splicing factors is capable of modifying the proportions of isoforms

that normally do not exist or are less abundant in normal cells

(Fig. 10). This phenomenon could contribute directly or indirectly

to the development, progression and maintenance of cancer.

Another hypothesis proposes that diverse RNA-binding proteins

possess a wide array of functions, and changes in their expression

could trigger oncogenic effects that are unrelated to their original

role within the spliceosome [18,83].

Integrating the evidence we obtained at the systems level, we

have created a model to show the relationship between the

hallmarks of cancer and the signaling, regulatory and metabolic

pathways that are differentially expressed in HeLa cells. Figure 6

and Supplementary Figure 1 illustrate what we have termed

‘‘meta-pathways.’’ In these meta-pathways, the reconstructed

pathways show their interrelations at the gene regulation, signaling

and/or metabolic levels. Each node represents a pathway and is

colored according to the two most representative hallmarks. One

of the first features that stood out is the large number of signals

that sustain the proliferative state of HeLa cells, as well as the great

redundancy that can be appreciated among the different

hallmarks. These data suggest that this system is extremely robust,

as every hallmark is represented more than once and is supported

by different pathways. Such behavior would provide an explana-

tion for why directed therapies have not had the expected level of

success. When one gene or subset of genes collapses, a bottleneck

would immediately develop. This might result in the positive

selection of a phenotype that could maintain the hallmarks of

cancer via other pathways [84,85].

Using the data generated in the present work, we propose that

systematic robustness is not entirely random. Enough evidence was

Figure 9. Over-represented metabolic pathways. Metabolic maps were reconstructed based on the KEGG database and the over-represented
TF networks and identified phosphoprotein analyses, resulting in a map of a) pyruvate metabolism and b) glycolysis. The over-expressed transcripts
are displayed in green, the under-expressed transcripts in red and the identified phosphoproteins in purple.
doi:10.1371/journal.pone.0065433.g009
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found to suggest that there are defined patterns in the activation of

cellular circuits that involve interconnections and interferences

associated to the hallmarks of cancer, the latter being accurately

represented by the meta-pathways we have proposed. These

observations allow us to hypothesize that, when a cell expresses

abnormal levels of key proteins (e.g., TFs, signal transducers,

metabolic enzymes, splicing factors or whole pathways) that should

normally be repressed, it is highly likely that, if any of these

expression patterns are advantageous for the cell, such patterns

will become fixed by selection pressure. These effects will allow the

cell to possess a response arsenal that can become more

sophisticated with further exposure to selective pressures over

time.

Methods

Gene and Transcript Quantification
Raw reads were obtained from the European Nucleotide

Archive (ENA) under the study accession ERP000959. This data

was described in Nagaraj et al, 2011. This data was sequenced on

two Illumina Genome Analyzer IIx lanes using 76+7 cycles.

Raw reads of two sequencing lanes were combined, adapters

were trimmed, and reads shorter than 70 nt, or with more than

five bases below a quality score of 15 (PHRED-scale) were

removed. The processed reads were aligned to the human

reference genome (hg19/GRCh37 excluding additional haplo-

types) using TopHat v1.0.13 [86] and transcripts and genes of the

Ensembl [87] release 59 were quantified using Cufflinks v0.8.3

[88].

50 million single-end 76 bp reads were mapped to the human

reference sequence and assembled into 183086 Transcripts [89].

Differential Expression Analysis from RNA-seq Data
Paired-end RNA-seq data of HeLa-S3 and NHEK cell-lines was

downloaded from the ENCyclopediaOf DNA Elements (EN-

CODE) [90] project’s webpage (UCSC accession numbers

wgEncodeEH000130 and wgEncodeEH000131 respectively).

Fastq files from two HeLa-S3 75675 paired-end RNA-seq

libraries (experiment numbers 10881, 10882) and two NHEK

libraries (experiment numbers 10884, 11586) were aligned to the

hg19 version of the human reference genome using TopHat v1.4.1

and Gencode annotation Version 12. Default parameters were

used and only the read length was modified to 75 bases. The

human genome index was built using bowtie v0.12.7 [89].

Differentially expressed genes between NHEK and HeLa-S3 were

identified using cuffdiff v 1.3.0 from the Cufflinks package. A P-

value threshold of 0.01 was set for all significant differentially-

expressed genes.

Transcriptional Factor Analysis
Affymetrix microarray dataset HG-U133A of HeLa and normal

epithelium was downloaded from the Gene Expression Omnibus

(GEO) [91] with accession numbers GSM246123 and

GSM246422 respectively. The.cel files were uploaded to the

website of MARA. This algorithm normalizes them altogether,

Figure 10. Spliceosome pathway. The spliceosome pathway was reconstructed based on the KEGG database and the transcriptomics, over-
represented TF networks and identified phosphoprotein analyses. The over-expressed transcripts are displayed in green, the under-expressed
transcripts in red and the identified phosphoproteins in purple.
doi:10.1371/journal.pone.0065433.g010
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assigns PolII promoters and binding sites within them to probe sets

present on the microarray, and runs the TF activity analysis.

Association of Transcriptional Targets with their RNA
Expression Level

The information of the genes that were reported as targets of

each differentially activated TF, as reported by MARA, was

associated with their particular levels of expression according to

the RNA-Seq analysis. Individual MARA reports for each gene

were parsed through ad-hoc scripts written in Perl 5.12.4. The

processed information, as well as the data from the RNA-Seq

results, were poured into a relational database built in MySQL

Server 5.5 (Community Edition). Subsequently, a query for each

relevant TF was conducted, relating the targets that corresponded

to every TF with RNA-Seq data by joining the corresponding

UniProt identifiers. The outputs were stored in plain text files and

analyzed with spreadsheet software.

Network Reconstruction
The network reconstruction was performed with the aid of the

Cytoscape plug-in BisoGenet, using the identified proteins as bait

nodes and adding edges with the following parameters: Organ-

ism. Homo sapiens, protein identifiers only; Data Settings.pro-

tein-protein interactions; all data sources and all experimental

methods; method. By adding edges connecting input nodes and

as Output.Proteins.

Pathway and GO Enrichment Analysis
Enrichment was done employing ConsensusPathDB, of the

Max Planck Institute for Molecular Genetics, by using the

overrepresentation analysis online tool. As input, we uploaded

the UNIPROT protein identifiers of all the elements of the total

expression analysis, differential expression analysis, TF networks

and identified phosphoproteins. We searched for pathways as

defined by PID and KEGG, with a minimal overlap with the input

list of 5 and a P-value cutoff at 0.0001. Also, employing the same

website and the same analysis tool, we performed an enrichment

analysis based on Gene Ontology level 3 categories of ‘‘Biological

processes’’. For this analysis, we considered only the identified core

proteins and set the p-value cutoff at 0.00001.

Cell Culture
The HeLa cell line was provided by the oncology laboratory of

the Centro Médico Siglo XXI which belongs to the Instituto

Mexicano del Seguro Social. The HeLa cell line was cultured in

RPMI-advanced 1640 serum-free media (Gibco BRL, USA) with

red phenol and antibiotic-antimycotic solution (10,000 units

penicillin, 10 mg streptomycin, and 25 mg amphotericin B per

mL), supplemented with 1% fetal bovine serum (Invitrogen,

Carlsbad, CA) and 200 mM of GlutaMAX (Invitrogen). The cells

were incubated in 5% of CO2 and humidity saturation at 37uC in

culture flasks of 75 cm2 (NalgeNunc International, Rochester,

NY). Cells were harvested at 70% confluence with Verseno

solution (Tris base 25 mM, NaCL 136.8 mM, KCl 5.36 mM,

EDTA 1 mM pH7.7) and washed 3 times in phosphate buffer

saline (0.1 M sodium phosphate and 0.15 M NaCl in one liter,

pH 7.2).

Enrichment of Phosphoproteins
Protein phenol extraction was performed [92]. The protein

extraction was resuspended in incubation buffer and then the

metal-oxide affinity chromatography (MOAC) [93]. The phospho-

protein fraction was eluted and precipitated [94], and then a

Sodium dodecyl sulfate-polyacrylamide Gel Electrophoresis (SDS-

PAGE) was conducted. Gels were stained with Coomassie Blue G-

250. All bands were excised with a razor blade and the tryptic

digestion was performed.

Chromatographic Separation
The tryptic peptides (8 ul) were desalted and concentrated on a

Zorbax (Agilent 5065-9913) prior to analysis on a reverse-phase

column (Agilent Zorbax 300SB C18, 3.5 um, 15060.075 mm).

Separation was performed at 400 nL/min using a lineal gradient.

Mobile phase A was water with 0.1% formic acid by volume.

Mobile phase B was acetonitrile with 0.1% formic acid by volume.

The gradient conditions in the chromatographic run were set up as

follow: A 95% (0 min) to 95% (14 min); A 95%(14 min) to 60%

(54 min); A 60% (54 min) to 20% (56 min); A 20% (56 min) to

20% (61 min); A 20% (61 min) to 95% (62 min); and A 95%

(62 min) to 95% (72 min).

MS/MS Analysis
Proteins were analyzed by MS/MS using a nanoflow chro-

matograph (Agilent 1100 nano pump G2226A) coupled to a

hybrid triple quadrupole linear ion trap (QTRAP 3200, AB Sciex)

equipped with a Nanospray II source and using Information

Dependent Acquisition (IDA). Precursor ion determination was

carried out using an Enhanced MS scan over a mass range of 300–

1600 m/z at 4,000 amu/s (with not trapping in Q0 and Dynamic

fill time) with an ion spray voltage of 3300 applied to a Picotip

FS360-75-15-N with ion spray gas (nitrogen). Precursor ions were

collided in Q2 using rolling collision energy (maximum allowed

CE = 80). Enhanced product ion scans (MS/MS) were performed

over a mass range of 100–1700 m/z at 1000 amu/sec, and

collision voltages were determined dynamically. All precursor ion

mass/charge ratios were confirmed with an Enhance Resolution

scan. Protein identification was done by using the Mascot

algorithm (http://www.matrixscience.com), with the SwissProt

database; the search parameters included trypsin digestion, MS/

MS ion search, monoisotropic mass application, protein mass

unrestricted, peptide mass tolerance of 61.2 Da, fragment mass

tolerance of 60.6 Da and Max Missed Cleavages of 1.

The data associated with this manuscript may be downloaded

from ProteomeCommons.org Tranche using the following hash:

hAB36ZvUMqsCgDBALN0mJQ4dts+h4YiAIk5ZSasBjaG2T-

KhIztzBenjpxYlZaoeq41YheUt9ahhLnC2iPCGKy0SDsG-

wAAAAAAAAntw = = .
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Figure S1 An analysis was conducted combining the obtained

signaling and transcriptional regulation pathways; the edges

indicate the regulatory or hierarchical relationship, and the nodes
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node.
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