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Abstract

Interactions between large-scale brain networks have received most attention in the study
of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that
the coupling strength of large-scale brain networks will reflect the pressure for sleep and will
predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy
subjects underwent this within-subject functional magnetic resonance imaging (fMRI)

study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Self-
reported scores of sleepiness were higher for TSD than for RW. A subsequent working
memory (WM) task showed that WM performance was lower after 36 h of TSD. Moreover,
SPI was developed based on the coupling strength of salience network (SN) and default
mode network (DMN). Significant increase of SPI was observed after 36 h of TSD, suggest-
ing stronger pressure for sleep. In addition, SPI was significantly correlated with both the
visual analogue scale score of sleepiness and the WM performance. These results showed
that alterations in SN-DMN coupling might be critical in cognitive alterations that underlie
the lapse after TSD. Further studies may validate the SPI as a potential clinical biomarker to
assess the impact of sleep deprivation.

Introduction

Sleep deprivation (SD) or sleep loss is ordinary in modern society. The increasing time of sleep
loss could lead to sleepiness, involuntary microsleep, problems in sustained attention, and cog-
nitive slowing [1-3]. However, the mechanism underlying the effects of sleep deprivation on
cognitive capacities still remains to be elucidated. According to an emerging energy allocation
(EA) model, biological processes that remain unfulfilled to sleep loss largely lead to the func-
tional deficits[4]. The longer a person remains awake, the greater the tension between the
mounting homeostatic pressure for sleep and motivated attempts to fight off sleep, leading to
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increased fluctuations in alertness. This is known as the ‘wake state instability’ hypothesis[5,6].
Though both of the theories are prominent, none of them involves the neural mechanism of
sleep deprivation.

The science of large-scale brain networks offers a powerful paradigm for investigating cog-
nitive dysfunction after sleep deprivation, suggesting that cognitive deficits induced by SD are
characterized by multiple brain areas involving several distinct brain systems. A neuroimaging
study demonstrated that sleep deprivation could lead to reduced metabolic activity within a
network of brain regions important for information processing and executive control, includ-
ing the prefrontal cortex, anterior cingulate, thalamus, and cerebellum[7]. More recently,
Drummond and colleagues showed that a cortical network important for sustained attention
was altered during sleep deprivation[8]. According to these studies, Namni and colleagues pro-
posed that two competing neuro-biologic systems might have an influence on the behavior of a
sleep-deprived individual. The top-down drive to maintain alertness is generated from more
rostral areas of the brain, while the involuntary homeostatic drive to fall asleep comes from
more central and caudal areas[9]. Furthermore, Killgore suggested that abnormal activation of
default mode network (DMN) induced by sleep deprivation might result in a failure to effec-
tively allocate resources to task-relevant brain regions[6]. Inspired by recent developments in
large-scale brain network analysis, researches in sleep deprivation found that SD was associated
with reduced functional connectivity of main DMN and anti-correlation network (ACN)
nodes during rest[10,11]. However, these studies were limited to bivariate correlations between
node pairs. Consequently, SD-induced changes of network interaction could not be fully
detected.

Of the many intrinsic connectivity networks (ICN) identified in the human brain, three
have received the most attention: an executive control network (ECN) implicated in a wide
range of cognitively demanding tasks; a default mode network typically deactivated during
most stimulus-driven cognitive tasks; and a salience network (SN) involved in detecting, inte-
grating, filtering external vs internal stimuli and allocating attention[12-19]. Emerging evi-
dence suggests that SN, an integral hub in regulating dynamic interactions between other
large-scale brain networks, plays an important role in initiating network switching leading to
the engagement of the ECN and the disengagement of the DMN[14,15,20]. In conclusion,
Menon proposed a triple network model which focused on the SN, DMN, and ECN, indicating
that dysfunction in one network can impact the other two networks[20]. Triple network model
provides a new insight to study dysfunction in psychopathology, such as autism, major depres-
sion, obesity, and dementia, revealing that characterization of the SN and its interaction with
the DMN and ECN is an important aspect of deficits in cognitive function [21-25]. In a recent
study in nicotine dependence, Lerman and colleagues found that alterations in SN-DMN cou-
pling and the inability to disengage from the DMN might be critical in cognitive/affective alter-
ations that underlie nicotine dependence[26].

The goal of this work was to explore the effect of sleep deprivation on the interaction within
large-scale brain networks underlying the ‘wake state instability” hypothesis and EA model. In
this work, we applied data-driven independent component analysis (ICA) to the resting state
functional magnetic resonance imaging (fMRI) data to extract ICNs, as ICA has turned out to
be a useful tool for large-scale network analysis, reflecting strong coupling of spontaneous fluc-
tuations in ongoing activity and remaining robust under different mental states[27-29]. More
importantly, ICNs identified by ICA are less sensitive to physiological noise and other artifacts,
offering robust way to characterize large-scale brain organization[12,30]. Given that the SN
plays an important role in toggling resources between the ECN and DMN, a quantitative net-
work association index integrating the SN and DMN is proposed in this work to assess sleep
pressure during sleep deprivation, referred to as sleep pressure index (SPI). In the present
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study, we examined the SPI in individuals undergoing functional magnetic resonance imaging
in rested wakefulness (RW) and after 36 h of TSD. Moreover, we tested the hypothesis that the
SPI would (1) be stronger in the individuals after TSD, (2) have significant correlation with
individual’s sleepiness state, and (3) predict cognitive performance in working memory (WM)
task.

Materials and Methods
Participants

Fourteen healthy and right-handed adult males with normal or corrected-to-normal vision
were recruited from Beijing Normal University as paid volunteers by advertisements. None of
the subjects had previously participated in psycho-physiological experiments. Exclusion crite-
ria were diseases of the central and peripheral nervous systems, head trauma, cardiovascular
diseases and/or hypertension, cataracts and/or glaucoma, pulmonary problems, or alcohol or
drug abuse. Written informed consent according to the Declaration of Helsinki was obtained
from each of the subjects after a complete description of the study. Participants were instructed
to habitually keep a regular sleep schedule and refrain from alcohol, caffeine, chocolate intake
and napping for 1 week before the study and during it in order to establish typical sleep pat-
terns, defined as 8 h of sleep per night. This study was approved by the Research Ethics
Committee of Beijing Institute of Basic Medical Sciences and the Fourth Military Medical Uni-
versity (Xi’an, China).

Experiment Paradigm

The experiment was conducted in the Basic Aerospace Institute (Beijing, China). Nursing staff
monitored subjects 24 hour a day and each subject was assigned a partner to keep them awake
through the night while under continuous behavior monitoring. During the TSD session, par-
ticipants were allowed to do some non-strenuous activities such as reading and talking with
their partners and not allowed to leave the lab until they were escorted to the fMRI facility.

The participants were scanned both during RW and after 36 h of TSD. Half participants
started with the RW session; the remaining participants started with the TSD session to reduce
the potential influence of scan order. Considering the possibility of residual effects of TSD, the
two scanning sessions were conducted 3 weeks apart and performed at the same time (8:00
PM). After each scan session, the visual analogue scales (VAS) were obtained to evaluate sub-
ject’s alertness and mood state. In this work, the VAS of alertness, anxiety, energy, self-confi-
dence, irritability, nervousness, sleepiness and talkativeness were measured by eight 10 cm
lines, yielding scores that range from 0 to 10. Participants were required to mark the line with
their current subjective rating.

Working Memory Task Paradigm

A visual N-back WM task lasting 8 minutes and 24 seconds was employed to characterize the
impact of 36 h TSD on behavior performance. The N-back task involved presentation of letter
figures for 400msec, followed by fixation stimulus for 1600msec under three conditions:
0-back, 1-back, and 2-back. In the 0-back condition, participants responded with a button
press to a specified target. For the 1-back condition, participants responded if the current letter
was identical to the previous one. In the 2-back condition, participants responded if the current
letter was identical to that two trials back. Each condition consisted of 18 trials (36-sec block)
and the 0-back condition was repeated 7 times, while each of the other two conditions was
repeated 3 times. In the preliminary experiment, we also employed 3-back WM task. However,
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considering the much too low accuracy of 3-back condition due to the lapse of behavior perfor-
mance after 36 h TSD, we only employed the above three conditions in this study.

Functional Magnetic Resonance Imaging Data

Imaging acquisition was performed at the General Hospital of the PLA of China on a GE 3.0T
Signa scanner (General Electric Medical System, Milwaukee, WI) with a birdcage RF imaging
coil. Structural MRI and fMRI scanning including resting-state procedures and working mem-
ory tasks were performed on each participant. Participants were asked to lie in the scanner
with their head comfortably restrained to reduce head movement. During the resting-state
scans, subjects were instructed to relax and keep their eyes closed, remain as motionless as pos-
sible, and not to think of anything in particular. In order to record participant’s cardiac activity
during scanning, a pulse oximeter was attached to the participant’s finger. In addition, partici-
pants wore a pressure belt around the abdomen to record their respiratory activity. The cardiac
and respiratory signals were collected and synchronized to the fMRI data in order to remove
these physiologic variations during the regression analysis.

In the resting-state scan session, an echo-planar imaging (EPI) sequence was used to collect
189 functional volumes with following parameters: echo time (TE), 30 ms; repetition time
(TR), 2000 ms; field of view, 256 x 256 mm; slice thickness, 5 mm; slice gap, 1 mm; flip angle
(FA), 90° matrix size, 64 x 64; 20 oblique slices. A high-resolution T1-weighted anatomical
image was acquired using an SPGR sequence. In order to keep the subjects awake during the
scan, they were reminded to stay awake through the microphone before each run. After each
run, all the subjects confirmed that they were awake in the previous run.

FMRI Data Analysis

Preprocessing. FMRI data was preprocessed using Analysis of Functional Neuro Images
(AFNI) software (AFNI, http://atni.nimh.nih.gov/afni/). The high-resolution anatomical
images were first manually transformed into the standard Talairach space. For fMRI image
preprocessing, the initial 10 volumes of resting-state datasets were discarded to allow for the
equilibration of the magnetic resonance imaging signal and subjects’ adaptation to the scan-
ning noise. Cardiac and respiratory noises were regressed out by 3dretroicor in AFNI. As one
subject’s physiological data was incomplete, the final dataset included 13 subjects for further
analysis. This was followed by despiking (compression of extreme time series outliers using a
hyperbolic tangent function, 3dDespike in AFNI), slice timing (3dTshift in AFNTI), volume reg-
istration, motion correction (3dvolreg in AFNI), quadratic detrending (3dDetrend in AFNI),
spatial smoothing (Gaussian kernel of full width at half maximum of 6mm, 3dmerge in AFNI)
and manual normalization to Talairach space with a resampled resolution of 3x3x3 mm?
(adwarp in AFNI).

Independent Component Analysis of FMRI Data. We applied group probabilistic inde-
pendent component analysis (GICA) to the resting data using FSL MELODIC (FMRIB Analy-
sis Group, Oxford University)[31,32]. The preprocessed data from both groups in Talairach
space were submitted to MELODIC using the command-line tool with the component number
set at 30 and the decomposition approach set as temporal concatenation. The GICA spatial
maps were converted to z score maps and then thresholded via a mixture model fit (p > 0.5) to
identify voxels contributing to each independent component. The SN, DMN, and ECN were
identified by visual inspection of the thresholded GICA maps.

A previously described and validated dual-regression procedure was applied to generate a
time course for each component[33]. Dual-regression is a statistical approach that can be
applied after GICA and involves a first regression that uses group-level spatial components to
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find time courses associated with each component in each individual, followed by a second
regression that uses the individual time courses to find subject-specific spatial maps for each
component. As a measure of cross-network coupling, we calculated absolute values of Pearson
correlation coefficients (CC) between component time courses derived from the SN, ECN, and
the DMN (CCsy, pyvn and CCsy, gen) to represent the coupling strength between different
networks. Then, Fisher’s z transformation was applied to the CC values, yielding variants of
approximately normal distribution [z = 0.5 In (1 + 1)/(1 - r)].

Correlation between network couplings and behavioral data. Firstly, we used Pearson
Correlation to investigate the relationship between SN-DMN coupling strength and VAS score
of sleepiness. Then, working memory task for each subject was evaluated by both the average
percent correct (PC) and reaction time (RT) on the 2-back verbal working memory task. RT
was determined using only trials with correct responses, excluding lapse trials (no response or
incorrect response). Given that the SN is an integral hub in initiating network switching
between other large-scale brain networks, we correlated both SN-DMN and SN-ECN (left
ECN and right ECN) coupling strength across subjects with working memory task perfor-
mance to investigate the relationship between behavior performance and large-scale network
couplings. In the above correlation analysis between behavioral data and network couplings, all
the data were demeaned within each group to remove the mean group effect

Results
Descriptive Data

The fourteen participants had a mean age of 25.9 years (standard error, 2.3 years; range, 21-27
years). None of the subjects showed evidence of clinical symptom levels as assessed by the
Symptom Checklist-90 (SCL-90) with T-scores <60 on the General Symptom Index, and all
the participants had normal intelligence scores (Raven test, intelligent quotient [IQ] >100).

During the fMRI scanning, all subjects’ respiration and heart rates were monitored. The
mean values of individual respiration and heart rates before and after SD were compared using
paired t-test. No differences were found in heart or respiratory rate between the RW and TSD
conditions (Heart rate: RW 68.42 + 7.26, TSD 72.00 + 6.61, t[1, 13] = -1.500, p = 0.161; Respi-
ratory rate: RW 19.01 + 2.42, TSD 18.42 + 2.62, t[1, 13] = -1.084, p = 0.300). No one was
excluded for head movement, exceeding more than 1mm translational movement or more
than 1° rotational movement. No significant differences were found in the head movement
between the RW and T'SD conditions (Paired t test, p = 0.463).

Resting Networks

In the 30 GICA components, four were identified as SN, ECN, and DMN and were thresholded
for display at z = 3.5 (Fig 1). As an observation commonly reported, the ECN was strongly lat-
eralized and referred to as the left ECN (LECN) and right ECN (RECN). Spatial cross-correla-
tion between these networks and previously defined maps [34] revealed a high degree of
similarity (r(DMN) = 0.48, r(LECN) = 0.35, r(RECN) = 0.43, r(SN) = 0.45). In addition, other
canonical functional networks (dorsal attention network [DA], primary visual cortex network
[PVC], second visual cortex network [SVC], auditory cortex network [AC], sensorimotor net-
work [SM]) were identified from the 30 GICA components (S1 Fig).

Shifted Intrinsic Connectivity

To explore the shifted intrinsic connectivity across SN, ECN, and DMN, we tested the signifi-
cance of group differences of pairwise correlations between network time courses using paired
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Fig 1. Group-level components revealed by the temporal concatenation group independent component analysis (ICA). Four networks generated
from group ICA of the resting state data were identified as the default mode network (DMN), left and right executive control network (ECN) and salience
network (SN). Spatial maps were converted to z score images and then thresholded at z = 3.5 via mixture model fit. Network maps are displayed in red-yellow
overlaid onto the Talairach space based on radiological convention (left = right).

doi:10.1371/journal.pone.0133959.g001

two-sample t-test (Fig 2). In TSD group, CCgsn, pmn Was significantly increased, compared
with that in RW group (paired t-test, p = 0.0012). The changes in CCqy;, 1rcn and CCsy, recN
showed an increased trend in TSD group as well, while they were not significant (paired t-test,
p < 0.01). We also checked the changes of functional coupling between SN and other canonical
networks including DA, PVC, SVC, AC and SM after 36 h of TSD. The results showed that the
functional couplings between SN and AC, DA, PVC and SM were significantly increased after
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Fig 2. Significant increase in correlation between the salience network (SN) and the default mode
network (DMN) (paired t-test, p = 0.0012) in the TSD vs RW states. LECN indicates left executive control
network; RECN, right executive control network. *p < 0.01, statistical significance.

doi:10.1371/journal.pone.0133959.9002
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36 h of TSD (paired t-test, p < 0.01) (S2 Fig). However, correlation analysis showed that there
were no significant correlations between these functional couplings and behavioral data.

Correlation Between Network Couplings and Sleepiness

In this study, VAS was used to measure sleepiness and mood state of each subject (Table 1).
The results showed that participants were sleepier after 36 h of TSD (paired t-test, p < 0.01, Fig
3a). In addition, we also explored the relationship between sleepiness scores and large-scale
brain network couplings. The results showed that there was a positive trend for an association
between the SN-DMN coupling and sleepiness score (r = 0.436, p = 0.026), whereas neither
SN-LECN nor SN-RECN was significantly correlated with alertness score (Fig 3b).

Correlation Between Network Couplings and Working Memory
Performance

Relative to RW, responses in TSD were slower and less accurate (Table 1). Partially significant
correlation was observed between SN-DMN coupling and RT (Fig 4a). The increase of the
SN-DMN coupling predicted longer RT in WM task (r = 0.467, p = 0.016). We also found a
negative trend for an association between SN-DMN coupling and WM task percent correct
(PC,r=-0.5197, p = 0.0065) (Fig 4b); as the SN-DMN coupling increased, the participant
responded more incorrectly. In addition, both SN-LECN and SN-RECN were correlated with
WM cognitive performance (either RT or PC), while no significance was found (p < 0.01).
Both the longer RT and decreased PC revealed that SN-DMN was a reliable index to predict
the WM cognitive performance.

Discussion

When a person remains awake longer, the biological pressure for sleep will become stronger.
According to the EA model, during prolonged sleep deprivation, the biological investment
(BI), defined as the energy needed for all other biological activities not requiring either vigi-
lance or motor activity, was upregulated via reactive homeostasis during the waking state to
enhance survival[4]. When the time of attempting to sustain wakefulness exceeds 36 h, the bal-
ance between the mounting homeostatic pressure for sleep and motivated attempts to fight off
sleep will be broken. Depending on the drive of sleep increases or decreases over certain thresh-
olds, sleep is triggered or otherwise wakefulness would occur[9]. Studies indicated that prefron-
tal executive regions played a crucial role in modulating the motivational control over the
waking state via top-down cortical control system, while brain stem and hypothalamic nuclei
generated the involuntary drive for sleep from bottom-up system [35]. Therefore, alterations

in coupling between these networks increase the instability of waking state. In this study, we
extend these observations by demonstrating a composite network association index integrating
the SN and the DMN. The predictive validity of this novel index was validated by self-reported

Table 1. Behavioral data in RW state and after 36 h of TSD.

Scale/task RW TSD
Visual analogue scales
Factor 7 (sleepiness) 7.62 (1.0) 5.62 (1.64)
2-back working memory task
Percent correct 1.506 (0.275) 1.38 (0.303)
Reaction time (s) 0.689 (0.139) 0.765 (0.189)

doi:10.1371/journal.pone.0133959.1001
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Sleepiness
SN-DMN Correlation

0.0
Sleepiness

(@) (b)

Fig 3. (a) Significant increase in sleepiness score after 36 h of TSD (paired t-test, p = 0.00011). (b)
Regression plots of correlation between the salience network (SN) and the default mode network (DMN)
against sleepiness score. *p < 0.01, statistical significance.

doi:10.1371/journal.pone.0133959.g003

behavioral data and working memory task performances. The SPI was significantly stronger in
subjects after 36 h of TSD, suggesting an inappropriate relationship between SN and DMN or a
failure to allocate resources to task-relevant brain regions when needed. Consistently, SPI val-
ues significantly correlated with individual’s sleepiness state and stronger SPI values also pre-
dicted poorer WM task performance. In conclusion, this index reflects the biological pressure
for sleep during sleep deprivation, which could be used to assess the sleep pressure during
TSD.

These findings further our understanding of aberrant neural mechanisms underlying cogni-
tive deficits observed in individuals with TSD. Homeostatic pressure for sleep increases against
with individual’s motivation to stay awake, reflecting on the interaction of neurobiological sys-
tems, one attempting to keep individuals awake and the other driving individuals to fall asleep
[9]. At last, lapses develop from momentary periods of inattention to another state that can be
described as a functional sleep attack. In neural system level, this lapse can be presumed as a
result of the imbalanced functional link between SN-DMN and SN-ECN, in other word, a bias
toward enhanced SN-DMN connectivity. Consistent with this assumption, TSD-induced
imbalance was observed in this study, characterized by the significantly increased SN-DMN
coupling after TSD and non-significant change in SN-ECN correlation. We proposed that in
the sleep loss state, SN increased the allocation of attentional resources to fight against the
increasing biological pressure for sleep, leading to an enhanced SN-ECN connectivity. In other
words, after TSD, much increased SN-DMN coupling revealed the upregulated assignment of
saliency to internal mental events for survival while SN-ECN also increased slowly to meet
demands of longer waking state. The biased resource allocation toward DMN proved that
homeostatic process for survival was priority during sleep deprivation.

.

Reaction Time (s)
Percent Correct

.

<

0.25 0.00
“* SN-DMN Correlation

0.25 0.00
SN-DMN Correlation

(a) (b)

Fig 4. Regression plots of correlation between the salience network (SN) and the default mode
network (DMN) against (a) the reaction time and (b) the percent correct of 2-back working memory
(WM) task.

doi:10.1371/journal.pone.0133959.g004
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In this work, we found significantly positive correlation between SPI and self-reported
sleepiness score. As SN plays an important role in switching between external stimuli and
internal mental events, increased SPI means that more resources are assigned to self-referential
mental events, leading to deficits in alertness, vigilance and attention. In addition, the strong
correlation between changes in the SPI and changes in RT or PC suggests that alteration of SPI
may be attributable to the detection of salient events and modulation of activity via the SN. In
WM task, faster responses were associated with activation in ECN; in contrast, slow responses
were associated with even greater activation of medial prefrontal regions implicated in the
DMN/8]. Since a role for the SN in modulating relative activity in the ECN vs DMN, the posi-
tive correlation between SPI and RT is consistent with the aberrantly increased activation of
DMN, which may lead to a failure to effectively allocate resources to task-relevant brain regions
in ECN. In addition to RT, a negative correlation between SPI and PC was also observed. This
observation is consistent with a recent meta-analysis revealed that sleep deprivation affect not
only accuracy but also response time during WM tasks[36]. The robust correlation between
SPI and WM task performance indicated the potentiality of SPI to be a biomarker for assessing
the impact of sleep deprivation.

In recent network studies, researchers demonstrated that sleep deprivation reduced both
DMN connectivity and DMN-ACN correlation during rest[10,11]. They found that increased
sleep pressure was reflected in reduced anti-correlation of main DMN and ACN nodes. How-
ever, recent brain network studies have pointed out that there are two distinct networks in the
ACN, termed as ECN and SN[14]. Our findings of increased coupling in both SN-DMN and
SN-ECN after TSD provide compelling parallels to these studies. As DMN is usually deacti-
vated during cognitive tasks, the decoupling between DMN and ACN indicated insufficient
allocation of cognitive resources to executive control system, leading to the ‘wake state instabil-
ity’. In the view of triple network model, the results in this study also revealed the decoupling.
When DMN and ECN were negatively coupled well, if the functional coupling between SN and
DMN increased, the functional coupling between SN and ECN would decrease. However, the
results in this study showed that after 36 h of TSD, the SN-ECN coupling was increased in
order to stay awake, nevertheless, the homeostatic pressure for sleep also heavily increased the
SN-DMN coupling. This decoupling in allocating cognitive resources leaded to the ‘wake state
instability’. Moreover, our study makes much improvement to previous researches. Using ICA
and dual-regression analysis, we extracted the time courses of each network while the above
two studies just calculated correlation between main node pairs. Another great improvement is
the significant correlation between SN-DMN coupling and behavioral measures, in that no cor-
relations between behavioral data and large-scale network couplings were declared in previous
sleep deprivation studies.

In summary, the present findings point to a novel biological mechanism underlying the
lapse after TSD (Fig 5). This study, which is based on the EA model and ‘wake state instability’
hypothesis, furthers our understanding of TSD’s effect from dysregulated DMN to the disabil-
ity of SN to toggle between ECN and DMN, indicating that SN may play a critical role in cogni-
tive alterations that underlie TSD. On validation, the SPI could serve as a clinical biomarker to
assess the impact of sleep deprivation. With additional validation in other cohorts, the SPI
could also be a potential biomarker for assessing other cognitive deficits.

Limitations

Despite the strengths of this study, some limitations should be borne in mind when interpret-
ing these findings. First, if the SPI is to be applied as a diagnostic biomarker, test-retest studies
are needed to demonstrate its reproducibility and clinical significance. Second, limitations
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Biological mechanism of SD revealed by large-scale brain netwroks
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Fig 5. A schematic diagram of sleep deprivation, large-scale brain networks, and energy allocation. In
RW state, cognitive resources are appropriately assigned to DMN and ECN in order to meet both internal and
external events. With the sleep deprived time increases, though the motivation to remain awake increases,
the drive for sleep becomes stronger, leading to lapses at last.

doi:10.1371/journal.pone.0133959.g005

concerning the use of GICA to identify ICNs should be considered. The data-driven GICA
analysis using a 30-component solution was empirical. We also tried GICA using component
number of 20 and 25. No significance was found in spatial cross-correlation between the visu-
ally identified DMN, SN, and ECN components and those previously published. All of our
analyses in this paper were based on network maps with the component number set at 30.
Third, considering only male volunteers were assessed in this study due to the experimental
conditions (paired subjects) and the long time course of the experiment, we could not general-
ize our findings to females. Therefore, the clinical utility of the findings will be restricted. In
our future study plan, we will investigate gender differences in functional connectivity changes
following TSD. Forth, verbal reporting of subjects' in-scanner state is not an adequate way to
monitor sleep-deprived participants during the resting state scan [37]. In future experiments,
we will consider the use of simultaneous EEG recordings to monitor subjects’ in the scanner.
Finally, beyond this triple model, which further brain changes outside the triple network such
as subcortical or neurochemical changes are critical for distinct symptoms with sleep depriva-
tion? To disentangle such questions, further studies are needed.

Conclusions

Alterations in SN-DMN coupling may be critical in cognitive alterations that underlie the lapse
after TSD. Further studies may validate the SPI as a potential clinical biomarker to assess the
impact of sleep deprivation.

Supporting Information

S1 Fig. Group-level components revealed by the temporal concatenation group indepen-
dent component analysis (ICA). Five canonical networks generated from group ICA of the
resting state data were identified as the dorsal attention network (DA), primary visual cortex
network (PVC), second visual cortex network (SVC), auditory cortex network (AC), sensori-
motor network (SM). Spatial maps were converted to z score images and then thresholded at
z = 3.5 via mixture model fit. Network maps are displayed in red-yellow overlaid onto the
Talairach space based on radiological convention (left hemisphere to the viewer’s right).
(TTF)
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S2 Fig. Significant increase in correlation between the SN and the AC, DA, PVC and SM in
the TSD vs RW states (paired t-test, p = 0.01). “p < 0.01, statistical significance.
(TIF)

S1 File. The supporting data include 30 GICA components and the corresponding time-
courses generated by dual-regression.
(Z1P)
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