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ABSTRACT
The use of electronic signatures as a form of identification is increasingly common, yet 
they have been shown to lack the dynamic features found in online signatures. In this 
study, handwritten signatures were scanned to produce electronically scanned signatures 
(ESS) which were then digitally altered to produce digitally constructed signatures (DCS). 
The ESS and DCS were presented back to participants to identify which were genuine. 
Only 1% of participants correctly identified all signatures, with a mean score of 57.6% 
identifications. The lack of self-recognition of ESS raises questions on their reliability and 
usefulness as means of personal identification.

Introduction

Signatures are widely used tools for personal iden-
tification, the confirmation of authorship and the 
authentication and verification of documents [1]. 
Signatures are highly individualized habitual writing 
acts that require minimum concentration to produce 
[1]. Traditionally the work of a forensic document 
examiner (FDE) focused exclusively on 
manuscript-based, handwritten signatures (HS). The 
increasing use of electronic signatures has presented 
challenges to FDEs in their approaches to examina-
tion, due to limited standardized methodologies, 
research in the area and difference between them 
and inked signatures [2,3].

Electronic signature is a broad term that includes: 
digital-based algorithm-derived signatures, biody-
namic signatures produced on an electronic device 
which is a representation of an HS and electronically 
scanned versions of handwritten signatures (ESS) 
[2,4]. The Electronic Signatures in Global and 
National Commerce Act (2000) in UK states that 
an electronic form of a signature (or contract, or 
other form) may not be “denied legal effect, validity, 
or enforceability because it is in electronic form”.
This law makes electronic signature as enforceable 
and as binding as a traditional written signature.

Verification of electronic signatures can take place 
offline and online. Offline signature verification uses 
images of the signature that are processed on either 
a computer programme or by an FDE [5]. In offline 

verification, it is reported that many of the dynamic 
features of signature construction, normally analysed 
in a written signature, are lost [3,5–7]. Online veri
fication uses data taken directly through the stylus 
or digital device and generates dynamic values based 
on kinetic (or biodynamic) parameters. The use of 
temporal data such as pen speed can provide infor-
mation that can only be estimated in manuscript 
signatures. There are few scientific studies that uti-
lize these biodynamic parameters for forensic ana
lysis [8–11].

Simulated signatures are those which attempt to 
replicate a genuine signature and all its dynamic 
features. They are generally either “freeform” copied 
from a genuine specimen or “traced” using a light-
box, sharp implement or pencil to create an impres-
sion of the genuine signature to guide the simulation 
[4,12,13]. It has been demonstrated using 
MovAlyzeR® software that stroke duration, velocity, 
and pen pressure can be used to discriminate 
between genuine and simulated signatures, irrespec-
tive of the writing style of the author which was 
not the case for smoothness (jerk) or size [14]. It 
has likewise been shown that dynamic features such 
as signature size, trajectory and speed were the most 
reliable features for identifying the difference 
between simulated and genuine electronic signatures, 
and that dynamic information can be used to con-
nect separate simulation cases [13].

There is limited study on ESS and the simula-
tion of such signatures (either prior to, or post 
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the scanning process). It has been identified that 
a range of features used in the analysis of HS are 
lost in the scanning process [3] and that the 
choice of writing implement can affect the amount 
of information lost. In a study of 16 participants 
the difference between signatures produced by 
writing with a ballpoint pen, a digital tablet pen 
and a computer mouse was examined. The authors 
found there were significant differences between 
the temporal and spatial dimensions; in both the 
online and offline signatures, intra-writer and 
inter-writer, and between the digital pen and 
mouse [15].

The ability of FDEs to distinguish simulated and 
genuine signatures has been compared to lay groups 
in blind experiments, and all the studies provide 
evidence that the FDEs have a clear superior ability 
in identification [16–19]. These studies all adopt 
specimen signatures as the subject of their experi-
ments, there are no reported studies where authors 
were asked to self-identify (or other groups evaluate 
the authenticity of ) simulations of their own 
signature.

Identifying one’s own signature could become 
more important as ESS are increasingly used as a 
form of identification and a record of a “genuine” 
signature, for example, the Identity Card (USA) and 
Driving License (UK). If these are the reference 
points for examination by lay people or even FDEs 
then they pose a potential risk. A simulated signa-
ture produced from an ESS, either a digitally con-
structed signature (DCS) or a handwritten one, with 
the loss of dynamic features may increase the use 
of these forms of identification for fraudulent pur-
poses. This paper aims to understand how efficient 
the lay public are at identifying their own ESS from 
a pool of genuine and DCS variants.

Materials and methods

The study was conducted under the ethical approval 
of the University of Derby.

One hundred participants, with no experience in 
signature examination, provided 10 signatures on a 
sheet of plain white paper (90 g/m2) using a black 
ballpoint pen (Parker, Newhaven, UK). The partici-
pants were aged 18–55 and had variable levels of 
educational background. The HS were then: (1) 
scanned at 300 dpi to produce ESS and placed on a 
Wacom CTL-480 Graphics Tablet (Kazo, Japan) and 
(2) copied by the experimenter using the stylus to 
produce DCS. The DCS were size-adjusted and pix-
ilation was removed using PhotoFiltre 7 (Houilles, 
France) and Microsoft Office Picture Manager (https://
support.microsoft.com/en-us/topic/about-pictur

e-manager-f767aca9-e818-4dfc-b71a-f2184d6bbde9). 
This process took on average 6 min per signature and 
was undertaken with the purpose of making the sig-
natures a replica of the HS (Figure 1).

A random set of 10 signatures from the pool of 
available ESS and DCS, were presented to each par-
ticipant at least 1 week after the original collection. 
Participants viewed, with the naked eye, the signa-
tures one at a time and were asked to identify if 
they were genuine or a simulation. Post activity, a 
point was given for a correct identification with a 
maximum of 10 (i.e. 100%). Participants were 
informed the sample contained between 0–10 gen-
uine signatures before the identification and shown 
their score once they had completed the task.

Sixteen participants chosen at random were asked 
to repeat the study, but with a copy of their HS 
available for comparison. The same scoring system 
as in the main study was used, in addition partic-
ipant’s perception of the task was recorded. 
Additionally, signatures of each participant were 
classified as either difficult or easy to forge. The 
classification was based on the opinion of the author 
performing the simulations.

Results

Only one out of the 100 participants was able to 
correctly identify 100% of their signatures (Table  1). 
The mean score for all participants was 57.6%. 
Forty-one participants had a result below 60%, 30 
above and 29 achieved exactly 60%. The ratio of 
genuine/simulated signatures in the sample did not 
have a bearing on the ability of participants to cor-
rectly identify their own signatures.

The total number of questioned signatures in the 
project was 1 000 (100 participants, 10 signatures 
each). Among them there were 550 genuine signa-
tures, of which 309 (56.2%) were correctly recog-
nized to be genuine. Out of 450 simulated signatures, 
267 (59.3%) were correctly identified as simulations. 
Only 25 participants correctly identified all forged 
versions of their signatures (Table 2).

Signatures of 61 participants were classified as 
easy to forge and the remaining 39 were classified 
as difficult to forge. The mean results of participants 
were 56.6% and 59.2% for the easy and difficult to 
forge groups, respectively.

Subsequently, 16 participants were questioned 
twice, with their HS provided for comparison 
(Table  3). Half (50%) of the participants’ ability to 
identify signatures as genuine or simulated improved 
(three participants correctly identified all). Whereas 
50% showed no improvement or decrease in correct 
identifications.

https://support.microsoft.com/en-us/topic/about-picture-manager-f767aca9-e818-4dfc-b71a-f2184d6bbde9
https://support.microsoft.com/en-us/topic/about-picture-manager-f767aca9-e818-4dfc-b71a-f2184d6bbde9
https://support.microsoft.com/en-us/topic/about-picture-manager-f767aca9-e818-4dfc-b71a-f2184d6bbde9
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Discussion

The participants correct identified on average 57.6% 
of the signatures’ origins (genuine or simulated) 
from a sample they examined. The ratio of genuine 
to simulated signatures they were provided with 
made little difference to the overall recognition. This 
value is similar to that reported by Found et al. [16] 
where the lay group correctly identified 57.1% of 
signatures, although in that case, participants could 
declare an inconclusive opinion after examination. 

The explanation for participants not being able to 
identify their own signature could be unfamiliarity 
with the subject matter. However, it was the  
experimenter’s view the findings were due to the 
strength of the simulations.

Providing participants with genuine hard copy of 
their own signature did improve identification in half 
of participants. It was noted that some participants 
made (incorrect) judgements because they thought 
they could see an exact tracing of their signature on 
the screen when compared to the one on the specimen 
sheet. It could be that complexity of the signature, and 
consequently ability of the simulator to imitate was a 
factor. The mis-identification illustrates the ease with 
which an ESS can be used to produce a DCS and fool 
the originator of the signature. Given the legal validity 
of electronic signatures it may be of concern to indi-
viduals that they are unable to recognize their own. 

Table 1.  The number of participants and the percentage of 
sample signatures they correctly attributed as genuine/
simulation.
Score (%) Number of participants

20 2
30 5
40 17
50 17
60 29
70 16
80 9
90 4
100 1

Table 2.  The ratio of genuine and simulated signatures pro-
vided to participants and their corresponding accuracy in 
identification.

Signature set Number of 
participants

Average result 
(%)Genuine Simulated

0 10 10 60.0
1 9 10 59.0
2 8 6 60.0
3 7 4 57.5
4 6 3 53.3
5 5 12 52.5
6 4 6 68.3
7 3 15 56.7
8 2 13 57.7
9 1 11 56.4
10 0 10 56.0

Figure 1. A  handwritten signature (HS) was electronically scanned (top left) and simulated by tracing onto a Wacom CTL 
using a digital stylus (top right). The signature were resized and pixel removed (digitally constructed signature, DCS) only 
to match the HS (bottom left and right).

Table 3.  Participants’ ability to identify signatures as genuine 
or simulated without (1st attempt) and with (2nd attempt) 
a hard copy specimen.

Participant 
code

Score (%)

1st attempt 2nd attempt Difference

1 60 40 −20
2 60 50 −10
3 80 70 −10
4 60 70 10
5 60 30 −30
6 60 60 0
7 50 40 −10
8 40 70 30
9 40 100 60
10 90 90 0
11 100 90 −10
12 50 70 20
13 40 60 20
14 40 70 30
15 70 100 30
16 60 100 40
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FDEs have demonstrated a superior ability to lay 
groups when distinguishing between genuine and 
simulated signatures [16–19]. However, if 
self-identification is not consistently possible it raises 
concerns about the lay people required to make 
authentication judgements about these documents in 
the real world, e.g. governmental and banking 
employees.

It has been demonstrated that the dynamic fea-
tures of electronic signatures are lost in offline veri
fication [3,6]. Online verification with its range of 
dynamic values offers rich information for analysis 
by FDEs. However, ESS and DCS illustrate that a 
signature presented in a digital format cannot be 
recognized consistently by the originator raising a 
potential vulnerability to this form of identification. 
It raises a potential complication to FDEs when an 
author cannot identify a genuine “specimen” sample 
for comparison purposes.
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