
Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Bioinformatics and Biology Insights 2012:6 155–168

doi: 10.4137/BBI.S9426

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Bioinformatics and Biology Insights

R e v i e w

Bioinformatics and Biology Insights 2012:6	 155

DNA Structural Properties in the Classification of Genomic 
Transcription Regulation Elements

Pieter Meysman1, Kathleen Marchal1,2 and Kristof Engelen1

1Department of Molecular and Microbial Systems, KULeuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium. 
2Department of Plant Systems Biology, UGhent, Technologiepark 927, 9052 Gent, Belgium.  
Corresponding author email: kristof.engelen@biw.kuleuven.be; kamar@psb.vib-ugent.be

Abstract: It has been long known that DNA molecules encode information at various levels. The most basic level comprises the base 
sequence itself and is primarily important for the encoding of proteins and direct base recognition by DNA-binding proteins. A more 
elusive level consists of the local structural properties of the DNA molecule wherein the DNA sequence only plays an indirect sup-
portive role. These properties are nevertheless an important factor in a large number of biomolecular processes and can be considered 
as informative signals for the presence of a variety of genomic features. Several recent studies have unequivocally shown the benefit of 
relying on such DNA properties for modeling and predicting genomic features as diverse as transcription start sites, transcription factor 
binding sites, or nucleosome occupancy. This review is meant to provide an overview of the key aspects of these DNA conformational 
and physicochemical properties. To illustrate their potential added value compared to relying solely on the nucleotide sequence in 
genomics studies, we discuss their application in research on transcription regulation mechanisms as representative cases.
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Introduction
It is well understood that DNA in living cells is not 
a uniform linear macromolecule but displays local 
structural variations that depend on the base sequence. 
This intrinsic variability in the DNA structure has 
been found to play a key role in several biologi-
cal processes. The structure of a DNA molecule is 
primarily determined by its nucleotide sequence, 
so that similar DNA sequences have similar DNA 
structures. The reverse is not always true however: 
DNA molecules with similar structural properties 
can arise from different sequences. This redundancy 
is the reason that the DNA molecule is described as 
having at least two levels of information.1–3 The first 
level consists of the basic nucleotide sequence string, 
which is primarily used as the ‘genetic code’ central 
to gene coding. A second information level is present 
in the different properties of the intrinsic DNA 
structure, where the DNA sequence itself only plays 
a supporting role. These DNA structural properties 
are various characteristics of the molecular structure 
that can be assigned a numeric value based on theo-
retical simulations or experimental measurements. 
As the DNA molecule is highly variable at many dif-
ferent levels, from the local stability of the helical 
duplex to the global conformation of the molecule, 
so are there many possible DNA structural properties 
which can be defined. It is not surprising that these 

structural properties can have a large impact, as most 
genomic processes involve some sort of change in 
the DNA structure such as the denaturation required 
prior to the start of duplication and transcription, 
protein-induced deformation at DNA-protein com-
plex formation, or the extensive nucleosome pack-
aging of an entire genome. Several studies have 
shown that to create an accurate model to predict or 
describe these processes, one must account for the 
presence of these local structural properties of the 
DNA molecule. The use of intrinsic DNA structural 
properties has therefore seen a broad range of appli-
cations in genomics in the past decade. In this review 
we aim to give an overview of the terminology and 
key aspects of these DNA structural properties, and 
illustrate their potential added value compared to 
relying solely on the nucleotide sequence in genom-
ics studies.

We first discuss the basic principles of mod-
eling the properties of the DNA structure from 
the nucleotide sequence. Epigenetic modifica-
tions and specific spatial DNA structures, such 
as G-quadruplexes, are beyond the scope of this 
review because their characterization substan-
tially differs from the DNA structural properties 
as discussed here.4–8 The later sections then dis-
cuss two well-studied cases to illustrate the use of 
DNA structural properties in the classification of 

Structural property: specific characteristic of the DNA molecular structure, such as stability, rigidity (or the converse 
flexibility), or curvature.

Conformational property: structural property relating to the static DNA structure, sometimes termed geometrical 
property, ground-state structure or structural property in the literature.

Physicochemical property: structural property relating to the dynamic DNA structure implying its potential to change 
conformation, sometimes termed chemical property or mechanical property in the literature.

Structural scale: Look-up table enumerating all oligonucleotides of a given length and their corresponding values 
for a certain structural property.

Structural profile: vector of values for a given structural property for every position in a DNA sequence, typically 
derived from a structural scale.

Higher-order model: A mathematical model which explicitly includes terms for interactions between various obser-
vations. Eg, a higher-order dinucleotide sequence model is able to account for the dependency between two 
sequential base pairs. 

Functional genomic element: discrete nucleotide sequence present in the genome with a specific biological role.

Box 1 Definitions as used in this review.
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genomic elements. Because of the wide array of 
applications, we have limited ourselves to research 
on transcription regulation mechanisms as repre-
sentative cases. The identification of small elements 
at a position-specific level will be evaluated in the 
scope of locating potential sites of protein-DNA 
complex formation in the genome, eg, transcrip-
tion factor binding sites. The characterization at 
a coarser level of large genomic elements will be 
illustrated by gene promoter prediction.

Structural Properties, Scales  
and Profiles
The structural properties of the DNA molecule can be 
roughly divided into two categories, the conforma-
tional and the physicochemical properties, although 
these terms are not strictly defined and there is some 
conflicting terminology in literature.9–12 In this review, 
we adhere to the most typically used definitions: The 
conformational properties refer to details of the static 
DNA structure and how this is influenced by base 
pair sequences, resulting in translational (eg, slide, 
rise and shift) or rotational (eg, roll, twist and tilt) 
variation between successive base pairs and varia-
tions in the width and depth of both the major and 
minor groove (important in several biological pro-
cesses). At a coarser level, one can also consider the 
local bends present in the sequence or the curvature 
of the DNA molecule across large distances or more 
global properties such as the shape/form in which 
the DNA molecule is present; in most living cells 
this is limited to the A-form, B-form or Z-form. The 
physicochemical properties on the other hand, refer 
to the dynamic potential of the DNA structure or the 
free energy stored within different conformations. 
As the DNA molecule is anisotropically deformable 
along any axis, several properties can be defined 
which capture the extent of resistance displayed by 
the DNA molecule to various changes. The denatur-
ation temperature is also known to vary depending 
on the molecular structure of the double stranded 
DNA molecule. This intrinsic variability in denatur-
ation potential can be described by for instance the 
stacking energy between base pairs or the global free 
energy of the DNA duplex.

As mentioned before, the structural properties of 
a stretch of DNA are determined by its nucleotide 

sequence. A DNA molecule with the same nucleotide 
sequence will have the same structural properties. It 
is therefore theoretically possible to predict the entire 
DNA structure and all of its properties if one is given 
the DNA sequence. This is currently being done 
with great accuracy using molecular simulations.13,14 
However if one is only interested in a specific set of 
properties of the DNA structure, there are many mod-
els available for DNA structural property prediction 
derived from experimental or theoretical data. It has 
been demonstrated that most structural properties are 
very local features and primarily depend on the neigh-
boring nucleotides of a certain position. Often one 
can achieve reasonable predictions of the structural 
properties by simply accounting for the contribution 
of every di- or trinucleotide to the structural property. 
Such oligonucleotide contributions are usually rep-
resented in a structural scale, a look-up table listing 
every possible oligonucleotide and a corresponding 
value which represents the contribution to a given 
structural property. The length of this oligonucleotide 
is referred to as the order of the structural scale, eg, a 
dinucleotide scale is of the second order. Higher order 
structural scales will always be more informative yet 
require exponentially more data to enumerate. Most 
structural scales exist for dinucleotides as they are 
typically considered the best trade-off between accu-
racy and complexity. A number of the most frequently 
used structural properties and their scales are listed in 
Table 1.

The structural profile represents the variability 
of a structural property along a given sequence 
of DNA. It is constructed by looking up the cor-
responding structural scale values for every suc-
cessive oligonucleotide in the sequence (Fig.  1). 
This profile will then correspond to the variation 
that exists for the given structural property over the 
given sequence. Note that the vector of this struc-
tural profile always has a length equal to the length 
of the sequence subtracted by one less than the 
order of the structural scale used, eg, converting a 
sequence with a dinucleotide scale results in a vec-
tor with a length equal to that of the sequence minus 
one. Three types of features are typically derived 
from the structural profile that aid in the computa-
tional analysis of different genomic elements. The 
raw profile, or the unmodified structural vector as 
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Table 1. Examples of structural properties.

Structural property Description Category
Slide-rise-tilt-roll- 
twist-shift87,88

The rotational and translational deviations present in DNA base  
pair steps.

Conformational

Curvature89,90 The large scale curves made by the DNA molecule. They are often  
derived from the base pair step deviations as per the wedge model.  
The value of these scales typically corresponds to the intensity  
of the DNA curvature.

Conformational

Minor/major groove  
depth/width27

The size of the minor and/or major groove, with larger grooves  
usually allowing easier access to the bases within the helix.

Conformational

A/Z-philicity91,92 The propensity of the DNA molecule to adopt the A-form or Z-form.  
Often estimated based on the difference in free energy of these forms.

Conformational

Propeller twist93 Though intrinsically a conformation property, there is a direct link  
between the twist of the DNA base pairs and it’s rigidity towards  
deformations.

Conformational

Persistence length86 The molecular distance that the DNA molecule is expected to keep  
directionality. Also referred to as the DNA bending stiffness.

Physicochemical

DNA stability94–96 Several measures for the DNA helical stability exists, often  
enumerating the energy theoretically needed per base pair  
step to disrupt or create the DNA helix.

Physicochemical

Stress-induced  
duplex stability97

The stability of the DNA helix which accounts for the torsional stress  
resulting from the superhelical winding.

Physicochemical

Base stacking  
energy98

The stacking energy of sequential bases that contributes to the overall  
stability of the DNA helix.

Physicochemical

Deformability87 Deviations accepted by the DNA molecule in response to protein  
binding. The inverse of these scales is the rigidity, ie, the resistance  
towards these deviations.

Physicochemical

Bendability99 Usually refers to the propensity of the DNA molecule to bend or  
be bent in a specific direction. For example, the Brukner scale  
enumerates the bendability towards the major groove.

Physicochemical

derived from the structural scales, is often used for 
position specific effects, eg, modeling the induc-
tion of a kink into a single dinucleotide. An aver-
age structural profile is the mean of the structural 
values calculated over all positions in a predefined 
region. This average profile is usually calculated for 
broader genetic elements, such as promoter regions. 
Another common procedure after calculation of the 
structural profile is the smoothing of the values. This 
is a rescaling of every value according to a smooth-
ing function that takes into account the values of 
the neighboring positions, typically by using a short 
sliding window. The smoothing function could be 
as simple as averaging the values in the window 
and results in a smoothed structural profile. As the 
size of the sliding window is increased (ie, more 
neighboring positions affect the rescaling), the gen-
eral patterns in the structural profile will become 
more pronounced. However if the smoothing range 
is chosen too high, the information loss will be too 

great and any important patterns in the structural 
profile might no longer be visible.2

Several databases exist where one can look up or 
apply a structural scale of interest. The PROPERTY 
database is one of the earliest collections of struc-
tural scales and is at the time of writing still avail-
able and listing 35 different structural properties.9 
In addition the SITECON web tool can calculate 
structural profiles for 38 different properties, and if 
provided with a training set can identify informative 
features therein.11 The more recent DiProDB con-
tains a list of 125 structural scales.15 A downloadable 
tool DiProGB allows for calculation of the structural 
profiles using these scales, or with any user-provided 
dinucleotide scale.16 Unfortunately both databases 
are limited to dinucleotides scales, which may be 
insufficient for some structural properties.17 While 
higher-order scale collections do exist, they have 
seemingly never been made available in a straight-
forward manner.18
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Figure 1. Modeling structural properties of the DNA. 
Notes: Along the length of the DNA all oligonucleotides of a certain order (usually di- or trinucleotides) are looked up in a table (called a structural scale) which 
contains corresponding values measuring a certain structural property. These structural scales can represent conformational or physicochemical structural 
properties, and when viewed along the length of the DNA form a structural profile. Due to the discrete nature of the scale values, a structural profile usually 
has a staircase-like appearance (full line; the S axis represents the structural property values obtained from the lookup scales). Often these profiles are further 
smoothed (dotted line), or one might take the average value over a stretch of DNA of a given length (horizontal dashed lines) before they are put to use.

Determining Sites of Protein-DNA 
Complex Formation
DNA structural properties can aid the targeting and 
functionality of DNA-binding proteins in a wide vari-
ety of manners. The common hypothesis is that pro-
teins will find their binding sites by random hopping 
and sliding along the DNA structure.19 Several studies 
have shown that rigid and curved DNA molecules will 
aid in this process.20 Furthermore the specific DNA 
binding sites of a protein will typically carry recogni-
tion features in their structural properties which can be 
accessed by the protein through ‘indirect’ readout.21 
This is distinguished from ‘direct’ readout, were spe-
cific bases in the DNA are recognized by the protein 
binding domain; both direct and indirect readout can 
contribute to protein-DNA binding.1,3,21,22 The impor-
tance of the DNA structure for protein-DNA complex 
formation lies in the fact that most proteins require the 
DNA molecule to be present in a specific conformation 

during complex formation, typically necessitating the 
deformation of the DNA binding site. It has been shown 
that proteins will prefer to bind to DNA molecules 
which easier accept the needed conformation, either 
because they naturally exist in this state or because 
they offer little resistance to take on this new state. 
The energy required for any such deformation can be 
compensated by favorable contacts made within the 
complex.23 Many reviews on protein-DNA interactions 
are available, such as Rohs et  al24 The functionality 
after DNA-binding can also be influenced by the DNA 
structural properties as many biological processes 
require the DNA molecule to adapt to a specific con-
formation, for example a DNA-loop which can facili-
tate protein-protein interactions at long distances.25

Consensus structural profiles
The most common approach for characterizing 
protein-DNA binding sites, is through a consensus 
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profile approach. This is especially widely used for 
transcription factors (TFs). Transcription factors are 
an important class of DNA binding proteins that will, 
upon binding the DNA molecule, either activate or 
repress the transcription of the neighboring gene. TFs 
typically recognize a specific motif present in the 
nucleotide sequence and most cause significant dis-
tortion of the DNA molecule upon binding. There is 
great variation between different TFs and no unique 
nucleotide or structural motif can be attributed to the 
ensemble of binding sites, and they therefore pres-
ent an ideal case how DNA structural properties 
can be beneficial in identifying their binding sites. 
In a consensus profile framework, the recognition 
characteristics of a protein are estimated based on 
an analysis of its known binding sites typically by 
searching for features (in the DNA sequence and/or 
the DNA structural properties) which distinguish this 
set of sites from the genomic background. The direct 
read-out preferences of a given protein can be repre-
sented by a consensus sequence, often represented as 
a ‘motif logo’.26 In a similar manner the indirect read-
out can be partially represented by a set of consensus 
structural profiles.27 This type of consensus profile 

can be constructed from a set of known binding 
sites for a certain structural property by many differ-
ent methods, such as calculating the average profile, 
averaging specific regions, Fourier analysis or 
error minimization.9,11,27–29 The structural profiles of 
unknown sites can be compared to the consensus pro-
file and scored accordingly (Fig. 2, left hand panel) 
and the contributions of different structural properties 
can be estimated by simple linear regression or linear 
discriminant analysis.9,28,30 However, relying on con-
sensus profiles alone provides poor classification per-
formance for the most simple methodologies, likely 
due to the large amount of possible structural prop-
erties and the importance of the direct recognition 
mechanism in the specificity of many TF proteins.30 
Most recent binding site classification methods now 
use a combination of both sequence data and struc-
tural properties and as such require more advanced 
classification methodologies such as Support Vector 
Machines, Bayesian Networks, Neural Networks, 
Hidden Markov Models or Conditional Random 
Fields.10,12,31–35 These methods have the added advan-
tage of inherently selecting or upweighting the most 
informative structural profiles and, depending on 

DNA stability

DNA rigidity

Training on known
sites

∆E

Consensus
profile

DNA
threading

Aligned functional sites

Predictions
of novel sites

Deformation energy predictions

DNA

DNA

S

S

Figure 2. Predicting DNA binding from DNA structural properties. 
Notes: In the case of the consensus approach (left hand panel), all known binding sites are used to generate a consensus profile (red line, representing the 
structural property stability in this example), which in turn can be used to predict novel binding sites. The consensus profile is an average of structural profiles 
of aligned known binding sites (grey lines). In DNA threading (right hand panel), a sliding window moves along the DNA calculating the energy required (∆E 
axis) for the given stretch of DNA to adapt the required conformation based on structural profiles, in this figure represented by the deformability (green line).
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the model design, the most informative positions. 
Integration of structural properties with the simple 
base sequence has been shown to improve classifi-
cation performance compared to existing methods 
using only sequence information.32,35 A brief over-
view of methodologies using the structural consensus 
approach can be found in Table 2. Unfortunately, as 
of yet there has been no large scale comparison of dif-
ferent methodologies for representing binding sites by 
incorporating structural profiles. Such a comparative 
survey is complicated due to the incompatibility of 
these methods in two ways. First, the structural pro-
files that are employed cannot always be separated 
from the methodology itself. Different structural 
scales capture different aspects of the DNA structure, 
and this could partly explain any variation in per-
formance. Secondly, these methodologies generally 
have a specific application focus and often integrate 
a wide range of independent data into the model, eg, 
evolutionary conservation scores or cis-regulatory 
module information.34 This creates an intrinsic bias in 
any comparison of different methods and due to the 
variable nature of TFs and the different organisms in 
which they reside, no methodology will likely outper-
form all others in any potential application.

Protein-DNA threading
In some cases, instead of possessing only a set of 
binding site locations for a given DNA-interacting 
protein, a detailed 3D structure of the protein-DNA 
complex is known. With this information, one could 
use a protein-DNA threading approach as well 
(Fig. 2). These screen for target sites of DNA-binding 
proteins by modeling the complex formation. From 
solved complexes, the bound conformation of the pro-
tein and the DNA molecule can be derived, as well as 
their intermolecular interactions. A common approach 
to evaluate other target sites is to then ‘thread’ novel 
DNA sequences (eg, along a genomic region) into the 
required conformation and calculate the formation 
energy, or an equivalent approximation, of the result-
ing complex. Part of the formation energy can be 
the result of the deformation needed to change the 
intrinsic DNA superstructure to the required bound 
conformation (Fig.  2, right hand panel).36,37 Use of 
the aforementioned deformability scales are one pos-
sible way to calculate the energy that is required for 
this DNA conformation change.38–41 This deformation 
energy can then be integrated into the energy func-
tion of the protein-DNA complex.42,43 The resulting 
energy can then be used to assess the viability of the 

Table 2. Summary of DNA-binding protein consensus approaches.

Name Statistical model # Properties Additional information
Karas et al27 Absolute distance  

between profiles
4 conformational +   
1 physicochemical properties

ACTIVITY/B–DNA–VIDEO9 Gaussian distribution 35 structural properties
Liu et al30 Gaussian distribution 5 conformational properties
Gunewardena et al28 Linear discrimination  

model
35 structural properties Linear steady-state structural  

templates
SITECON11 Chi-squared test 35 structural properties
Gardiner et al29 Fourier transformation 5 conformational +   

18 physicochemical properties
ICSF100 Moses rank-like test 6 conformational properties
MDS-HMM12 Hidden Markov model 2 conformational properties
ProMapper10/ 
BioBayesNet101

Bayesian network 35 structural properties Additional sequence features, 
eg, base composition

Holloway et al31 Support vector  
machine

1 conformational +   
4 physicochemical properties

Additional sequence features, 
eg, phylogeny

DISCOVER34 Conditional random  
fields

1 physicochemical  
property (DNA stability)

Additional sequence features, 
eg, phylogeny

GANN33 Neural network +  
Genetic algorithm

Unspecified

CRoSSeD35 Conditional random  
fields

5 conformational +   
7 physicochemical properties

SiteSleuth32 Support vector  
machine

12 conformational +   
62 physicochemical properties

Physicochemical properties 
reduced to 8 eigen vectors
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formation of the protein-DNA complex at a given 
genomic site.

While the actual biomolecular mechanism of 
protein-DNA binding are more firmly rooted in these 
threading approaches than relying on consensus 
profiles, there are drawbacks as well. For instance, 
there is no guarantee that different DNA sequences 
will display the same conformation when bound by 
the protein than the sequence that was used to con-
struct the 3D model.1,44,45 The major limitation for 
the widespread application of protein-DNA thread-
ing for binding site prediction however, is not due 
to its methodological principals but rather due to a 
lack of ‘solved’ protein-DNA complexes. Threading 
approaches require the bound protein-DNA complex 
or that of a related protein to be known, which is 
not very common for many DNA-binding proteins 
such as TFs.46 More often these approaches are used 
for well characterized protein-DNA complexes, 
such as the nucleosomes responsible for the higher-
order packing of the DNA molecule into chroma-
tin in eukaryotes. Because it affects the genomic 
accessibility, this DNA packing has a critical role 
in various cellular processes, among which tran-
scription regulation. Given this interest, predicting 
nucleosome positioning currently forms the bulk of 
protein-DNA threading that relies on DNA struc-
tural properties.39,41,44,45 While these methodologies 
do successfully increase prediction, it is well known 
that there are many other factors that drive the 
positioning of nucleosomes and that can confound 
the contribution of certain DNA characteristics in 
nucleosome formation.47–49 In that respect, there has 
also been some discussion based on recent evidence 
suggesting that the main experimental technique for 
determining nucleosome occupancy may generate 
biased results, which, if true, would also affect the 
perceived dependence of nucleosome occupancy on 
DNA sequence and/or structure.50,51

Identification of Gene Promoter 
Regions
Different genomic regions are known to display 
unique structural characteristics.52 Many statisti-
cal models have therefore been built to identify the 
presence of a given genomic region based on its 
structural properties. The most widely used among 
these applications are those that attempt to predict 

the promoter region. Promoters are the regions 
upstream from genes, where the RNA polymerase 
is recruited and transcription is started. Promoters 
seem to share similar structural profiles that can be 
related to their function. Exploiting the common pat-
terns in these profiles has been known to increase 
the performance of promoter prediction algorithms. 
The structural profiles for individual promoters are 
however very noisy, and identifying these common 
patterns require complex modeling methods. Even 
then predictions remain coarse and cannot identify 
the exact transcription start site (TSS), but only the 
general promoter region. Furthermore, the structural 
profiles of promoters differ greatly between eukary-
otes and prokaryotes as the transcription complexes 
are radically different. Most promoter prediction 
methods are therefore tuned to a single taxonomical 
domain or even a single species, with few exceptions 
that typically require retraining for novel organisms. 
A brief summary of structure-based promoter predic-
tion methods can be found in Table 3.

Predicting eukaryote promoters
In eukaryotes the promoter region can be divided 
into three parts: the core promoter where the basal 
transcription complex binds, the proximal pro-
moter where most transcription factor binding sites 
are located and the distal promoter that can contain 
enhancer elements. The promoters themselves can be 
grouped according to the RNA polymerase that binds 
to them. The targets of the different RNA polymerase 
have different recognition elements and therefore dif-
ferent structural profiles.53 Most promoter prediction 
methods will focus on RNA polymerase II which tran-
scribes protein-coding genes and most microRNAs. 
On average, these promoters are described as being 
more rigid than the remainder of the genome, but the 
actual structural profile of promoter flexibility is much 
more complex.54,55 The global rigidity is most likely 
necessary to exclude nucleosomes from the promoter 
region, as they will compete with the binding of tran-
scription factors and the basal transcription complex. 
The proximal promoter is usually characterized by a 
decrease in the rigidity of the promoter.54 The hypoth-
esis is that the binding sites of transcription factors 
need to be flexible to allow complex formation. 
There is likely a careful trade-off between rigid DNA 
stretches blocking nucleosomes and small flexible 
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Table 3. Summary of structure-based promoter prediction methods.

Name Statistical model Structural property Organism(s)
EP353 Average profile Base stacking energy Animals, fungi, algae, 

higher plants and protists
ProSOM62 Unsupervised self  

organizing map
Base stacking energy Human

Florquin et al2 Adaptive quality-based  
clustering

5 conformational +   
8 physicochemical properties

Human, mouse and plant

PNNP59 Pattern-based nearest  
neighbor search

DNA stability Human, mouse, 
Caenorhabditis elegans 
and plant

PromPredict70,102 Absolute and relative  
difference

DNA stability Plants and prokaryotes

McPromoter61 Stochastic segment model DNA twist and persistence length Drosophila
Prostar63 Mahalanobis distance DNA deformability Human
Profisi60 Average profile DNA stability Human
ARTS103 Support vector machine DNA twist and base stacking  

energy
Human

Gardiner et al104 Ward’s clustering algorithm 5 conformational +   
18 physicochemical properties

Human

Wang et al74 Linear discrimination model Stress-induced duplex destability Escherichia coli
N472 Neural network DNA stability Escherichia coli
Conilione et al64 Neural network Base stacking energy Escherichia coli
Parbhane et al75 Neural network DNA wedge and twist Escherichia coli
Mallios et al105 Stepwise binary logistic  

regression
2 conformational +   
2 physicochemical properties

Chlamydia trachomatis

regions attracting transcription factors.54,56 Indeed the 
promoter activity seems to correlate with the propor-
tion of flexible regions in the whole fragment.57 The 
core promoter is typically characterized by a gradual 
decrease in rigidity from upstream of the TSS to 
downstream.2,54,57 Extreme rigidity values embedded 
in this region match with known promoter elements. 
For example, the TATA-box corresponds to a very 
rigid region in the promoter. This rigid peak at the -30 
position can still be observed even if no explicit TATA 
motif is present, which lead to the hypothesis that 
this rigidity feature is more important than the actual 
sequence motif and could partially explain why many 
promoters lack a clear TATA motif.2,58 Eukaryotic 
promoters are also typically more stable than the 
genomic average with peaks of heavy instability at 
the promoter elements, such as the TATA-box and the 
TSS. Likely this contrast helps direct the transcrip-
tion complex to the correct transcription start site.59 
A conceptual overview of the main structural features 
of eukaryotic promoters is given in Figure 3 (left hand 
panel).

A number of methods have been proposed to trans-
late the complex structural profiles of eukaryotic 

promoters into features which can be used in promoter 
prediction with varying success. The most straightfor-
ward approaches classify promoters by comparing an 
averaged structural profile for a stretch of sequence to 
a set threshold. Such methods have relied for instance 
on the base stacking energy as a representation of the 
stability, or the DNA melting temperature as defined 
by an extensive calculation of the genome-wide 
DNA duplex stability.53,60 Averaging out the structural 
properties will unfortunately ignore the typical struc-
tural patterns observed for promoters. Other methods 
try to directly use the pattern contained in the struc-
tural profiles. The McPromoter method does this by 
dividing the promoter into smaller regions and mod-
els the average of the structural profiles in every seg-
ment as a single observation from a Hidden Markov 
Model.61 Out of all the tested structural properties, 
the DNA twist, the persistence length and the pro-
peller twist were found most informative for predict-
ing Drosophila melanogaster promoters. The PNNP 
method uses a pattern-based distance nearest neigh-
bor search where promoters are classified if the maxi-
mum deviation from the relative profile is smaller than 
a threshold.59 In this manner PNNP is able to model 
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Figure 3. Conceptual representation of structural features of eukaryotic and prokaryotic promoters. 
Notes: Eukaryotic proximal promoters (left hand panel) are generally characterized by an increased stability (red line; the S axis represents the structural 
property values) and a decreasing rigidity (green line) compared to surrounding regions (although eukaryotic promoters on average still have a higher rigidity 
than the rest of the genome), with strong peaks or valleys at functional sites such as the TSS or TATA box. In contrast, prokaryotic promoters on average have 
a decreased stability (red line) and increased rigidity (green line) and have been observed to show a broad curvature peak (blue line) upstream of the TSS.

promoters which have a similar pattern in the structural 
profile but at a different absolute level, as observed 
for promoters containing CpG islands and those that 
don’t. PNNP predictions based on the DNA duplex 
free energy gave the best performance. ProSOM uses 
an unsupervised self-organizing map to cluster the 
base stacking energy profile of various sequences into 
subgroups.62 Classification of promoters in this case 
consists of attempting to cluster the structural profile of 
the unknown sequence with a known set of promoters. 
This approach has the advantage of accounting for dif-
ferent groups of promoters. The general conclusion 
for most of these methods using only a single or few 
structural properties, is that they are able to get a clas-
sification performance equal to or often greater than 
methods using a large number of sequence signals in 
complex statistical frameworks, despite the relative 
simplicity of their approaches.53,59,60,63

Predicting prokaryote promoters
Prokaryotic genomes have a very high gene density 
and therefore promoters are typically much shorter 
than their eukaryotic counterparts, sometimes span-
ning less than a hundred base pairs. Because of this 
short intergenic region between coding regions, diver-
gent promoters have been known to overlap. Many 
sequential genes are typically transcribed in a single 

run in so-called operons. On average, promoters are 
less stable, more rigid and have more extreme cur-
vature than other genomic regions in most prokary-
otes (Fig.  3, right hand panel).64,65 The role of the 
DNA curvature in prokaryotic promoters seems to 
vary greatly, as does the type of curvature pattern 
found in these promoters.66 Mostly extreme DNA 
curvature has been associated with the presence of 
strong transcription factor binding motifs and it has 
been postulated to act as a thermosensor under some 
conditions.65,67,68 The low stability is likely to facilitate 
helix denaturation prior to the transcription event and 
is indeed centered around the TSS with the upstream 
region being less stable than the downstream region.69 
This fact is often exploited for the prediction of pro-
moter regions. Indeed the first time it was observed, 
the absolute value and the difference in values of the 
DNA duplex stability immediately upstream of the 
TSS (,100 bp) were shown to be informative in a 
simple framework where a sequence was classified as 
a promoter if it exceeded a certain threshold for both 
measures.70,71 These measures for DNA duplex stabil-
ity have been frequently used, eg, in the N4 promoter 
prediction algorithm where they are integrated in a 
neural network.72 The PromPredict method also uses 
the difference between upstream and downstream 
DNA duplex stability but groups the sequences 
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according to GC content prior to classification.69 This 
is based on the fact that the difference in DNA duplex 
stability between the TSS and the region downstream 
varies according to the GC content of the genomic 
region containing the promoter. These findings have 
allowed promoter prediction across a wide range of 
prokaryotes.73 Related is the SIDD method, which 
uses the stress-induced duplex destability profile 
for the classification of promoters with a linear dis-
criminatory model.74 The stress-induced duplex sta-
bility differs from the standard stability calculations 
because it accounts for torsional stresses present in 
the DNA molecule as a result of the genomic negative 
superhelicity. In this framework, the stress-induced 
stability was found to be more informative for pro-
moter prediction than other stability profiles, the 
rigidity profile or the curvature profile.

Discussion
The idea of using DNA structural properties to model 
and describe genomic elements has been around for 
some time. Originally they were mostly limited to 
focused, small-scale studies. Only in the past decade 
have these types of studies moved into the realm 
of genome-wide applications. As more and more 
sequence data became publically available and the 
quality of annotated genomes steadily increased, so 
did the number of studies that tried to identify spe-
cific patterns of DNA structural properties for vari-
ous types of genomic elements. In contrast, ‘raw’ 
nucleotide sequence information has been the stan-
dard representation of DNA in computational biology 
for much longer, and techniques such as consensus 
sequences and position weight matrices have become 
the default workhorses for the identification of many 
genomic elements. Highly advanced sequence-based 
methods have also been developed over the years 
and many have proven to be successful approaches 
for functional genomics applications such as those 
discussed in this review. Sequence-based methods 
can sometimes even capture part of the local DNA 
structure, as the DNA structural properties are gen-
erally dependent on interactions between neighbor-
ing base pairs. This is illustrated by the fact that they 
are often calculated from higher-order (mostly di- or 
tri-nucleotide) lookup scales. The advantage of using 
DNA structural properties is that they explicitly assign 
actual ‘measurement’ values (ie, the structural scales) 

to a given sequence of DNA. These values represent 
conformational and physicochemical characteristics, 
and can thus reveal structural patterns that would 
remain hidden when only relying on the correspond-
ing categorical higher-order nucleotides.75 Thus there 
is much to be gained by employing the DNA structure. 
Grouping different sequences with similar structural 
properties for example, will always be more difficult 
for sequence-based methods, as was shown for pre-
dicting prokaryotic TF binding sites.35 Correctly iden-
tifying the contribution of the structural properties 
can also generate more powerful models, which has 
lead for instance to better predictions for nucleosome 
formation energy.44 Nevertheless, a strong conserva-
tion of nucleotide sequence will always correspond 
to a strong conservation of the DNA structural signal. 
Even if complex structural mechanics play an essen-
tial functional role in such a case, calculated struc-
tural properties will not provide any complementary 
information. Only experimental assessment of the 
underlying mechanism can then quantify the relative 
contributions of the DNA structure.

The purpose of this review is not to provide an 
exhaustive list of structure-based methodologies. 
There are many other genomic elements for which 
common patterns of DNA structural properties have 
been described or even integrated into a classifica-
tion framework. Examples that were not discussed in 
detail here include splice sites, replication start sites, 
transposon insertion sites, methylation events, func-
tional SNPs, plasmid conjugation factor binding and 
gene prediction.20,76–84 Instead, the goal of this review 
is to provide a bridge between different application 
domains and to further promote the added value that 
these structural properties of DNA could have in func-
tional genomics studies. Indeed, it is becoming more 
and more clear that DNA structural properties play an 
important role in a great many biomolecular processes 
and that their characterization for different genomic 
elements will be essential to generate a complete under-
standing. As we have presented here, different genomic 
elements require different representation methods to 
capture potential defining structural patterns. This does 
not imply that these methodologies cannot learn from 
one and other as there are functional and/or biomo-
lecular relationships between many of these elements, 
the characterization of which might benefit from more 
comprehensive approaches. For example, the inherent 
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flexibility of the DNA molecule is often found to be 
an informative feature in a large number of genetic 
elements.35,52,63,82,83,85,86 This can be problematic as dif-
ferent genomic elements sharing a number of structural 
similarities can result in false positive predictions dur-
ing classification. Proper structural characterization can 
thus also be important to help understand such intricate 
relationships between different elements, as was shown 
to be the case for promoter regions and splice sites.20 
Regional relationship between various elements can 
also occur, eg, TF binding sites are commonly located 
in the promoter region of genes, and thus identification 
of TF binding sites could benefit from knowledge the 
promoter region and vice versa. In the end there is still 
much to be learned about what DNA structural proper-
ties play a role where and, perhaps more critically, how 
they can contribute to revealing the underlying biomo-
lecular mechanisms.
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