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Background: Lung cancer is a severe cancer with a high death rate. The 5-year survival 

rate for stage III lung cancer is much lower than stage I. Early detection and intervention of 

lung cancer patients can significantly increase their survival time. However, conventional 

lung cancer-screening methods, such as chest X-rays, sputum cytology, positron-emission 

tomography (PET), low-dose computed tomography (CT), magnetic resonance imaging, and 

gene-mutation, -methylation, and -expression biomarkers of lung tissue, are invasive, radiational, 

or expensive. Liquid biopsy is non-invasive and does little harm to the body. It can reflect early-

stage dysfunctions of tumorigenesis and enable early detection and intervention.

Methods: In this study, we analyzed RNA-sequencing data of tumor-educated platelets (TEPs) 

in 402 non-small-cell lung cancer (NSCLC) patients and 231 healthy controls. A total of 48 

biomarker genes were selected with advanced minimal-redundancy, maximal-relevance, and 

incremental feature-selection (IFS) methods.

Results: A support vector-machine (SVM) classifier based on the 48 biomarker genes accu-

rately predicted NSCLC with leave-one-out cross-validation (LOOCV) sensitivity, specificity, 

accuracy, and Matthews correlation coefficients of 0.925, 0.827, 0.889, and 0.760, respectively. 

Network analysis of the 48 genes revealed that the WASF1 actin cytoskeleton module, PRKAB2 

kinase module, RSRC1 ribosomal protein module, PDHB carbohydrate-metabolism module, and 

three intermodule hubs (TPM2, MYL9, and PPP1R12C) may play important roles in NSCLC 

tumorigenesis and progression.

Conclusion: The 48-gene TEP liquid-biopsy biomarkers will facilitate early screening of 

NSCLC and prolong the survival of cancer patients.

Keywords: tumor-educated platelet, TEP, liquid biopsy, minimal redundancy, maximal rel-

evance, MRMR, incremental feature selection, IFS, non-small-cell lung cancer, NSCLC

Introduction
Lung cancer is a severe cancer with a high death rate.1,2 Early detection of lung cancer 

is the most effective way to increase survival time, since survival time is directly asso-

ciated with lung cancer stage and early-treatment patients will have better diagnoses.3 

The 5-year survival rates for stage I and stage III lung cancer patients are 67% and 

23%, respectively.3 The survival difference between early-stage and late-stage lung 

cancer is huge. Therefore, early screening of lung cancer is the key to lung cancer 

prevention and therapy.

Conventionally, lung cancer is detected through chest X-rays, sputum cytology, 

positron-emission tomography (PET), low-dose computed tomography (CT), and 

magnetic resonance imaging.4 However, many diagnosed patients are already in late 

stages.5 Although PET and CT are developing progressively higher resolutions and 

can detect smaller tumors, they are radiational and expensive.
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In recent years, sequencing technologies have developed 

rapidly. It has been found that tumor tissue can release small 

numbers of tumor cells, DNA, RNA, or exosomes into blood. 

These tumor cells in blood are called circulating tumor cells 

(CTCs).6 Nowadays, CTCs can be isolated and DNA and 

RNA with CTCs sequenced accurately.7 Other types of liquid-

biopsy components include ctDNA, ctRNA, exosomes, and 

tumor-educated platelets (TEPs).8 Tumor-derived exosomes 

contain various molecules, such as dsDNA and small RNA, 

and can reflect the status of tumor cells.9 TEPs are blood 

platelets that contain tumor RNAs.10 They are a great source 

of tumor-derived RNAs. There have been several studies 

showing that TEP RNAs can be cancer biomarkers.10–12 

Liquid biopsy has become ever more important in early lung 

cancer detection and is the one of the foundations of person-

alized medicine.13 It can reflect early-stage dysfunctions of 

tumorigenesis and enable early detection and intervention.

In this study, we analyzed RNA-sequencing data of TEPs 

in 402 non-small-cell lung cancer (NSCLC) patients and 231 

healthy controls. By comparing their expression differences 

with the minimal redundancy, maximal relevance (MRMR) 

method, differentially expressed genes were ranked. Then, 

with incremental feature selection (IFS), optimal biomarkers 

were selected. Finally, a support vector machine (SVM) 

classifier based on the optimal biomarkers was constructed 

and evaluated. TEP biomarkers could be a useful way to 

enable early intervention in lung cancer patients and prolong 

their survival.

Methods
Blood gene-expression profiles of 
nsclc
Blood gene-expression profiles of NSCLC patients were 

downloaded from the Gene Expression Omnibus with acces-

sion number GSE8984314 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE89843). There were 402 NSCLC 

samples and 231 healthy control samples. Samples with 

chronic pancreatitis, epilepsy, multiple sclerosis, insignificant 

atherosclerosis, pulmonary hypertension, stable angina pec-

toris, and unstable angina pectoris were excluded. Expression 

levels of 4,722 genes in TEPs were measured using RNA 

sequencing. We considered the 402 NSCLC samples as 

positive samples, the 231 healthy control samples as nega-

tive samples, and the expression levels of the 4,722 genes 

as classification features. The goal was to identify the dif-

ferentially expressed genes between NSCLC and healthy 

controls and construct an effective TEP-biomarker-based 

NSCLC classifier. The workflow of TEP-biomarker-based 

NSCLC-classifier construction is shown in Figure 1. First, 

TEP data were preprocessed as a matrix with rows of samples 

Figure 1 Workflow of TEP biomarker-based NSCLC classifier construction.
Notes: First, TEP data were preprocessed as a matrix with rows of samples and columns of genes. Then, genes were ranked with the MRMR method. After MRMR, genes 
were all ranked. Then, with the ranked-gene list, incremental feature selection was adopted to optimize the biomarker-gene set. Finally, biomarkers were determined and 
the final SVM classifier constructed.
Abbreviations: TEP, tumor-educated platelet; NSCLC, non-small-cell lung cancer; MRMR, minimal redundancy, maximal relevance; SVM, support vector machine; LOOCV, 
leave-one-out cross-validation; MCC, Matthews correlation coefficient.
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and columns with genes. Then, genes were ranked with the 

MRMR method.15 After MRMR, the genes were all ranked. 

Then, with the ranked-gene list, the IFS method18–23 was used 

to optimize the biomarker-gene set. Finally, biomarkers were 

determined and the final SVM classifier constructed. Each 

step is illustrated in the following sections.

Biomarker-gene selection based on 
MrMr and iFs methods
We used the MRMR method15 to rank the genes based on their 

relevance with sample labels (NSCLC or healthy controls) 

and redundancy between genes. To illustrate this method 

clearly, let us use Ω, Ω
s
, and Ω

t
 to represent the complete 

set of candidate genes for biomarker ranking, the selected m 

biomarker genes, and the to-be-selected n genes, respectively. 

The relevance of gene g from Ω
t
 with sample type t can be 

measured with mutual information (I):16,17

 D ( , t)= I g  (1)

After we defined mutual information, the redundancy 

(R) of the gene g with the selected biomarker genes in Ω
s
 

can be calculated:
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To select the best gene g
j
 from Ω

t
 that can maximize its 

relevance with sample type t and minimize its redundancy 

with the selected biomarker genes in Ω
s
, we need to maximize 

the MRMR function:

 

max )
g j

g

g g g
j t

i s

I
m

I j
j i∈ ∈

∑






















( , t) ( ,  ( 1, 2, ..− =
1

.., )n

 

(3)

After n rounds of evaluation, a ranked-gene list can be 

obtained:
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(4)

The position of a gene in this ranked list (h) reflects the 

trade-off between relevance with sample classes, ie, whether 

a sample is NSCLC, and redundancy with selected biomarker 

genes, ie, genes with smaller index values. The genes on the 

top are better than the genes on the bottom.

To reduce computation complexity, we analyzed only the 

top 500 MRMR genes. To determine how many genes should 

be selected to form the optimal biomarkers, we adopted the 

IFS method18–23 and constructed 500 SVM classifiers. In this 

study, we used the SVM function with default parameters 

from R package e10171 (https://cran.r-project.org/web/

packages/e1071) to build the SVM classifier. Each time, a 

candidate gene set S
k
 = {g′

1
, g′

2
, ..., g′

k
} (1 # k # 500) of the 

top k genes in the MRMR list was used to build the SVM 

classifier. The performance of the top k-gene classifier was 

evaluated with leave-one-out cross-validation (LOOCV). 

Finally, an IFS curve was plotted, with the top genes used as 

the x-axis and the LOOCV Matthews correlation coefficients 

(MCCs) of classifiers as the y-axis. Based on the IFS curve, 

we can decide how many genes should be used to build a clas-

sifier with great performance and little complexity. Usually, 

the peak or the change point of the IFS curve was chosen.

Prediction-performance evaluation of 
SVM classifier
As mentioned, LOOCV,24,25 also known as jackknife testing, 

was used to evaluate the prediction performance of each 

SVM classifier. LOOCV continues for n rounds to test all 

samples one by one. In each round of LOOCV, one sample 

was tested while the other samples were trained. After 

n rounds, all samples were tested one at a time. LOOCV is 

widely used to evaluate prediction performance.26 Although 

the independent test has also been widely used, the selection 

of independent-test samples is arbitrary, and sometimes the 

choice of different validation cohorts may lead to totally 

different conclusions, as the validation samples may have 

different distributions from the training samples.26 Cross-

validation can overcome these problems.26

By comparing the predicted sample classes with the actual 

sample classes, sensitivity (Sn), specificity (Sp), accuracy 

(ACC), and MCC were calculated to evaluate prediction 

performance:

 
Sn

TP

TPFN
=

 
(5)
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TNFP
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(6)
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TPTN

TPTNFPFN
=

 
(7)

 

MCC =
−TP TN FP FN

(TPFP)(TPFN)(TNFP)(TNFN)

× ×

 

(8)

where TP, TN, FP, and FN stand for true positive (NSCLC), 

true negative (healthy control), false positive (NSCLC), 

and false negative (healthy control), respectively. Since the 
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sizes of positive (NSCLC) and negative (healthy control) 

samples were imbalanced in this study, MCC was a better 

measurement than ACC. MCC considered both sensitivity 

and specificity.27

Results and discussion
Genes showing different expression 
patterns between nsclc and healthy 
controls
We obtained the top 500 most discriminative genes of NSCLC 

and healthy control samples using the MRMR method. The 

MRMR method is based on information theory. Mutual infor-

mation is used to measure relevance and redundancy. It has 

been widely used in the bioinformatics field.28–32 We used a 

C/C++ version of MRMR software (http://home.penglab.

com/proj/mRMR/) to apply the gene-ranking process. Unlike 

statistical test methods, such as the t-test for case–control 

experiment design and ANOVA for multiple-group design, 

MRMR not only considers the relevance between genes and 

sample classes but also redundancy between genes.

Optimal biomarkers identified from 
MrMr gene list with iFs methods
After MRMR analysis, we applied the IFS procedure to 

select the optimal number of top MRMR genes to form the 

biomarker-gene set. The relationship between the number 

of genes and prediction MCCs was plotted as an IFS curve 

(Figure 2). It can be seen that when 266 genes were used, the 

LOOCV MCC was the highest – 0.764, but even early, when 

only 48 genes were used, the MCC was 0.760. To consider 

both using fewer genes and achieving higher prediction 

MCC, we chose the 48 genes as the optimal biomarker-gene 

set, since increasing the number of genes beyond 48 would 

not significantly increase the MCC any more. The 48 genes 

are shown in Table 1.

Prediction performance of the 48-gene 
classifier
The 48 genes were chosen based on MRMR and IFS methods. 

To evaluate their prediction power objectively, we calculated 

LOOCV sensitivity, specificity, accuracy, and MCC. The 

confusion matrix of predicted sample classes and actual 

sample classes is shown in Table 2. LOOCV sensitivity, 

specificity, accuracy and MCC of the 48-gene classifier were 

0.925, 0.827, 0.889, and 0.760, respectively.

To demonstrate more intuitively the discriminative power 

of these 48 genes for NSCLC and healthy control samples, 

we draw a heat map using these 48 genes (Figure 3). It can 

be seen that even without an advanced machine-learning 

algorithm, such as SVM, the simple hierarchical clustering 

can group most NSCLC and healthy control samples into the 

right clusters. Upregulation and downregulation patterns of 

these 48 genes were very clear between NSCLC and healthy 

control samples.

Biological significance of the 48 biomarker 
genes
To explore the regulatory mechanisms of the 48 genes, we 

mapped them onto Search Tool for the Retrieval of Inter-

acting Genes/Proteins (STRING),33 a comprehensive and 

widely used protein functional association network.34–39 The 

subnetwork of these 48 genes extracted from STRING is 

shown in Figure 4, with selected genes highlighted in red. It 

can be seen that there were several modules on the network 

that were circled together.

On the bottom left is the WASF1 module which included 

MYO5A and WASF1. These two genes both interacted with 
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Figure 2 IFS curve showing how prediction performance improved when more and 
more genes were used to construct the classifier.
Notes: The IFS curve explained the relationship between the number of genes and 
prediction performance, assessed by MCCs in this study. The x-axis denotes the 
number of top genes that were used to construct the SVM classifier, and the y-axis 
denotes the LOOCV MCCs of the classifiers. The highest MCC was achieved when 
266 genes were used. However, after 48 genes were used, the IFS curve entered 
the plateau area and did not increase much, even when increasing numbers of genes 
were included. To consider both model complexity and model performance, we 
chose the 48 genes as the optimal biomarker-gene set.
Abbreviations: IFS, incremental feature selection; MCC, Matthews correlation 
coefficient; SVM, support vector machine; LOOCV, leave-one-out cross-validation.
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NCKAP1, CYFIP2, and CYFIP1. In this WASF1 module, 

four genes (CYFIP1, CYFIP2, NCKAP1, and WASF1) were 

involved in hsa04810: regulation of actin cytoskeleton. It has 

been reported that actin cytoskeleton was associated with 

lung cancer migration and invasion.40

The WASF1 module interacted with the PRKAB2 module 

and PDHB module through the intermodule hubs. There 

were three intermodule hubs as follows: TPM2, MYL9, and 

PPP1R12C. They connected the WASF1 actin-cytoskeleton 

module, the PRKAB2 kinase module, and the PDHB 

carbohydrate-metabolism module. Interestingly, these inter-

module hubs ranked significantly higher than the intramodule 

genes. TPM2, PPP1R12C, and MYL9 ranked fifth, 12th, 

and 25th, respectively (Table 1). These intermodule hubs 

are understudied. Only one study has suggested that MYL9 

is downregulated in NSCLC and may be associated with 

tumorigenesis of NSCLC.41 Unlike traditional lung cancer-

tissue analysis, these intermodule hubs may reflect an earlier 

dysfunction in NSCLC and worth further investigation.

In the PRKAB2 module, PRKAB2 is a family member of 

AMPK. AMPK is a key pathway in NSCLC and engages in 

cross talk with the EGFR pathway to sensitize the response 

of NSCLC cells to lung cancer therapeutics, such as erlo-

tinib treatment.42 In the PDHB module was PDHB, MLH3, 

and SLC38A1. Functional analysis of these modules using 

GATHER43 suggested that seven members (ACLY, CS, 

DLAT, DLST, OGDH, PDHA2, and PDHB) were involved 

in GO:0006092 main pathways of carbohydrate metabolism, 

with P,0.0001 and Bayes factor of 21. As we know, one 

of the hallmarks of cancer is cellular energy metabolism.44 

Cancer cell growth and proliferation need a lot of energy. 

The module was significantly enriched in carbohydrate 

Table 1 The 48 genes selected by MrMr and iFs methods

Order Gene ID Symbol Score Order Gene ID Symbol Score

1 ensg00000081154 PCNP 0.104 25 ensg00000101335 MYL9 -0.007

2 ensg00000238683 SNRD13 0.047 26 ensg00000120963 ZNF706 -0.008

3 ensg00000163703 CRELD1 0.045 27 ensg00000106034 CPED1 -0.007

4 ensg00000111371 SLC38A1 0.034 28 ensg00000227165 WDR11-AS1 -0.011

5 ensg00000198467 TPM2 0.034 29 ensg00000167100 SAMD14 -0.01

6 ensg00000101849 TBL1X 0.026 30 ensg00000103316 CRYM -0.01

7 ensg00000130948 HSD17B3 0.027 31 ensg00000154146 NRGN -0.013

8 ensg00000142089 IFITM3 0.021 32 ensg00000168291 PDHB -0.013

9 ensg00000156738 MS4A1 0.021 33 ensg00000067836 ROGDI -0.014

10 ensg00000151575 TEX9 0.024 34 ensg00000112290 WASF1 -0.015

11 ensg00000125534 PPDPF 0.022 35 ensg00000266356 AC090615.1 -0.013

12 ensg00000125503 PPP1R12C 0.018 36 ensg00000128731 HERC2 -0.017

13 ensg00000248242 AC004053.1 0.019 37 ensg00000156639 ZFAND3 -0.017

14 ensg00000173598 NUDT4 0.019 38 ensg00000136108 CKAP2 -0.017

15 ensg00000172037 LAMB2 0.012 39 ensg00000213465 ARL2 -0.017

16 ensg00000185909 KLHDC8B 0.006 40 ensg00000174891 RSRC1 -0.019

17 ensg00000248309 MEF2C-AS1 0.007 41 ensg00000173083 HPSE -0.019

18 ensg00000163359 COL6A3 0.006 42 ensg00000119684 MLH3 -0.02

19 ensg00000197535 MYO5A 0.005 43 ensg00000172543 CTSW -0.02

20 ensg00000166311 SMPD1 0.001 44 ensg00000131791 PRKAB2 -0.022

21 ensg00000162664 ZNF326 -0.001 45 ensg00000125821 DTD1 -0.022

22 ensg00000113761 ZNF346 -0.001 46 ensg00000137312 FLOT1 -0.023

23 ensg00000108010 GLRX3 -0.004 47 ensg00000259483 AL355073.1 -0.022

24 ensg00000108679 LGALS3BP -0.003 48 ensg00000076043 REXO2 -0.025

Abbreviations: MRMR, minimal redundancy, maximal relevance; IFS, incremental feature selection.

Table 2 Confusion matrix of predicted sample classes and actual 
sample classes using 48 genes

Actual 
NSCLC

Actual healthy 
controls

Predicted nsclc 372 40
Predicted healthy controls 30 191

Abbreviation: NSCLC, non-small-cell lung cancer.
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metabolism. MLH3 and SLC38A1 were less connected with 

these carbohydrate metabolism genes than PDHB. Also, it 

has been reported that the haplotype MSH3 was associated 

with lung cancer45 and SLC38A1 significantly overexpressed 

in NSCLC.46

At the top middle was the RSRC1 module, which included 

RSRC1 and FLOT1. Within this module, eight genes (RPS11, 

RPS14, RPS15, RPS26, RPS28, RPS3, RPS3A, and RPS9) 

that RSRC1 interacted with were ribosomal protein genes. 

Ribosome is important for protein biosynthesis, and there 

have been several reports that downregulation of ribo-

somal protein can inhibit or attenuate NSCLC growth and 

migration.47–49 Also, they have been considered oncogenes 

of NSCLC.49 Another gene was FLOT1. It has been reported 

that in NSCLC, the expression of FLOT1 was abnormal and 

correlated with tumor progression and poor survival.50

To summarize, the possible biological mechanism of the 

NSCLC TEP biomarkers is shown in Figure 5. The inter-

module hub genes, including TPM2, MYL9, and PPP1R12C, 

stitched together the WASF1 module, which regulated actin 

cytoskeleton, the PRKAB2 module, which was involved in the 

AMPK–EGFR pathway, and the PDHB module, which was 

involved in carbohydrate metabolism. The PDHB module 

interacted with the RSRC1 module, which was associated 

with protein biosynthesis, growth, and migration.

Conclusion
Early detection of lung cancer is critical for NSCLC patients, 

since early-stage patients have much longer survival than 

late-stage patients. Unfortunately, conventional lung cancer 

screening, such as chest X-rays, sputum cytology, PET, CT, 

and magnetic resonance imaging, are invasive, radiational, or 

expensive. Liquid biopsy makes early detection possible, 

since CTC, ctDNA, ctRNA, exosomes, and TEP reflect early 

changes during tumorigenesis. By analyzing TEP RNA-

sequencing data of NSCLC patients and healthy controls, 

we identified 48 TEP biomarkers. These biomarkers can 

accurately predict NSCLC. In-depth biological network 

analysis suggested that there were four modules and three 

intermodule hubs that may trigger NSCLC. Our results pro-

vided novel insights into tumorigenesis and a useful tool for 

early detection and treatment of NSCLC.

Figure 3 Heat map of NSCLC and healthy control samples using the selected 48 genes.
Notes: The NSCLC and healthy control samples were hierarchically cluttered using the 48 selected genes. There were very clear clusters of NSCLC and healthy controls. 
Most samples were grouped into the right cluster.
Abbreviation: NSCLC, non-small-cell lung cancer.
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Figure 5 Possible biological mechanism of the NSCLC TEP biomarkers.
Notes: Intermodule-hub genes, including TPM2, MYL9, and PPP1R12C, stitched together the WASF1 module, which regulated actin cytoskeleton, the PRKAB2 module, which 
was involved in the aMPK–egFr pathway, and the PDHB module, which was involved in carbohydrate metabolism. The PDHB module interacted with the RSRC1 module, 
which was associated with protein biosynthesis, growth, and migration.
Abbreviations: NSCLC, non-small-cell lung cancer; TEP, tumor-educated platelet.
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Figure 4 Modules and intermodule hubs of biomarker genes on STRING network.
Note: Four modules (WASF1 module, PRKAB2 module, RSRC1 module, and PDHB module) and three intermodule hubs (TPM2, MYL9, and PPP1R12C) were revealed on the 
biomarker subnetwork.
Abbreviation: STRING, Search Tool for the Retrieval of Interacting Genes/Proteins.
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