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 Background: This work aimed to identify altered pathways in congenital heart defects (CHD) in Down syndrome (DS) by sys-
tematically tracking the dysregulated modules of reweighted protein-protein interaction (PPI) networks.

 Material/Methods: We performed systematic identification and comparison of modules across normal and disease conditions by 
integrating PPI and gene-expression data. Based on Pearson correlation coefficient (PCC), normal and disease 
PPI networks were inferred and reweighted. Then, modules in the PPI network were explored by clique-merg-
ing algorithm; altered modules were identified via maximum weight bipartite matching and ranked in non-in-
creasing order. Finally, pathways enrichment analysis of genes in altered modules was carried out based on 
Database for Annotation, Visualization, and Integrated Discovery (DAVID) to study the biological pathways in 
CHD in DS.

 Results: Our analyses revealed that 348 altered modules were identified by comparing modules in normal and disease 
PPI networks. Pathway functional enrichment analysis of disrupted module genes showed that the 4 most sig-
nificantly altered pathways were: ECM-receptor interaction, purine metabolism, focal adhesion, and dilated 
cardiomyopathy.

 Conclusions: We successfully identified 4 altered pathways and we predicted that these pathways would be good indica-
tors for CHD in DS.
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Background

Down syndrome (DS), caused by a trisomy of chromosome 
21(HSA21), is the most common genetic developmental dis-
order, with an incidence of 1 in 800 live births [1]. Some of its 
phenotypes (e.g., cognitive impairment) are consistently pres-
ent in all DS individuals, while others show incomplete pene-
trance [2]. A short interval near the distal tip of chromosome 
21 contributes to congenital heart defects (CHD), and indirect 
genetic evidence suggests that multiple candidate genes in this 
region may contribute to this phenotype [3,4]. The relative-
ly higher infant mortality rate in the DS population has been 
largely attributed to their having a higher incidence of CHD [5].

Extensive efforts to gain a better understanding of the genet-
ic basis of CHD in DS using rare cases of partial trisomy 21 
have led to identification of genomic regions on chromosome 
21 that, when triplicated, are consistently associated with 
CHD. A study of rare partial trisomy 21 cases suggested that 
the CHD candidate region on 21q22.3 was mapped to a larg-
er telomeric genomic segment of 15.4 Mb between markers 
D21S3 and PFKL region [6]. Recent studies also suggest the 
contribution of VEGFA [7], ciliome and hedgehog [8], and fo-
late [9] pathways to the pathogenicity of CHD in DS. Also, en-
gineered duplication of a 5.43-Mb region of Mmu16 fromTi-
am1 to Kcnj6 in the mouse model, Dp(16)2Yey, was recently 
reported to cause CHD [10]. It was indicated that the genetic 
architecture of the CHD risk of DS was complex and included 
trisomy 21 [11]. The complete underlying genomic or gene ex-
pression variation that contributes to the presence of a CHD 
in DS is still unknown.

Protein complexes are key molecular entities that integrate 
multiple gene products to perform cellular functions [12]. For 
the past few years, high-throughput experimental technolo-
gies and large amounts of protein-protein interaction (PPI) data 
have made it possible to study proteins systematically [13]. 
A PPI network can be simulated for an undirected graph with 
proteins as nodes and protein interactions as undirected edg-
es, so as to the prioritize disease-related genes or pathways 
and to understand the mechanism of disease [14]. However, 
protein interaction data produced by high-throughput experi-
ments are often associated with high false-positive and false-
negative rates, which makes it difficult to predict complexes 
accurately [15]. Many computational approaches have been 
proposed to assess the reliability of protein interaction data. An 
iterative scoring method proposed by Liu et al. [16] was used 
to assign weight to protein pairs, and the weight of a protein 
pair indicated the reliability of the interaction between the 2 
proteins. A crucial distinguishing factor of disease genes was 
that they belonged to core mechanisms responsible for genome 
stability and cell proliferation (e.g., DNA damage repair and 
cell cycle) and functioned as highly synergetic or coordinated 

groups. Therefore, a systematic method is required to track 
gene and module behavior across specific conditions in a con-
trolled manner (e.g., between normal and disease type) [17].

Furthermore, it is important to effectively integrate ‘mul-
tiomics’ data into such an analysis. Chu and Chen [18] com-
bined PPI and gene expression data to construct a cancer-per-
turbed PPI network in cervical carcinoma to study gain- and 
loss-of-function genes as potential drug targets. Masica and 
Karchin [19] correlated somatic mutations and gene expres-
sion to identify novel genes in glioblastoma multiforma. Zhao 
et al. [14] proposed an iterative model to combine mutation 
and expression data and used it to identify mutated driver 
pathways in multiple cancer types. Magger et al. [20] com-
bined PPI and gene expression data to construct tissue-spe-
cific PPI networks for 60 tissues and used them to prioritize 
disease genes. Zhang et al., [21] integrated DNA methylation, 
gene expression, and microRNA expression data in 385 ovar-
ian cancer samples from TCGA, and performed ‘multi-dimen-
sional’ analysis to identify disrupted pathways.

In the present study, in order to further reveal the mechanism 
of CHD in DS, we systematically tracked the disrupted mod-
ules of reweighted PPI networks to identify disturbed pathways 
between normal controls and CHD in DS patients. To achieve 
this, normal and disease PPI networks were inferred based on 
Pearson correlation coefficient (PCC); then, a clique-merging al-
gorithm was formed to explore modules in the re-weighted PPI 
network, and these modules were compared with each other to 
identify altered modules. Finally, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways enrichment analysis of genes 
in disrupted modules was carried out based on Database for 
Annotation, Visualization, and Integrated Discovery (DAVID).

Material and Methods

Data recruitment and preprocessing

The gene expression profile of E-GEOD-1789 from ArrayExpress 
database (http://www.ebi.ac.uk/arrayexpress/) was selected 
for CHD in DS-related analysis. E-GEOD-1789 was existed in 
the Affymetrix GeneChip Human Genome U133A Platform, 
and the data were gained from cardiac tissue from fetuses at 
18–22 weeks of gestation after therapeutic abortion, consist-
ing of 10 samples from fetuses trisomic for Hsa21 and 5 from 
euploid control fetuses [22]. The microarray data and annota-
tion files of healthy human beings and CHD in DS were down-
loaded for further analysis.

The Micro Array Suite 5.0 (MAS 5.0) algorithm was used to re-
vise perfect match and mismatch values [23]. Robust multichip 
average (RMA) method [24] and quantile based algorithm [25] 
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were carried out background correction and normalization to 
eliminate the influence of nonspecific hybridization. A gene-
filter package was used to discard probes that did not match 
any genes. The expression value averaged over probes was 
used as the gene expression value if the gene had multiple 
probes. Finally, we gained 12 493 genes.

PPI network construction

The database Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING, http://string-db.org/) provides a comprehen-
sive, yet quality-controlled, collection of protein–protein as-
sociations for a large number of organisms [26]. It integrates 
and ranks 3 types associations derived from: 1) high-through-
put experimental data, 2) mining of databases and the liter-
ature, and 3) predictions based on genomic context analysis. 
Thus, the interactions in STRING provided an integrated scor-
ing scheme with higher confidence.

The data, comprising 1 048 576 interactions with combine-
scores, were obtained from STRING database to build the PPI 
network. After removing self-loops and proteins without ex-
pression value, a PPI network including 9273 nodes and 58 
617 highly correlated interactions (with combine-score ³0.75) 
was constructed. Taking the intersection of the 12493 genes 
in E-GEOD-1789 and the nodes of the PPI network, we estab-
lished a sub-network with 7390 nodes and 45 286 interactions.

PPI network re-weighting

The weights of interactions reflect their reliabilities, and in-
teractions with low scores are likely to be false-positives [16]. 
PCC is a measure of the correlation between 2 variables, whose 
values ranged from –1 to +1 [27]. In this experiment, PCC was 
calculated to evaluate how strongly 2 interacting proteins were 
co-expressed. The PCC of a pair of genes (a and b), which en-
coded the corresponding paired proteins (u and v) interacting 
in the PPI network, was defined as:

���(a� �) = �
� � �� ��(�� �) � ��(�)

ρ(a) � � ��(�� �) � ��(�)
�(�) �

�

���
 

where n was the number of samples in the gene expression 
data; g (a, k) or g (b, k) was the expression level of gene a or b 
in the sample k under a specific condition; g

_
 (a) or g

_
 (b) rep-

resented the mean expression level of gene a or b; and r (a) 
or r (b) represented the standard deviation of expression lev-
el of gene a or b.

In this study, the PCC of a pair of proteins (u and v) was defined 
as equal to the PCC of their corresponding paired genes (a and 
b), that was PCC (u, v)=PCC(a, b). Furthermore, the PCC of each 
gene-gene interaction was defined as weight value of the inter-
action. The interactions with |PCC(a,b)1 – PCC(a,b)2|>1 under 2 

conditions were regarded as a significant difference. Enrichment 
analysis was conducted on the nodes of the interactions.

Identifying modules from the PPI networks

The module-identification algorithm was based on clique-merg-
ing, similar to that proposed for identifying complexes from 
PPI networks [16]. The algorithm worked in 2 steps: firstly, all 
maximal cliques from the PPI networks of normal and disease 
were selected out, respectively; and secondly, the cliques were 
ranked according to their weighted density and merged or re-
moved highly overlapped cliques. The score of a clique C was 
defined as its weighted density:

�������� = ∑ ����� ���������
|�| ∙ �|�| � ��

Where w (u, v) was the weight of the interaction between u 
and v calculated using fast depth-first method.

There might be thousands of maximal cliques in a PPI net-
work and many of them overlapped with one another. To re-
duce the result size, the highly overlapped cliques should be 
removed. Merging highly overlapped cliques to form bigger, 
yet still dense, subgraphs was also desirable since complexes 
were not necessarily fully connected and PPI data might be in-
complete. The inter-connectivity between 2 cliques was used 
to determine whether 2 overlapped cliques should be merged 
together. The weighted inter-connectivity between the non-
overlapping proteins of C1 and C2 was calculated as follows:

����� � ��������� ���

= �∑ ∑ ���� ���������������
|�� � ��| ∙ |��| ∙ ∑ ∑ ���� ���������������

|�� � ��| ∙ |��|

 
Given a set of cliques ranked in descending order of their 
score, denoted as {C1, C2,..., Ck}, the clustering based on maxi-
mal cliques (CMC) algorithm removed and merged highly over-
lapped cliques as follows. For every clique Ci, if there existed 
a clique Cj such that Cj had a lower score than Ci and |Ci Ç Cj 
| / |Cj | ³ overlap-threshold (to), where overlap-threshold was 
a predefined threshold for overlapping. Then, we calculated 
the weighted inter-connecting score of different nodes in the 
2 cliques. If such Cj existed, then the interconnectivity score 
between Ci and Cj was used to decide whether to remove Cj or 
merge Cj with Ci. If inter-score (Ci, Cj) ³ merge-threshold (tm), 
then Cj was merged with Ci to form a module; otherwise, Cj 
was removed. In this study, the overlap-threshold was set to 
0.5 and merge-threshold was set to 0.25.

Identification of disrupted modules

Let S={S1, S2,…, Sn} and T={T1, T2, …, Tm} be the sets of modules 
identified from the networks normal and disease, respectively. 
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For each Si Î S, the module correlation density was calculat-
ed as follows:

The correlation densities for disease modules T were calcu-
lated similarly.

We built a similarity graph M=(VM, EM), where VM={S È T}, and 
EM=È{(Si, Tj): J(Si, Tj) ³ tJ, DCC(Si, Tj) ³ d}, whereby J(Si, Tj)=|Si, Tj| / 
|Si È Tj| was the Jaccard similarity and ∆CC(Si, Tj) = |dcc(Si) – 
dcc(Tj)| was the differential correlation density between Si and 
Tj [28]. Next, the disrupted module pairs T(Si, Tj) were identified 
by finding the maximum weight matching in M, and we ranked 
them in descending order according to their differential densi-
ty ∆CC. The module pairs (disrupted module pairs) of whose tJ 
³2/3 and DCC ³0.05 were considered to be distinct modules.

Pathway enrichment analysis of genes in altered modules

KEGG is an effort to link genomic information with higher-order 
functional information by computerizing current knowledge on 
cellular processes and by standardizing gene annotations [29]. 
In this study, the DAVID for KEGG pathway enrichment analysis 
was carried out to further investigate the biological functions 
of genes in altered modules from normal controls and CHD in 
DS patients [30]. The threshold values of P-value <0.001 and 
gene count >5 were used in this study.

Results

Disruptions in CHD in DS PPI network

A total of 12 493 genes of normal and CHD in DS were ob-
tained after data preprocessing, then intersections between 
these genes and STRING PPI network were investigated, and re-
weighted PPI networks of normal and disease were identified. 

It was clear that the numbers of interactions, as well as aver-
age scores (weights), were roughly equal in normal and disease 
PPI networks, both of them with 45 286 interactions and with 
average score of 0.776. Figure 1 showed significant differenc-
es in the PCC distribution of the 2 networks. When the interac-
tion correlation arranged –1.0~–0.8, –0.5~0.5 and 0.9~1.0, the 
number of interactions in normal was higher than that in CHD; 
however, in other conditions the number of interactions in nor-
mal was lower. Examining these interactions more carefully, we 
found that scores of 23 951 interactions in the disease network 
were lower than in the normal network, but 21 335 interactions 
were higher than these of normal. We extracted those with score 
changes >1.0 in 2 conditions, which included 886 interactions.

Based on DAVID, KEGG pathway enrichment analysis of genes 
involved in these 886 interactions was performed. When the 
threshold of P-value <0.001 was used, they mainly were en-
riched in 14 biological process terms. The pathways of ox-
idative phosphorylation (P=1.09E-14), Alzheimer’s disease 
(P=8.94E-12), Huntington’s disease (P=3.85E-11), Parkinson’s 
disease (P=5.34E-11), and focal adhesion (P=3.02E-10) showed 
the most significant enrichment.

Disruptions in CHD in DS modules

We used a clique-merging algorithm to identify disrupted or 
altered modules from normal and disease PPI networks. With 
the threshold of nodes >5, a total of 8102 maximal cliques were 
identified for module analysis. As we performed comparative 
analysis on normal and disease modules to understand dis-
ruptions of the module level (Table 1), we found that the to-
tal number of modules was the same under the 2 conditions, 
which both contained 674 modules. The average module sizes 
and module correlation density across the 2 conditions were 
roughly the same. Figure 2 shows the relationship between 
numbers of modules and weighted density of modules. It was 

Figure 1.  The expression correlational 
distribution of interactions in normal 
and disease conditions.20000

15000

10000

5000

0

1600

1400

1200

1000

800

600

400

200

0

–1.0 –0.8 –0.6 –0.4 –0.2 0.0
Expression correlation between interacting prtoteins

Expression correlation-wise distribution of interactions

Normal
Disease

0.2 0.4

–1.0 –0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4

0.6 0.8 1.0

# I
tn

er
ac

tio
ns

3337
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS] [Index Copernicus]

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License

MOLECULAR BIOLOGY
Chen D. et al: 
Altered pathways of congenital heart defects in Down syndrome
© Med Sci Monit, 2015; 21: 3334-3342



obvious that there was no significant difference between the 
distribution of modules in normal and disease groups.

Next, when the threshold was tJ=2/3 and DCC=0.05, we ob-
tained 348 disrupted module pairs. In comparison of the mod-
ule correlation density of the module pairs, we found that there 
were 188 modules showing higher correlation in normal than 
in disease groups, and 160 modules showing lower correla-
tion in normal than in disease groups. There were 1227 genes 
contained in these disrupted module pairs.

There was a close correlation between the character of modules 
and combine-scores of the nodes. The intersection of the inter-
actions contained in the disrupted modules with nodes whose 
difference values were significantly changed (>1) was selected 
out. Pathway analysis based on these genes was conducted. 
These genes were enriched in 33 terms (P<0.001), of which fo-
cal adhesion (P=1.10E-12), cell cycle (P=2.02E-09), pathways in 
cancer (P=1.16E-08), small cell lung cancer (P=3.91E-08), and 
renal cell carcinoma (P=8.77E-08) were the 5 most significant 
disrupted pathways.

In-depth analyses of disrupted modules

To further clarify the specific differences between disrupted 
modules, gene compositions of the modules were analyzed 

and compared. Statistical analysis was conducted on these 
genes that appeared in the difference modules. There were 
1227 genes contained in the 348 disrupted module pairs. It 
was not difficult to find that in disease modules, there were 
315 genes missed and 267 genes added compared with nor-
mal modules; a total of 137 genes were the intersection of 
the missed and added genes. Pathway analysis based on these 
genes was conducted separately. As missed genes, they mainly 
enriched in 22 terms (P<0.001), in which ECM-receptor inter-
action (P=3.27E-27), focal adhesion (P=3.86E-24), purine me-
tabolism (P=3.98E-15), cell cycle (P=1.58E-14), oocyte meio-
sis (P=5.21E-11), and dilated cardiomyopathy (P=2.79E-10) 
were the most significant pathways. Added genes were main-
ly enriched in 16 terms (P<0.001), in which focal adhesion 
(P=1.06E-18), ECM-receptor interaction (P=5.30E-18), and pu-
rine metabolism (P=2.85E-08) were the most significant path-
ways. For the intersection of the missed and added genes, 
they mainly enriched in 14 terms (P<0.001), in which ECM-
receptor interaction (P=1.10E-21), focal adhesion (P=2.38E-19), 
dilated cardiomyopathy (P=4.62E-11), and purine metabolism 
(P=2.68E-10) were the most significant pathways. In compre-
hensive analyses conducted on the results of the 3 KEGG path-
way analyses, we found that ECM-receptor interaction, purine 
metabolism, focal adhesion, and dilated cardiomyopathy were 
the most significant pathways. A Venn diagram of 3 sets of 

Module set No. of modules Average module size
Correlation

Max Avg Min

Normal 674 49.53 0.84 0.31 –0.11

Disease 674 49.54 0.92 0.31 –0.13

Table 1. Properties of normal and disease modules.

Figure 2.  The correlational distribution of modules in normal and 
disease conditions.

Figure 3.  Venn diagram of 3 sets of pathway terms of “Missed 
genes”, “Added genes”, and “The intersection of the 
missed and added genes”.
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pathway terms showed there were 10 common terms in the 
3 conditions (Figure 3). Details of these 10 significant path-
ways are shown in Table 2.

Furthermore, we performed analysis on the missed and add-
ed frequency of these genes in disrupted disease modules 
(Table 3). We found that the missed and added frequency of 
several genes was more than 20 in both missed and added 

conditions, including NEM5, NEM7, POLR2C, GUCY1B3, NPR2, 
GUCY1A2, CTPS2, NPR1, CTPS1, NEM6, and POLR2D. Pathway 
analysis showed that NEM5, NEM7, POLR2C, GUCY1B3, NPR2, 
GUCY1A2, NPR1, and POLR2D were all enriched in pathway of 
purine metabolism. The most frequent gene that appeared in 
the added disease modules was ADCY8, was enriched in the 
pathway of dilated cardiomyopathy.

ID Term
P-value

Missed Added Missed and added

hsa04512 ECM-receptor interaction 3.27E-27 5.30E-18 1.10E-21

hsa04510 Focal adhesion 3.86E-24 1.06E-18 2.38E-19

hsa05414 Dilated cardiomyopathy 2.79E-10 1.72E-07 4.62E-11

hsa00230 Purine metabolism 3.98E-15 2.85E-08 2.68E-10

hsa05412
Arrhythmogenic right ventricular 
cardiomyopathy (ARVC)

9.37E-08 3.15E-06 4.54E-08

hsa05222 Small cell lung cancer 7.86E-08 2.97E-07 1.43E-07

hsa05410 Hypertrophic cardiomyopathy (HCM) 2.68E-06 2.57E-04 1.36E-06

hsa05200 Pathways in cancer 7.88E-06 2.12E-05 4.76E-05

hsa04114 Oocyte meiosis 5.21E-11 1.81E-04 9.77E-05

hsa04810 Regulation of actin cytoskeleton 3.10E-04 8.85E-04 5.61E-04

Table 2. The common KEGG pathways in the three conditions in disrupted modules.

Gene Missed Added Gene Missed Added

ADCY8 7 46 NME6 23 25

NME5 25 29 ADCY6 10 21

NME7 25 28 ADCY1 11 20

ADCY2 16 26 POLR2D 21 20

ADCY9 7 25 ITGA6 6 19

POLR2C 23 25 ITGA10 9 18

GUCY1B3 23 25 ITGA4 5 18

NPR2 23 25 ITGB4 7 16

GUCY1A2 23 25 LAMA1 8 15

CTPS2 23 25 ITGB7 5 12

ADCY10 9 25 GUCY1A3 23 11

NPR1 23 25 NME1 12 10

CTPS1 23 25 ENTPD2 31 5

Table 3. The frequency of genes appeared in the intersection of the missed and added genes.
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Discussion

In the present study, by integrating PPI and gene-expression 
data, we performed a systematic identification and comparison 
of modules across normal and disease conditions, and identified 
348 altered modules. There were 1227 genes contained in the 
348 disrupted module pairs. It was not difficult to find that in 
disease modules, 315 genes were missed and 267 genes were 
added compared with normal modules and the intersection of 
the missed and added were 137 genes. In pathway analysis con-
ducted based on these genes separately, we found that ECM-
receptor interaction, purine metabolism, focal adhesion, and 
dilated cardiomyopathy were the most significant pathways.

In cell biology, focal adhesions are large macromolecular assem-
blies through which mechanical force and regulatory signals are 
transmitted between the extracellular matrix (ECM) and an in-
teracting cell. More precisely, focal adhesions are the sub-cellu-
lar structures that mediate the regulatory effects (i.e., signaling 
events) of a cell in response to ECM adhesion [31]. The cytoplas-
mic side of focal adhesions consists of large molecular complexes 
that link transmembrane receptors, such as integrins, to the actin 
cytoskeleton and mediate signals modulating cell attachment, mi-
gration, proliferation, differentiation, and gene expression [32]. At 
the molecular level, focal adhesions are formed around a trans-
membrane core of an a−b integrin heterodimer, which binds to 
a component of the extracellular matrix (ECM) on its extracel-
lular region, constitutes the site of anchorage of the actin cyto-
skeletons to the cytoplasmic side of the membrane, and medi-
ates various intracellular signaling pathways [33]. It had been 
proposed that DSCAM has a contributory role of CHD in DS [4]. 
Gene function enrichment analysis indicated that DSCAM was 
enriched in ECM-Receptor interaction and focal adhesion [34].

Purines are a class of small organic molecules that are essen-
tial for all cells. They play critical roles in neuronal differen-
tiation and function [35]. Their importance is highlighted by 
several inherited disorders of purine metabolism. Purine me-
tabolism refers to the metabolic pathways that synthesize and 
break down purines, that are present in many organisms [40]. 
Interestingly, individuals with DS have elevated purine levels in 
bodily fluids, hypothesized to be due to trisomy of GART and 
resultant increased synthesis of purines [37]. Uric acid, hypo-
xanthine, and xanthine are the main purine metabolism prod-
ucts. It was reported that the levels of hypoxanthine and xan-
thine in DS children were significantly lower than in healthy 
children, which increased conversion of hypoxanthine and xan-
thine to uric acid with subsequent free radical-dependent ox-
idation of uric acid to allantoin, and potentiated the mecha-
nisms by the oxidative stress in DS [38].

As we performed analysis on the frequency of genes appear-
ing in the intersection of the missed and added genes, we 

found that the higher frequency of genes mainly enriched in 
the pathway of purine metabolism, and the most frequent 
gene that appeared in the added disease modules was ADCY8, 
which is enriched in the pathway of dilated cardiomyopathy. 
Cardiomyopathy comprises a diverse group of heart-muscle 
disorders, which are further subdivided on the basis of their 
anatomic and hemodynamic findings. More than 80% of car-
diomyopathies are classified as dilated or congestive [39]. It 
was reported that gene MCIP1, a direct association with the 
catalytic domain of calcineurin, was encoded by DSCR [40], 
which resides within the “DS critical region” of human chro-
mosome 21 [41]. Forced expression of a constitutively active 
form of calcineurin in hearts of transgenic mice promotes car-
diac hypertrophy that progresses to dilated cardiomyopathy, 
heart failure, and death, in a manner that recapitulates fea-
tures of human disease [42].

In recent years, a wide variety of methods to reverse-engineer 
transcriptional regulatory networks from microarray data have 
been developed [43]. Module-based methods, such as Weighted 
Correlation Network Analysis [44], the Context Likelihood of 
Relatedness algorithm [45] and the Learning Module Networks 
algorithm [46], assume a modular structure of the transcription-
al regulatory network, with genes subject to the same regula-
tory input being organized in co-expression modules. However, 
none of the methods mentioned above can systematically track 
the disrupted modules. Several drawbacks of our work must 
be taken into account. For example, the sample size was not 
large enough to affect the conclusions to some degree. Also, 
the results obtained by bioinformatics method were not ver-
ified via experiments. Although disadvantages exist, we be-
lieve that this method and the predicted significant pathways 
offer investigators valuable resources for not only better un-
derstanding the mechanisms of CHD in DS, but also detect-
ing the novel underlying pathway biomarkers as well as drug 
targets for CHD in DS therapy.

Conclusions

Our analyses revealed that 348 altered modules were iden-
tified by comparing modules in normal and disease PPI net-
work. Based on pathway functional enrichment analysis of dis-
rupted module genes, we successfully identified the 4 most 
significantly altered pathways: ECM-receptor interaction, pu-
rine metabolism, focal adhesion, and dilated cardiomyopathy. 
Therefore, we predicted that these pathways might be good 
indicators for CHD in DS.
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