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Artificial intelligence technologies such as machine learning have been applied to protein engineering, with unique advantages
in protein structure, function prediction, catalytic activity, and other issues in recent years. Screening better mutants is still a
bottleneck in protein engineering. In this paper, a new sequence-activity relationship method was analyzed for its application
in improving the thermal stability of Aspergillus terreus (R)-w-selective amine transaminase. The experimental data from 6
single-point mutated enzymes were used as a learning dataset to build models and predict the thermostability of 2°
mutants. Based on digital signal processing (DSP), this method digitized the amino acid sequence of proteins by fast
Fourier transform (FFT) and then established the best model applying partial least squares regression (PLSR) to screen out
all possible mutants, especially those with high performance. In protein engineering, the innovative sequence activity
relationship (ISAR) method can make a reasonable prediction using limited experimental data and significantly reduce the
experimental cost. The half-life (T,,) of (R)-w-transaminase was fitted with the amino acid sequence by the ISAR
algorithm, resulting in an R* of 0.8929 and a cvRMSE of 4.89. At the same time, the mutants with higher T,, than the
existing ones were predicted, laying the groundwork for better (R)-w-transaminase in the later stage. The ISAR algorithm

is expected to provide a new technique for protein evolution and screening.

1. Introduction

The natural enzyme, as a biocatalyst, is active under biologi-
cal or natural conditions, but its activity is so poor in the
actual production system that it cannot be well applied. In
addition, the disadvantages such as poor stereo/regioselectiv-
ity, low catalytic efficiency, and poor stability hinder the wide
application of biocatalysts. Enzyme-directed evolution is
indispensable in biocatalysis, biomedicine, and biotechnol-
ogy. In organic chemistry and biotechnology, the directed
evolution of stereoselective, regioselective, and chemoselec-
tive enzymes as catalysts provides vast resources for various
transformations in organic synthesis and biotechnology
[1-3]. The rapid development of computational biology
has enabled many software and databases to analyze large
amounts of sequence information rapidly. The semirational
design is based on sequence alignment, commonly using
the HotSpot Wizard sever [4], 3DM database [5], probe

[6], etc., as tools. The QM/MM combination method based
on classical mechanics and quantum mechanics is considered
one of the most reliable computational simulation methods
to study the mechanism of enzyme catalysis [7]. Extracting
possible target sites from the database in combination with
other rational analysis methods can improve the stability of
the enzyme quickly and effectively [8]. By simulating the nat-
ural evolution, the target genes were mutated, expressed, and
screened many times to finally obtain the proteins with
improved properties or new functions [9].

In protein engineering, the initial library was generated
and screened by experimenters. In directed evolution, diver-
sified mutant libraries were caused by error-prone polymer-
ase chain reaction, saturation mutation, and DNA shuffling.
In a 1997 study on the principle of stereoselectivity in
directed evolution, it was reported that four cycles of epPCR
were used to increase the stereoselectivity of lipase by 10
times [10, 11]. Besides, saturation mutagenesis can be
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combined with epPCR, DNA shuffling, and other techniques
to rapidly accumulate sense mutations and obtain the best
combination of enzyme genes. For example, the Reetz team
pioneered the comprehensive use of these three traditional
techniques to improve the enantioselectivity of lipase [10,
12]. Then, a combined active site saturation test (CAST) based
on the information of amino acid sequence and/or spatial
structure, proposed by the Reetz team, was proved to be effec-
tive [13]. In addition, with the help of computer simulation,
the active center of enzyme catalysis was directly related
to the substrate. Later, iterative saturation mutation (ISM)
[14-16] further improved stereoselectivity as the mutant
library generated by CAST could not meet all the require-
ments of biochemical properties. The CAST/ISM methods
were based on semirational strategies and widely used to mod-
ify enzyme parameters such as stereoselectivity/regioselectiv-
ity, substrate spectrum, and catalytic efficiency [17, 18].

Machine learning is a new way to improve efficiency by
effectively designing or enzyme-directed evolution to
produce fewer mutant libraries and high-demand mutant
libraries [19, 20]. Machine learning is an extension of math-
ematical statistics and computer science, including statistical
models and many algorithms for improving computer pro-
grams. Machine learning algorithm in its early development
was used by Muggleton et al. in 1992 to predict secondary
structure in protein science [21] and in 2008 was used in a
physicochemical feature-based classification of amino acid
mutations [22]. Later, a new version of machine learning
was able to predict structure, folding, binding, and even
catalytic activity to deal with cumulative information about
mutants and their properties [23-29]. Experimental data
serving as a training set for these algorithms can help predict
new and improved variants, thus contributing to protein
engineering experiments based on site-specific mutagenesis
or enzyme-directed evolution [30, 31].

Transaminase is a biocatalyst with high stereoselectivity
and mild reaction conditions, which can be used to prepare
chiral intermediates by asymmetric synthesis and kinetic res-
olution. With the expanding market of chiral drugs, the
industrial production of transaminase has shown great
potential and broad application prospects. However, most
transaminases have suffered from poor thermostability in
nature, which severely limits their application in industrial
production. Therefore, improving the thermostability of
enzymes is both a challenge for transaminase protein engi-
neering and a pressing issue for transaminase application in
industrial production. w-Transaminase (w-TA) is a natural
biocatalyst that can directly synthesize enantiomer chiral
amines. Compared with (S)-w-TA, (R)-w-TA [32] was less
studied. Despite the poor thermostability of (R)-w-TA, its
demand increased with the march of chiral amines. The
improvement of the thermostability of (R)-w-TA with poten-
tial application value is expected to benefit the preparation of
chiral amines. (R)-w-transaminase from Aspergillus terreus
was used to obtain a small mutant library by rational design.
The digital signal processing (DSP) was carried out according
to the existing data. Then, the half-life (T’ ;) of the wild-type
enzyme and the mutant enzyme was modeled and predicted
to obtain the mutant enzyme that could fit the existing data
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and improve the thermostability. T, denotes the time for
the residual activity of (R)-w-transaminase to be reduced to
50% of its original activity at 40°C [33].

In this study, a mutant screening method called ISAR
(innovative sequence activity relationship) was used to deal
with the sequence-function correlation of biological macro-
molecules in many aspects, including the physical and chem-
ical properties of amino acids, DSP. Besides, partial least
square regression was used to reveal these sequence-
function correlations [34]. At present, there are very limited
articles on the use of the machine learning method to study
(R)-w-TA. In this study, the python tool was employed to
write the ISAR algorithm, which combines machine learning
with protein engineering. It is expected to provide new ideas
for later research effectively.

2. ISAR Method

ISAR comprises the encoding phase, the modeling phase, and
the predictive phase, which are consistent with the funda-
mental processes of mathematical statistics (Figure 1). As
shown in Figure 1, the sequences of WT and two variants
were encoded to numerical sequences based on an index of
AAindex databases. The numerical sequences were trans-
formed into protein spectra by FFT. Then, a regression
model was constructed with protein spectra and T, being
learning datasets. Finally, T',, of new variants were predicted
by the model.

In the first phase, the encoding phase, all protein
sequences were required to be encoded into digital sequences
by the better index of the AAindex database. So far, the
AAindex database comprises 566 amino acid indexes, which
represent the biochemical and physicochemical properties of
20 standard amino acids. The correlations between these
indexes were listed. The amino acid sequence of protease
was digitized using DSP technology. DSP is an analytical pro-
gram that decomposes and processes signals to display
embedded data [35]. The data signals processed by DSP can
be discrete or continuous, such as DNA, RNA, and protein
residues, representing the biological information of these
biological macromolecules. Protein-protein interactions
were analyzed by the DSP technique [36], which also con-
verted protein properties into protein spectral form. In pro-
tein engineering, the Fourier transform of DSP was often
used for protein and DNA comparison [37], characterization
of protein families, pattern recognition [38-40], etc.

The DSP uses digital operation to realize signal transfor-
mation, filtering, detection, estimation, modulation and
demodulation, fast algorithm, and so on. FFT was one of
them. First, a protein sequence was encoded based on a better
index of the AAindex [41, 42] database (https://www.genome
jp/aaindex/). Then, according to the energy-frequency rep-
resentation (equation (1)), the coding sequence was con-
verted into a protein spectrum by FFT.

-1

S(k)= ") s(n)el 2™, (1)
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F1GURE 1: The flow chart of ISAR methodology.

where s is the input signal of length N (the coding sequence),
S is the output spectrum (the complex number), k is the fre-
quency in the spectrum, # is the position in the input signal,
and i is the complex number that i* = —1.

After numerical encoding, data standardization is an
important stage of data preprocessing. Then, zeros were filled
at the end of the digital sequence. FFT was used to convert the
digital sequence into a protein spectrum. Zero filling acceler-
ates the FFT algorithm [43] and allows for protein profiles of
the same length in the case of different sequence lengths.

In the second phase, the modeling phase, the model was
established with the partial least squares method for protein
spectra from existing mutants and the activity of experimen-
tal data. The model verification for a small amount of data
usually uses leave-one-out cross-validation (LOOCV) [30].
By LOOCYV, the dataset was divided into k parts. One copy
was used in the training of the model, and the remaining
one was used in the test set. After all the cross-validation
rounds, the overall performance of each test set was calcu-
lated. In this study, cross-validation was used to prevent
overfitting and optimize some parameters (R?>, cvRMSE,
and other parameters). The minimum root-mean-square
error (cvRMSE) and the determination coefficient (R?) in
range verification were used as the best AAindex to optimize
the model. The prediction of the model depended on the R?
value. cvRMSE was able to build and select the best model
and prevent overfitting. The R*> and cvRMSE were inter-
preted as the definitions shown in

(Z00- 908 -m)
Y0 -9 Tl A - A

R2

where y;, is the experimental activity of the ith sequence, 7, is
the predicted activity of the ith sequence by ISAR, ¥ is the
average of the experimental activity, and S is the number of
sequences.

In the last phase, the predictive phase, partial least
squares regression (PLSR) modeling was carried out accord-
ing to all spectra from experimenting data and certain activ-
ity. Since each location of the amino acid sequence may or
may not mutate, the »n single point mutations will produce
2" of all possible mutants. The model obtained in the model-
ing phase of 2" mutants was well predicted. Variants with
higher performance could be obtained. Therefore, the limited
experimental data was supposed to be used as a training set
for these algorithms to predict new and improved variants,
thus assisting the experimental work of protein engineering
based on site-specific mutations or enzyme-directed evolu-
tion [44].

3. Discussion

3.1. Experimental Dataset. The experimental data was from
Xie’s team [33]. Stabilized variants of the (R)-w-transaminase
from Aspergillus terreus were constructed by consensus
mutagenesis. T, was defined as the time when the residual
activity of (R)-w-transaminase was reduced to 50% of its
original activity at 40°C. Six-point mutations and combina-
tions of mutations were under the same chemical reaction.
There was a little error in the T, reaction in the same



environment. In this paper, the average value obtained from
many experiments was used.

The improved thermal stability of (R)-w-TA, a transam-
inase with 325 amino acid residues, is of great significance
to the result of half-life (T,,,). In the present study, zeros
were added to the digital sequence from 325 to 512 2°) to
speed up the fast Fourier transform (FFT) algorithm.

A relatively good mutant was selected from all the possi-
ble six-point (I77L, Q97E, H210N, N245D, G292D, and
1295V) combinations of mutants (64). Using the ISAR
approach, 13 limited pieces of data were obtained from the
experimental group for 6 single-point mutations and combi-
nations of mutations. Under certain conditions, the T,
values of these mutants were used to measure the thermosta-
bility of (R)-w-TA. The T,,, of wild-type (WT) (R)-w-TA
was 6.9. The best measurement mutant described in the study
was P7, which included all six single-point mutants and com-
bined mutants in the sequence, with a T, value of 42.2. In
the case of only 13 limited mutants, the model can predict
the half-life of Aspergillus terreus (R)-w-TA of 64 mutants
by ISAR, so we can get better new mutants than experiment-
ing with data whose T,,, was higher than 42.2. The best
mutation available for existing data was P7 (42.2). Several
mutants larger than 42.2 were obtained by the ISAR method.

3.2. Selection of the Best Modeling Index. The index of the
AAindex database digitized the amino acid sequence of (R)-
w-TA, where the value of each amino acid represented the
corresponding biochemical characteristics. As the database
was updated, it currently held 566 indexes. 17 groups with
imperfect or missing values in the AAindex database were
discarded, leaving 549 sets of indexes left for choosing the
best one to use. Finally, 549 models were constructed corre-
sponding to the remaining 549 indexes. The AAindex entries
corresponding to the better cvRMSE and R* models with the
best performance were selected for the numerical coding of
PLSR. Each coding metric was evaluated by ISAR to get the
best index for building the model. Protein sequences were
encoded and converted into a protein spectrum by FFT using
each index. Using training data, ISAR built a prediction
model for each indicator through PLSR. Based on the model-
ing of protein amino acid sequence, the number of principal
components obtained determines the pros and cons of the
PLSR algorithm. Different components and the LOOCV
method made better performance parameters (R*> and
cvRMSE) of each model (Figure 2).

Furthermore, the best index was NAGK730101, among
the top 10 best indexes (Table 1). For the best index, the R
and cvRMSE values were, respectively, 0.8929 and 4.89.

3.3. Modeling and Activity Prediction. After evaluating multi-
ple indicators in the AAindex database, the optimal index,
NAGK730101, was selected based on the minimum cvRMSE
and better R*. Moreover, the ISAR method was used to model
and predict the (R)-w-TA. The experimental data of (R)-w-
TA WT and mutants were digitized and converted into a pro-
tein spectrum for PLSR. Different models were obtained by
various indexes, other parameters, different R?, and cvRMSE.
According to the robustness of the model, the model received
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F1GUre 2: CvRMSE for 549 models. Based on the construction and
testing of 549 models, the evolution of root mean square error of
cross-validation of T',, was predicted, where the horizontal axis is
549 models and the vertical axis is the cvRMSE value of each
model. The best model is the leftmost point, where the value of
cvRMSE is 4.89.

from each training set (12 pieces of data) was selected to pre-
dict. Then, the 13 predicted values obtained by 13 models
were compared with the experimental values, as shown in
Table 2. ISAR used two steps to calculate the values of model
performance parameters. The first step was standard cross-
validation in machine learning; the second, modeling using
all data sets in the learning step. Based on the information
of 13 data mutation points, a relatively good R* value of pat-
tern LOCCV (0.8929) was obtained (Figure 3).

Six sites were either mutated or not mutated by ISAR’s
machine learning algorithm, and 2° (64) combinations were
obtained. Then, the T,, values of all possible combinations
(64 possible variants) of these limited variants were predicted
by the best model. Figure 4 shows the prediction of all possi-
ble mutants in the training set. At the same time, it was found
that this model can identify new mutants with better thermal
stability than P7. The thermal stability (T,,,) of (R)-w-TA
was predicted by the best model and ranked according to
the T,,, value of the mutant (Figure 4). After ranking the
64 possible mutant predictions, excellent mutants with a
half-life greater than the existing experimental data were
obtained. The best mutation available for existing data was
P7 (42.2). Several mutants larger than 42.2 were yielded by
the ISAR method.

64 possible mutant predictions were received, and the
remaining 6 mutants’ T, (Table 3) were listed by ISAR.
The highest mutant was P13 (Q97E_H210N_G292D_
1295V), and the half-life value was 57.81. Then, the mutant’s
T,,, was proved to be high by validation methods. Therefore,
a better mutant can be screened in protein engineering. The
approach of ISAR in protein engineering could make an
effective prediction even if the training set was limited in size,
which greatly reduced the cost of the experiment.
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TaBLE 1: Transaminase: the top 10 best indexes according to the cross-validation root mean square error.

Index R? E Data description

NAGK730101 0.8929 4.89 Normalized frequency of alpha-helix (Nagano, 1973)
PALJ810116 0.8919 4.92 Normalized frequency of turn in alpha/beta class (Palau et al., 1981)
TANS770103 0.8239 6.65 Normalized frequency of extended structure (Tanaka-Scheraga, 1977)
GEOR030102 0.7691 6.85 Linker propensity from a 1-linker dataset (George-Heringa, 2003)
RACS770101 0.6603 7.52 Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977)
RACS820107 0.6597 7.53 Average relative fractional occurrence in A0(i-1) (Rackovsky-Scheraga, 1982)
RICJ880111 0.6532 7.53 Relative preference value at C4 (Richardson-Richardson, 1988)
BEGF750102 0.6585 7.53 Conformational parameter of beta-structure (Beghin-Dirkx, 1975)
TANS770110 0.6581 7.54 Normalized frequency of chain reversal (Tanaka-Scheraga, 1977)
CHOP780101 0.6518 7.54 Normalized frequency of beta-turn (Chou-Fasman, 1978a)

TaBLE 2: The best model according to different training sets selected
by ISAR and the comparison of T, predicted values of 13 mutants

with the experimental results [33].

Variant Mutations Preiigf:) Ty E?I: /ezri(mmei?lt)al
WT 7.35 6.9+0.6
P1 177L 19.19 20.1+£0.6
P2 Q97E 7.35 16.5+0.6
P3 H210N 22.38 23.1+0.9
P4 N245D 17.07 14.8+ 0.6
P5 G292D 13.95 14.8+0.8
P6 1295V 9.15 9.3+£0.5
P7 177L_H210N 42.74 42.2+0.8
P8 Q97E_H210N 32.85 30.6+0.5
P9 H210N_N245D 16.10 18.4+0.6
P10 H210N_G292D 33.88 33.6+0.5
P11 177L_Q97E_H210N 28.25 31+£0.7
P12 177L_H210N_G292D 30.92 16.7+£0.6

45 4

R?=0.8929

Predicted T,

20 25 30 35

Experimental T,

T T
40 45

FiGURE 3: Prediction of T,,, about (R)-w-TA and mutants by
LOOCYV, R? =0.8929.

In the directed evolution of enzymes, the addition of the
activity of a single variant that represented a characteristic
was commonly used in many biological methods. Therefore,
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FIGURe 4: Ranking of the T,,, for the 64 possible variants of

transaminase with ISAR where the horizontal is 64 possible
ranked variants and the vertical axis is the predictive value of T',,.

TaBLE 3: The prediction of the remaining 6 mutants’ T',.

Variant Mutations Predicted T,
P13 Q97E_H210N_G292D_I295V 57.81
P14 177L_H210N_N245D 52.37
P15 177L_H210N_N245D_1295V 51.13
P16 H210N_G292D_I295V 46.67
P17 Q97E_H210N_G292D 45.79
P18 177L_Q97E_H210N_G292D_1295V 45.62

the inaccuracy of protein engineering for computer process-
ing was probably caused by nonadditive or characteristic var-
iants. The epistatic effect may diminish the experimental
effect of protein engineering and the prediction in screening,
which was a drawback of previous protein engineering [45-
47]. The effect of a combined mutation can be the result of
a certain mutation interaction, where the obtained activity
value represented the sum of a single activity value, either
the activity increase value was larger than that of addition
or the activity decrease value was smaller than that of



addition. For example, T,, values of 19.19 and 7.35 are
obtained for P1 and P2 among the six-point mutants from
Table 2. Therefore, it can be found that P1 (I77L) is superior
to P2 (Q97E) in physical and chemical properties. However,
the T, values of P7 (I77L_H210N) and P8 (Q97E_H210N)
are, respectively, 42.74 and 32.85. As aforementioned, it was
not practical to use simple additive activities to predict activ-
ities. Every changing point influenced the whole spectrum
and activity. In protein engineering, it is crucial for amino
acid sequences to have epistatic effects.

4. Conclusion

In this study, the ISAR method was based on the binary cod-
ing of WT amino acid sequences and the half-life of a group
of combinatorial mutants with known thermostability. The
statistical model of ISAR was composed of amino acid
sequence information and biochemical characteristics of pro-
tease expression mutants. The optimal AAindex is deter-
mined by several parameters in the AAindex database using
the first stage (coding stage) and the fast Fourier transform.
Meanwhile, the frequency of the protein spectrum can be
changed by Fourier transform, and its amplitude was the
transformation of protein properties, independent of the
position of each amino acid in the protein sequence. These
points interacted with each other to form different protein
spectra. Then, the best model was built with better parame-
ters (R? and cvRMSE) and LOCCYV using limited experimen-
tal data and protein spectrum energy. According to the
model, the T, values of 64 possible mutants were predicted
and validated. This statistical prediction model was related to
the physical and chemical properties of amino acids and
amino acid sequences and used the effective conversion
method of DSP so that better mutants were obtained.

The biggest advantage of ISAR is that predictions can be
made with a small amount of experimental data, and it
requires only the amino acid sequence of biological macro-
molecules. Only the protein variants and their biological
and biochemical activity values are needed as the initial data-
set to generate the prediction model. Therefore, proteins
without spatial structure were also suitable for ISAR. The
method effectively alleviated the bottleneck of finding good
mutants in the data mutant library. In future research, this
method will be used to screen out more excellent mutants
of protein enzymes to benefit human beings.
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