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Abstract: Mitochondrial dysfunction is known to contribute to mitochondrial diseases, as well as to
a variety of aging-based pathologies. Mitochondria have their own genomes (mitochondrial DNA
(mtDNA)) and the abnormalities, such as point mutations, deletions, and copy number variations, are
involved in mitochondrial dysfunction. In recent years, several epidemiological studies and animal
experiments have supported the Developmental Origin of Health and Disease (DOHaD) theory,
which states that the environment during fetal life influences the predisposition to disease and the
risk of morbidity in adulthood. Mitochondria play a central role in energy production, as well as in
various cellular functions, such as apoptosis, lipid metabolism, and calcium metabolism. In terms
of the DOHaD theory, mtDNA copy number may be a mediator of health and disease. This paper
summarizes the results of recent epidemiological studies on the relationship between environmental
factors and mtDNA copy number during pregnancy from the perspective of DOHaD theory. The
results of these studies suggest a hypothesis that mtDNA copy number may reflect environmental
influences during fetal life and possibly serve as a surrogate marker of health risks in adulthood.

Keywords: DOHaD; environmental stress; mitochondrial DNA copy number; pregnancy;
risk management

1. Introduction

Since the recognition of mitochondrial diseases in humans in 1962 [1], numerous
studies have elucidated the physiological and pathological significance of mitochondrial
function. Mitochondria are intracellular organelles, which are present in almost every cell
in the body and are responsible for the production of energy in the form of adenosine
triphosphate (ATP) [2,3]. Thus, in patients with mitochondrial diseases, organs that are
dependent on mitochondrial production for energy may be damaged [4]. In the neonatal
period, a “triad” of cerebromuscular (e.g., recurrent apnea, inactivity, convulsions, and
hypotonia), gastrointestinal and hepatic (e.g., vomiting, poor feeding, diarrhea, and hep-
atomegaly), and myocardial symptoms (e.g., arrhythmias, cardiomyopathy, and heart
failure) related to mitochondrial diseases have been reported [5]. In infancy, symptoms
of mitochondrial diseases include poor weight gain, progressive liver damage, cerebellar
ataxia, pyramidal tract signs, psychomotor disturbances, respiratory failure, myotonia,
and amino aciduria [6,7]. Central nervous system symptoms and muscular symptoms of
mitochondrial diseases occur during childhood and adulthood. Three major mitochon-
drial encephalomyopathies have been reported: mitochondrial myopathy, encephalopathy,
lactic acidosis, and stroke-like episodes [8–10]; myoclonic epilepsy and ragged-red fiber
disease [11,12]; and chronic progressive external ophthalmoplegia, including Kearns–Sayre
syndrome [13–15]. As the pathogenesis of mitochondrial disease suggests, the pathological
significance of mitochondrial dysfunction is enormous. Mitochondrial dysfunction is also
a hallmark of biological aging, as mitochondrial dysfunction worsens with age [16].

In eukaryotic cells, nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) coop-
erate to regulate cellular functions [17]. Human mtDNA comprises a cyclic multicopy
genome containing 16,569 base pairs, with usually tens to thousands of copies per cell.
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Human mtDNA is maternally inherited, as paternal mitochondria in fertilized eggs are
removed by “mitophagy” [18,19]. Mitophagy, a quality control mechanism, is the selective
degradation of mitochondria by autophagy for maintaining the health of the mitochondrial
network [20,21]. Human mtDNA is independently replicated, and each genome mutates
on its own, resulting in the formation of a condition called “heteroplasmy” [22,23]. Hetero-
plasmy means the existence of a normal version of the maternal mtDNA genome and a
version of the genome containing a mutation, and this mixing rate easily changes as cells
proliferate and differentiate. The mode of existence of human mtDNA also differs among
tissues [24]. For example, mtDNA exists in single circles in many organs and cells, but
in the heart, several mtDNA molecules are linked together in a complex network. The
fact that the mode of existence of mtDNA differs in each tissue may be a consequence
of the search for the most suitable state to maintain mtDNA in each tissue. While the
mitochondrial genome is considerably smaller than that of the nuclear genome, the mRNA
transcribed from mtDNA accounts for about 30% of total cellular mRNA in the heart and
5–25% of total cellular mRNA in other organs [25]. After being transcribed, mitochondrial
RNA is processed, the mitoribosome is assembled, and respiratory chain proteins encoded
by mtDNA are synthesized [26]. Human mtDNA at the population level is shaped by
selective forces within the female germ line under nuclear genetic control [27]. According
to the literature, the incidence of mitochondrial diseases is 9.6 per 100,000, of which 1.2 to
1.5 patients have a single mtDNA deletion [28–30]. The majority of mitochondrial diseases
are inherited through autosomal or X-linked inheritance rather than maternal inheritance,
and around 75% of mitochondrial diseases, especially those that occur in childhood, are
caused by nDNA mutations [6,31]. Around 300 causative genes of human mitochondrial
diseases have been identified using next-generation sequencing [32]. In an animal study, in-
vestigators removed the nucleus from a fertilized egg of a mouse with an mtDNA mutation
and transplanted it into an unfertilized egg of a healthy female mouse [33]. In this study,
the resulting litter was healthy. However, as mentioned above, such a technical approach
would only be applicable to a subset of patients with mitochondrial diseases. In terms of
the drug delivery system (DDS), which delivers target molecules to mitochondria, various
attempts have been made to protect or activate mitochondrial functions [34]. Mitochondrial
transplantation treatment [34,35] is one of these treatment challenges, but several issues
remain to be addressed [35–37].

As shown in previous studies, the number of mtDNA copies in the peripheral blood
decreases with age [38], and the decrease is negatively associated with age-related events,
such as all-cause mortality [39]. In addition, mtDNA copy number loss is associated
with cognitive function [40], cardiovascular diseases [41], and infectious morbidity and
mortality in patients with chronic kidney disease [42]. Mitochondrial DNA depletion
syndrome (MTDPS) refers to diseases in which the mtDNA copy number is reduced,
and mitochondrial energy metabolism is impaired [43]. The underlying pathogenesis of
MTDPS refers to abnormalities in genes related to the replication maintenance mechanism
of mtDNA encoded in nDNA, resulting not only in mtDNA depletion but also in multiple
deletions and point mutations [44]. These include abnormalities in POLG, POLG2, Twinkle,
RNASEH1, DNA2, and MGME1 genes [45]. The mode of inheritance of MTDPS is autosomal
recessive [46]. As suggested by MTDPS associated with a variety of pathological conditions,
dysregulation of mtDNA copy number and mitochondrial dysfunction play a role in a
variety of pathologies. The maintenance of mtDNA copy number via mtDNA replication
is of high importance not only at the cellular level but also at the individual level.

In terms of its physiological significance, mtDNA copy number is important from
fetal, through infantile and childhood stages, to adulthood. In fact, mtDNA copy number
influences early developmental cell differentiation and reprogramming of induced pluripo-
tent stem cells [47]. In a previous study, the mtDNA contents of newborns with abnormal
birth weights were lower than those of newborns with normal weights [48]. Based on
accumulating evidence [49–51], reduced mtDNA content may be a putative link between
abnormal fetal growth and metabolic and cardiovascular complications in later life. In a
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recent population-based follow-up study of middle-aged Swedish women (N = 2387), the
mtDNA copy number was significantly lower both in women with type 2 diabetes and
in those who developed type 2 diabetes during the follow-up period compared to those
who did not develop type 2 diabetes [52]. Furthermore, a study based on data from the
U.K. Biobank confirmed that a higher mtDNA copy number was significantly associated
with a lower prevalence of neurodegenerative diseases (odds ratio (OR) = 0.89, confidence
interval (CI) = 0.83; 0.96) and a lower incidence rate of neurodegenerative diseases (hazard
ratio = 0.95, 95% CI = 0.91; 0.98) [53].

The Developmental Origin of Health and Disease (DOHaD)” theory posits that en-
vironmental factors during development act as risk factors for health and disease in
adulthood [54–60]. Considering the physiological and pathological significance of mtDNA
copy number from the perspective of DOHaD theory could shed light on the potential role
of mtDNA copy number as a biomarker of disease in later life [61]. This paper discusses
the potential of mtDNA copy number in early life as a biomarker of health and disease in
later life (Figure 1), focusing on recent epidemiological studies that suggest a correlation
between environmental factors and mtDNA copy number changes during the fetal period.

Figure 1. Mitochondrial DNA and developmental origins of health and disease (DOHaD). Mitochondrial DNA copy
number increases or decreases in response to environmental changes. Environmental stress during fetal life may contribute
to the risk of disease in adulthood via mitochondrial DNA copy number.

2. DOHaD Theory

The sum of chemical, physical, and biological stresses from the environment, namely
the exposome, contributes to human health conditions [62]. Studies by Barker on infants
with low birth weights in the 1980s [63–65] led to the development of the Fetal Origins of
Adult Disease theory in 1990 [54]. Taking into account the results of subsequent epidemio-
logical studies [66,67], the DOHaD theory was proposed in 2004 [55].

Today, a number of epidemiological studies and animal model studies suggest that
environmental factors in embryonic, fetal, neonatal, and early childhood periods are associ-
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ated with health and disease in adulthood and old age, including the risk of developing
chronic diseases, supporting the DOHaD theory [68–77]. For example, in cases of food
deprivation during pregnancy, the fetus acquires an energy-saving constitution in antici-
pation of the environment after birth, in which nutrient intake may be insufficient [78]. If
the mother has a glucose-intolerant pregnancy (gestational diabetes mellitus (GDM)) or is
obese, it can also cause obesity in the child. It is thought that the fetus receives an excess
supply of glucose from the mother, which causes insulin to be overproduced. In addition,
the growth-promoting effects of insulin and insulin-like growth factors (IGFs) may be the
cause of obese children (gigantism). In addition to nutritional status, various environ-
mental factors, such as exposure to environmental chemicals (e.g., endocrine-disrupting
chemicals), are risk factors for disease development [79–81]. It is well known that passive
smoke exposure during pregnancy interferes with fetal brain development [82]. Low birth
weight, especially intrauterine growth retardation, is known to be a risk factor for chronic
kidney disease and hypertension. The kidneys are made up of nephrons (renal units), and
there are usually around 2 million nephrons per kidney. However, low maternal nutrition,
infections, and drugs (ethanol, gentamicin, NSAIDs) can cause the number of nephrons
in the fetus to be extremely low, which may lead to the development of hypertension and
chronic kidney disease after birth [83]. Other factors such as delayed growth outside the
uterus and postnatal administration of steroids and antimicrobials have also been sug-
gested to be associated with the risk of decreased renal function, leading to renal disease.
According to research, circadian rhythms during pregnancy also play a role in the health
and well-being of children in adulthood, including their risk of particular diseases [84,85].
In addition, gestational hypertension and gestational diabetes may lead to worse health
outcomes in newborns [86,87]. Previous studies have provided support for the roles of
both the epigenome and gut microbiota during the early postnatal period in future health,
thereby supporting the DOHaD theory [88–91].

Based on the DOHaD theory, there is believed to be a link between exposure to
external stress in the fetal environment and risk of noncommunicable diseases (NCDs)
in adulthood [92]. Given the increase in the proportion of the aging population in many
developed countries, reducing health expenditure through the prevention of NCDs has
become an important social and political issue. Previous research suggested that research
focusing on the DOHaD was important to develop regional strategies to contribute to a
reduction in the incidence of NCDs in low-income countries [93].

3. Mitochondrial DNA Copy Number

In 1988, human mitochondrial transcription factor A (TFAM) was originally identified
as a transcription factor for mtDNA [94]. Later, it was found that an important role of TFAM
is to stabilize mtDNA by binding to the entire mtDNA region in a sequence-nonspecific
manner [95]. Today, TFAM is known to be a major protein in the mtDNA–protein complex
called mitochondrial nucleoid [96]. Since the expression level of TFAM in cells correlates
with the amount of mtDNA [97], it has been proposed that mtDNA can exist stably
depending on the amount of higher-order structures that can be formed in TFAM. In
addition, Lon protease is thought to be indirectly involved in the regulation of mtDNA
content because it specifically degrades TFAM [98].

TWNK mutant mice are known as an animal model for reduced mtDNA copy num-
ber [99]. The TWNK gen encodes Twinkle, a helicase that unwinds the mtDNA double
helix and plays an important role in mtDNA replication. In these mice, there is a significant
decrease in tissue respiratory function and central nervous system mtDNA copy number
after 12 months of age. This suggests that TWNK gene mutations may be involved in the
pathogenesis of MTDPS. In the future, further establishment and detailed analysis of animal
models of mitochondrial diseases are necessary to understand the complex pathogenesis
of mitochondrial diseases and the regulatory mechanism of mtDNA copy number.

It is well known that mitochondria are targets of environmental compounds, such as
pesticides, polychlorinated biphenyls, heavy metals, and particulate matters (PMs) [100].
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In a study on polycyclic aromatic hydrocarbons (PAHs), a widespread environmental
pollutant produced during the combustion process, the blood mtDNA content decreased
by 9.85% (95% CI: −15.16 to −4.2; p = 0.002) for every doubling of nonvolatile PAH content
in house dust during winter, regardless of sex, age, body mass index, or grilled meat/fish
consumption (0.002) [101]. The corresponding estimate for volatile PAHs was −7.3% (95%
CI: −13.71 to −0.42; p = 0.04). A study that examined the relationship between nonoc-
cupational exposure to PM2.5, benzo[a]pyrene (BaP), a PAH, and mtDNA copy number
found an inverse relationship between mtDNA copy number and exposure to PM2.5 and
BaP [102]. Every 1 log-µg/m3 increase in PM2.5 was associated with significant mtDNA
copy number loss (−10.3 copies per cell) (95% CI: −18.6, −2.0, p = 0.02). Occupational
exposure to PM via dust also caused changes in mtDNA copy number [103]. The results of
the Beijing Truck Driver Air Pollution Study on 60 truck drivers and 60 office workers just
prior to the 2008 Beijing Olympics (15 June to 27 July 2008) observed a decrease in blood
mtDNA copy numbers in association with increased exposure to elemental carbon during
working hours and recent exposure to PM10 in the air [104].

In general, the mtDNA copy number is calculated from the amplification products
of genes in the mitochondrial genome using a quantitative real-time polymerase chain
reaction (PCR) assay, with the amplification products of genes in the nuclear genome used
as a reference [105]. A 2021 study by the Genotype-Tissue Expression Project examined
the relationship between whole-blood mtDNA copy numbers in 419 individuals and
peripheral blood and tissue gene expression [53]. In the study, the mtDNA copy number
was significantly associated with the expression of 700 genes, including nuclear genes
required for mtDNA replication. This indicates that the mtDNA copy number in peripheral
blood would be a biomarker that reflects the metabolic status of multiple tissues. In the
future, it will be necessary to accumulate knowledge to support the usefulness of mtDNA
copy number in peripheral blood as a biomarker.

4. Environmental Factors during Pregnancy and mtDNA Copy Number in Newborns

The oocyte mtDNA copy number is tightly regulated during development [106].
Primordial germ cells have a low amount of mtDNA, about 200 copies per cell. These copies
form the template for all mtDNA transmitted through the germline and are replicated
exponentially during oogenesis. A mature egg has the highest mtDNA copy number of
any cell. This high content is directly related to the capacity of the oocyte to support the
early stages of embryonic development in many species [107]. Epigenetic reprogramming
depends on the metabolic cofactors produced by the mitochondrial metabolism, and the
reactive oxygen species derived from the mitochondrial respiratory chain are essential for
the regulation of cell signaling in the embryo. Therefore, if the environment reduces the
oocyte mtDNA copy number, it would be expected to affect not only the bioactivity of the
oocyte but also the health of the fetus.

In the context of the DOHaD theory, several epidemiological studies have suggested
that maternal exposure to environmental chemicals during pregnancy may be involved
in changes in fetal mtDNA copy number. In this regard, many studies have focused on
the correlation between air pollution and cord blood mtDNA copy number [108]. As
mtDNA is susceptible to environmental toxicants due to its limited repair capacity [109],
mitochondrial dysfunction via abnormalities in mtDNA can be caused by air pollution.
Mitochondrial dysfunction in the placenta may contribute to growth restriction of the fetus
by limiting intracellular energy utilization. Oxidative damage, inflammation, and hyper-
methylation have been proposed as the main mechanisms underlying mtDNA dysfunction,
with a correlation between DNA methylation and mtDNA replication, both of which are
known to regulate cell fate during development [17].

It has been well documented that exposure to airborne particles and passive smoke ex-
posure during pregnancy can affect birth weights [110–112]. In 2005, Bouhours-Nouet et al.
reported a 37% decrease in the relative content of mtDNA in placental tissue from smokers
compared to that in nonsmokers (p < 0.02) [113]. A 2012 study reported that a 10 µg/m3
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increase in exposure to PM10 in the last month of pregnancy resulted in a 16.1% decrease in
placental mtDNA content (95% CI: −25.2, −6.0%, p = 0.003) [114]. Furthermore, the same
group reported in 2015 that an increase in the interquartile range for PM2.5 exposure during
pregnancy was positively correlated with mtDNA methylation in placental tissue (p = 0.05)
and inversely correlated with mtDNA content (relative change: −15.60%, p = 0.001) [115].
According to a study in 2020, prenatal PM2.5 exposure at 25–32 weeks and PM10 exposure
at 25–31 weeks were significantly associated with a decrease in cord blood mtDNA copy
number [116]. PM2.5 exposure in the third trimester was also associated with mtDNA copy
number loss (cumulative change: −8.55%, 95% CI: −13.32%, −3.51%). On the other hand,
a 2018 study reported that PM10 exposure in early pregnancy was associated with mtDNA
copy number gain during pregnancy [117].

In 2016, Clemente et al. reported a correlation between environmental NO2 exposure
and a reduction in cord blood mtDNA copy number during pregnancy in two independent
cohort studies in Spain and Belgium, suggesting a correlation between cord blood mtDNA
copy number loss and low birth weight [118]. Furthermore, they reported that NO2
exposure during pregnancy is associated with low birth weight via a reduction in cord
blood mtDNA [119].

Maternal exposure to metals also affects cord blood mtDNA copy number. For
example, a study reported a correlation between thallium exposure during pregnancy and a
decrease in cord blood mtDNA copy number [120], and arsenic exposure during pregnancy
and a decrease in cord blood mtDNA copy number [121]. On the other hand, aluminum
exposure was associated with an increase in cord blood mtDNA copy number [122].

Exposure to PAHs during pregnancy is a risk factor for adverse neurobehavioral
development. According to the literature in 2020, prenatal exposure to PAHs decreases
neurobehavioral development scores and increases mtDNA copy number in children [123].
In addition, PAH exposure in utero is linked to neurobehavioral development disorders in
children. Exposure to benzotriazoles and benzothiazoles can interfere with mitochondrial
function by inducing oxidative stress, which may contribute to adverse health effects. In
fact, a 2020 study reported that prenatal exposure to benzotriazoles and benzothiazoles is
associated with changes in cord blood mtDNA copy number and that the effects varied
according to the sex of the infant [124]. In a study on bisphenol S (BPS) commonly used as
a substitute for bisphenol A, BPS exposure in male newborns is associated with a reduction
in cord blood mtDNA copy number [125].

Psychosocial stress is known to contribute to oxidative stress in the placenta [126].
The Programming of Intergenerational Stress Mechanisms study examined the association
of maternal lifetime stress, negative life events, depression, and post-traumatic stress
disorder symptom scores with placental mtDNA copy number [127]. In a linear regression
analysis, adjusting for maternal age, race/ethnicity, education, prenatal exposure to fine
PM, prenatal exposure to smoking, and child sex, all stress measures were associated with
placental mtDNA copy number loss (all p values < 0.05). These results were the first to
point to an association between maternal psychosocial stress and placental mtDNA copy
number loss.

In 2018, Priliani et al. examined the association between maternal mitochondrial
function, as expressed by the mtDNA copy number in venous blood, and birth weights
in 528 randomly selected mothers [128]. A real-time quantitative PCR assay of archived
blood samples and a regression analysis, adjusting for other major determinants of birth
weight, showed that their mtDNA copy numbers were inversely correlated with birth
weight (p < 0.001), especially in the third trimester (p < 0.001). Furthermore, they showed
that maternal multiple micronutrient supplementation improved the mtDNA copy number
in pregnant women [129]. Although the turnover and mechanism of mtDNA synthesis
in maternal blood, cord blood, and placental tissue may be different [130], based on the
literature, a nutritional approach may mitigate the health effects of environmental chemical
exposure through changes in the mtDNA copy number.
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These results suggest that the copy number of mitochondrial DNA in maternal blood
or cord blood increases or decreases in response to environmental changes during preg-
nancy. Although the mechanism is not fully understood, the recent accumulation of
epidemiological findings leaves no doubt about the causal relationship, and scientific
evidence is accumulating to support the DOHaD theory. It may be acceptable to regard
mitochondrial DNA copy number as a kind of DOHaD mediator. However, in the future,
it will be necessary to clarify which part of the mechanism controlling mitochondrial DNA
copy number can be disrupted by environmental stress.

5. Conclusions

This paper summarizes the results of recent epidemiological studies on maternal
exposure to various environmental factors during pregnancy and mtDNA copy number
loss and gain from the perspective of the DOHaD theory (Table 1). Our understanding of
environmental stress during pregnancy and changes in cord blood mtDNA copy number
has increased, especially in epidemiological studies of air pollution. Susceptibility to PMs
seems to vary depending on the time of pregnancy. While it remains debatable, human
mtDNA copy number would be an indicator of environmental influences during fetal life,
as well as a surrogate marker of disease risk in adulthood. Thus, here, the author proposes
a hypothesis that mtDNA copy number may be the “missing link” between temporally
distant events, such as environmental exposures during development and morbidity
risk in adulthood. In the future, the preservation of mtDNA copy number during the
developmental period will lead to novel disease-preventive strategies and therapies. For
example, further investigation aimed at developing NCD prevention strategies could focus
on interventions, such as nutritional supplementation, in high-risk groups during the pre-
and perinatal periods.

Table 1. Recent epidemiological studies on environmental factors during pregnancy and cord blood mtDNA copy number.

Environmental Factor Exposure Cord Blood mtDNA Copy Number Reference

Air pollution

Smoking Decrease [113]
PM10 (last month) Decrease [114]

PM2.5 Decrease [115]
PM2.5 (25–32 weeks) and

PM10 (25–31 weeks) Decrease [116]

PM10 (early pregnancy) Increase [117]
NO2 Decrease [118,119]

Metal
Thallium Decrease [120]
Arsenic Decrease [121]

Aluminum Increase [122]

Environmental chemical
PAHs Decrease [123]

Benzotriazoles and Benzothiazoles Decrease [124]
BPS Decrease [125]

Psychosocial stress
Maternal lifetime stress, Negative life

events, depression, and
post-traumatic stress disorder

Decrease [127]
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