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Abstract: The present study investigated the synergic effect of extracts of Morus alba (MA) and Aronia
melanocarpa (Michx.) (AR) against high-fat diet induced obesity. Four-week-old male C57BL/6J mice
were randomly divided into five groups that were fed for 14 weeks with a normal diet (ND), high-fat
diet (HD), HD with M. alba 400 mg/kg body weight (MA), HD with A. melanocarpa 400 mg/kg
body weight (AR), or HD with a mixture (1:1, v/v) of M. alba and A. melanocarpa (400 mg/kg)
(MA + AR). Treatment with MA, AR, and MA + AR for 14 weeks reduced high fat diet-induced
weight gain and improved serum lipid levels, and histological analysis revealed that MA and AR
treatment markedly decreased lipid accumulation in the liver and adipocyte size in epididymal
fat. Furthermore, micro-CT images showed MA + AR significantly reduced abdominal fat volume.
Expression levels of genes involved in lipid anabolism, such as SREBP-1c, PPAR-γ, CEBPα, FAS, and
CD36 were decreased by MA + AR treatment whereas PPAR-α, ACOX1, and CPT-1a levels were
increased by MA + AR treatment. Protein expression of p-AMPK and p-ACC were increased in the
MA + AR group, indicating that MA + AR ameliorated obesity by upregulating AMPK signaling.
Together, our findings indicate that MA and AR exert a synergistic effect against diet-induced obesity
and are promising agents for managing obesity.
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1. Introduction

Obesity is a clinical disease characterized by excessive body fat that poses various
health problems. Obesity in Asian countries is diagnosed as a body mass index (BMI = body
weight/height in meters2) greater than or equal to 25 kg/m2 based on World Health
Organization criteria [1]. There is a close relationship between obesity and the incidence of
metabolic syndrome, which comprises type 2 diabetes mellitus (T2DM), cardiovascular
disease, hypertension, and dyslipidemia, all of which lower quality of life and are associated
with increased mortality [2]. Current obesity treatments are lifestyle modification, therapy,
pharmacotherapy, and bariatric surgery [3]. Research has focused on fat accumulation,
absorption, adipocyte differentiation, lipogenesis, and lipolysis to develop functional foods
or nutraceuticals that can ameliorate obesity [4,5].

Morus alba (MA), also known as silkworm mulberry, common mulberry or white
mulberry is a plant in the family Moraceae. This species, which is native to India and
northern China, has many beneficial health effects [6]. Compounds such as quercetin-
3-(6-malonyl-glycoside), carotene, folic acid, folinic acid, vitamin D, succinic acid, and
prenylflavanes have been isolated from the leaves of MA [7]. Extracts of MA leaves have
also been showed to regulate a blood glucose levels related to T2DM [8]. Furthermore,
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Li et al. [9] reported that compounds isolated from leaves of MA inhibited lipid accu-
mulation in 3T3-L1 adipocytes. MA has also been demonstrated to have anti-obesogenic
effects by promoting adipocyte apoptosis and impeding pre-adipocyte differentiation and
lipogenesis in high-fat diet (HD)-induced obese mice [10].

Aronia melanocarpa (Michx.) (AR), widely known as black chokeberry, is native to east-
ern North America and eastern Canada and is a member of the Rosaceae family. It is easy to
cultivate, and its fruits have numerous bioactive compounds. AR has been shown to have
anti-T2DM effects [11], anti-fibrotic effects in the liver by inhibiting TGF-β signaling [12],
anti-inflammatory effects [13], as well as hypoglycemic and hypolipidemic [14] properties.
It also has neuroprotective effects and has been shown to improve cognitive and locomotor
ability by increasing acetylcholinesterase activity [11], in addition to anti-hypertensive
effects [15]. Bioactive compounds of AR include neochlorogenic and chlorogenic acid,
anthocyanins, flavanols, flavonols [16]. Zhu et al. [17] reported that polyphenol-rich AR
extract modulated the gut microbiota and improved lipid metabolism in an obese rat model.

Although a few studies have investigated the anti-obesogenic effects of MA or AR
alone [9,10,17,18], no previous studies have examined their combined effect. Combined
treatment with extracts from these two plant species could have a synergistic effect. Choi
et al. showed that Patrinia scabiosaefolia and Hippophae rhamnoides extracts had a synergistic
anti-obesity effect [19]. Similarly, crocin, chlorogenic acid, geniposide, and quercetin have
been shown to reduce lipid accumulation in hepatic cells [20]. Given that MA and AR
contain various bioactive compounds that may potentially interact a synergistically, our
goal in this study was to determine if MA and AR interacted synergistically to ameliorate
HD-induced obesity.

2. Materials and Methods
2.1. Preparation and HPLC Analysis of MA and AR

Powdered forms of MA leaves and AR fruits were obtained from Jinan-gun, Korea and
were extracted twice, three hours from reflux extractor, each with 700 mL of 80% ethanol
in 70 g powder. The extract was filtered with whatman N0.41 and concentrated with a
rotary evaporator to remove the ethanol, freeze-dry, and manufactured in powder form.
The compounds in the MA and AR was quantified by HPLC.

The compounds of MA were determined using Agilent 1200 infinity (Palo Alto, CA,
USA) equipped with a FLD detector. A Capcell pak ADME 3UM column (4.6 × 150 mm)
was used. Flow rate was set at 1.0 mL/min. The column temperature was continued at
35 ◦C. Injection volume was 10 µL. Excitation wavelength and emission wavelength were
set to be 254 and 322 nm, respectively, for the analysis. A gradient elution using solvent
A (0.1% formic acid in DW) and solvent B (acetonitrile) was used as follows: 0–10 min,
60% A and 40% B. The compounds of AR were determined using Agilent 1200 infinity
(Palo Alto, CA, USA) equipped with a DAD detector. A Capcell pak ADME 3UM column
(4.6 × 150 mm) was used. Flow rate was set at 1.0 mL/min. The column temperature
was continued at 25 ◦C. Injection volume was 10 µL. Wavelength was set to be 310 nm.
A gradient elution using solvent A (0.1% formic acid in DW) and solvent B (acetonitrile)
was used as follows: 0–4 min, 90% A and 10% B; 4–15 min, 90% A and 10% B; 15–25 min,
70% A and 30% B; 25–30 min, 70% A and 30% B; 30–40 min, 90% A and 10% B. These were
performed by the Institute of Jinan Red Ginseng (Jinan-gun, Korea).

2.2. Animal Experimental Protocol

All experimental protocols related to animals were endorsed by the Animal Ethics
Committee of Jeonbuk National University (CBNU 2020–0123). Four-week-old C57BL/6J
mice were purchased from Central Lab, Animal, Inc. (Seoul, Korea) and experimental
diets obtained from DooYeol Biotech (Seoul, Korea). Upon arrival, mice were housed in
cages under a 12 h light, 12 h dark cycle within the temperature (range of 25 ± 2 ◦C) and
humidity of 50 ± 5%. After one week of adaptation, mice were divided into five groups
each containing 10 mice: ND (normal diet control), HD (high-fat diet control), MA (high-fat
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diet supplemented with MA extract), AR (high-fat diet supplemented with AR extract), and
MA + AR (high-fat diet supplemented with a mixture of MA + AR). The normal-diet (ND)
group was fed a diet containing 10% kcal from fat (D12450B), and the high-fat diet groups
were fed a diet containing 60% kcal from fat (D12492) for 14 weeks and the treatment
with samples were started at the same time of experimental diet feeding. MA and AR
groups received oral administration of individual extracts at 400 mg/kg body weight (bw),
while the MA + AR group received extracts (400 mg/kg bw each) mixed at a 1:1 v/v ratio.
Samples were dissolved in distilled water and orally administered 100 µL per mouse for
14 weeks, once a day. The control groups received oral administration of the same volume
of distilled water.

Body weight was measured once a week. Feed intake was calculated thrice a week,
by subtracting the remaining amount from the feed given per mice per cage. Mice were
sacrificed after the experimental period after 12 h of overnight fasting and blood, liver,
epididymal white adipose tissue were collected. Serum was collected by keeping the blood
at room temperature for 1 h followed by centrifugation at 3000 rpm for 15 min at 4 ◦C.
Epididymal fat and liver were dissected, weighed, and stored a −72 ◦C until further assay.

2.3. Analysis of Serum Biochemical Parameters

Serum triglyceride (TG), total cholesterol (TC), and high-density lipoprotein choles-
terol (HDL-C) levels were determined by enzymatic methods using commercial kits (Asan
Pharmaceutical Co., Seoul, Korea). Very-low-density lipoprotein cholesterol (VLDL-C)
and low-density lipoprotein cholesterol (LDL-C) levels were calculated using Friedewald’s
formula (Friedewald, Levy, and Fredrickson, 1972). Serum free fatty acids (FFAs) and
glycerol concentrations were determined with assay kits (Abcam, Cambridge, UK) (FFAs,
Cat# ab65341; glycerol, Cat# ab65337, ab202373). Serum insulin, adiponectin, and leptin
concentrations were determined using ELISA kits according to the manufacturer’s proto-
cols (insulin, Cat# 80-INSMS-E01, ALPCO Diagnostics, Salem, NH, USA; adiponectin and
leptin, Cat# MRP300 and MOB00, respectively, R&D Systems, Minneapolis, MN, USA). Ab-
sorbance was measured using a microplate reader (MRX II, Dynex Technologies, Chantilly,
VA, USA).

Hepatic lipids were extracted as described previously [21]. To measure hepatic FFAs
and glycerol content, liver tissue was homogenized and analyzed using the same commer-
cial kits used for serum.

2.4. Micro-Computed Tomography (CT)

Micro-CT was conducted using a high-resolution in vivo micro-CT system (Skyscan,
Konitch, Belgium) at the Center for University-wide Research Facilities (CURF) of Jeonbuk
National University to analyze visceral white adipose tissue (VAT) volume. Fat volume
was calculated using Image J software.

2.5. Histological Analysis

Liver and adipocyte tissue were fixed with 10% formalin for 48 h and samples were
processed further by the KP&T Company (Cheongju-si, Korea). Hematoxylin and eosin
(H&E) staining and Oil Red O (ORO) staining were performed. Stained samples were ana-
lyzed by optical microscopy (DM2500, Leica, Germany) in the CURF of Jeonbuk National
University. Image-J software (US National Institutes of Health, Bethesda, MD, USA) was
used to determine adipocyte area.

2.6. Gene Expression Analysis

Expression levels of genes associated with lipid metabolism in the liver and adipose
tissue were analyzed using real time-PCR (Applied Biosystems, Waltham, MA, USA). The
following PCR cycle was performed: Stage 1; 95 ◦C for 10 min, Stage 2; (Step 1–95 ◦C
for 15 s, Step 2–60 ◦C for 20 s, and Step 3–72 ◦C for 35 s) × 40 cycles. Briefly, mRNA
from liver and adipose tissue was isolated using Trizol reagent (Life Technologies, Inc.,
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Carlsbad, CA, USA). After quantification of RNA concentration, cDNA was synthesized
using the PrimeScript RT Master Mix (Takara, Kyoto, Japan). Real time-PCR was conducted
using SYBR green qPCR mix (Toyobo, Osaka, Japan). Primers used in RT-PCR are listed in
Table 1.

Table 1. List of primers used for PCR.

Gene Name 1 Primers Sequence (5′→ 3′)

SREBP-1c
Forward ACGGAGCCATGGATTGCACA
Reverse AAGGGTGCAGGTGTCACCTT

PPAR-γ
Forward GCCCACCAACTTCGGAATC
Reverse TGCGAGTGGTCTTCCATCAC

C/EBP-α
Forward GTGTGCACGTCTATGCTAAACCA
Reverse GCCGTTAGTGAAGAGTCTCAGTTTG

FAS
Forward GAAGTGTCTGGACTGTGTCATTTTTAC
Reverse TTAATTGTGGGATCAGGAGAGCAT

CD36
Forward GCTTGCAACTGTCAGCACAT
Reverse GCCTTGCTGTAGCCAAGAAC

PPAR-α
Forward AGGCTGTAAGGGCTTCTTTCG
Reverse GGCATTTGTTCCGGTTCTTC

ACOX1
Forward GTATAAACTCTTCCCGCTCCTG
Reverse CCAGGTAGTAAAAGCCTTCAGC

CPT-1a
Forward TGGCATCATCACTGGTGTGTT
Reverse GTCTAGGGTCCGATTGATCTTTG

1 SREBP-1c, sterol regulatory-element binding proteins I; PPAR-γ, peroxisome proliferator-activated receptor
gamma; C/EBP-α, CCAAT/enhancer-binding protein alpha; FAS, fatty acid synthase; CD36, cluster of differentia-
tion 36; PPAR-α, peroxisome proliferator-activated receptor alpha; ACOX1, acyl-coenzyme A oxidase 1; CPT-1a,
carnitine palmitoyltransferase I alpha.

2.7. Western Blot Analysis

Protein levels of p-AMPK, AMPK, ACC, p-ACC (Cell Signaling Technology, Danvers,
MA, USA), and β-actin (Santa Cruz Biothechnology, Dallas, TX, USA) in the liver were
determined by immunoblotting. Liver tissue (50–100 mg) was homogenized in RIPA lysis
buffer (Pierce-Thermo Fisher Scientific Korea Ltd., Seoul, South Korea) containing 1%
protease inhibitor and 1% phosphatase inhibitor cocktail (Merck, Seoul, South Korea),
centrifuged (4 ◦C, 12,000× g, 15 min), and the supernatant was then collected. After
measuring protein concentrations, equal concentration of samples was heated to 95 ◦C
after mixing with 5X protein buffer. Then, proteins were electrophoresed on 8–10% SDS-
polyacrylamide gels and transferred to polyvinylidene difluoride membranes (Bio-Rad
Laboratories, Hercules, CA, USA) followed by blotting with antibodies.

2.8. Statistical Analysis

Data are expressed as means ± standard deviation of the mean (S.D). Statistical
significance was verified using Duncan’s test with one-way ANOVA in SPSS version
17.0 (SPSS Inc., Chicago, IL, USA), and results were considered significant at p < 0.05.
Values with different superscript letters (a, b, c) indicate statistically significant differences
among groups.

3. Results
3.1. Compounds Present in MA and AR

For HPLC analysis, the most commonly detected substance in the 80% ethanol extract
of MA is 1-deoxynojirimycin. The amount of 1-deoxynojirimycin is 21.45 mg/g extract
(Figure 1A). As shown in Figure 1B, chlorogenic acid was contained in the 80% ethanol
extract of AR and its amount is 3.89 mg/g extract.
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Figure 1. HPLC analysis of Morus alba (MA) leaf and Aronia melanocarpa (AR) fruit and chemical structure. (A) HPLC
chromatogram of MA extract, (B) HPLC chromatogram of AR extract.

3.2. Effect of MA and AR Extracts on Body Weight, Tissue Weight, and Feed Intake

As shown in Figure 2A,B, body weight of all HD groups was significantly higher
than that of the ND group. From week one of the experiment, the body weight of the ND
group was significantly lower than that of the other groups. Treated groups showed a
significant reduction in body weight compared to the HD group. Significant differences in
body weight between the HD group and treated groups were observed starting at week 5.
There were no significant differences in feed intake among these groups (Figure 2C). As
shown in Figure 2D,E, the weights of the liver and epididymal fat to body weight were
significantly greater in the HD group than the ND group. This HD-induced increase in liver
weight was reversed in all the treatment groups. Epididymal fat weight was significantly
decreased in all treated groups compared to the HD group, especially the MA + AR group.
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Figure 2. Effect of MA and AR on body weight (bw) and organ weight in experimental mice. M. alba extract (400 mg/kg
bw), A. melanocarpa extract (400 mg/kg bw), or mixture of these two extracts was orally administered to experimental mice
fed a high-fat diet for 14 weeks. (A) Growth curve during the experimental period, (B) final body weight, (C) feed intake for
14 weeks, (D) liver weight (g)/bw (g) %, (E) epididymal fat weight (g)/bw (g) %. ND, normal diet, HD, high-fat diet, MA,
high-fat diet + M. alba 400 mg/kg bw, AR, high-fat diet + A. melanocarpa 400 mg/kg bw, MA + AR, high-fat diet + mixture of
M. alba and A. melanocarpa (400 mg/kg bw). Results are expressed as means ± S.D (n = 10). Means with different superscript
letters (a, b, c, d) are significantly different from each other by Duncan’s test of ANOVA at p < 0.05. “a” denotes the highest
value and “d” represents the lowest value.
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3.3. Effect of MA and AR Treatment on Serum Lipid Profiles and Adipokine Levels

As shown in Table 2, HD group mice had significantly higher levels of all serum lipids
profiles than the ND group except for FFAs. High-fat diet fed groups treated with MA or
AR showed a significant reversal in levels of TC, TG, LDL-C, VLDL, FFAs, and glycerol
compared to the HD group. Levels of serum adipokines differed significantly between
the ND and HD groups. Treatment with MA or AR significantly increased adiponectin
level, and decreased leptin and insulin levels. TC, TG, LDL-C, VLDL, FFAs, glycerol,
adiponectin, leptin, and insulin levels differed significantly between the MA + AR group
and the HD group.

Table 2. The effect of MA, AR on serum profiles in the experimental mice.

Parameters ND HD MA AR MA + AR

TC (mg/dL) 111.2 ± 21.2 c 192.4 ± 11.4 a 184.7 ± 12.5 a 178.4 ± 17.9 ab 163.3 ± 22.2 b

TG (mg/dL) 88.0 ± 13.6 b 120.3 ± 20.7 a 102.1 ± 13.5 b 99.5 ± 10.6 b 96.1 ± 11.6 b

HDL-C (mg/dL) 47.5 ± 4.7 b 56.8 ± 4.4 a 60.5 ± 3.6 a 59.3 ± 2.2 a 60.4 ± 6.4 a

LDL-C (mg/dL) 48.8 ± 20.7 c 112.4 ± 14.6 a 106.5 ± 10.3 ab 99.4 ± 15.7 ab 91.7 ± 13.6 b

VLDL (mg/dL) 17.6 ± 2.7 b 24.1 ± 4.1 a 20.4 ± 2.7 b 20.7 ± 3.1 b 19.2 ± 2.3 b

Free fatty acid (nmol/µL) 0.90 ± 0.01 ab 0.99 ± 0.11 a 0.71 ± 0.14 b 0.75 ± 0.22 b 0.74 ± 0.14 b

Glycerol (nmol/µL) 0.22 ± 0.03 b 0.28 ±0.03 a 0.24 ± 20.02 b 0.24 ± 0.03 b 0.22 ± 0.03 b

Adiponectin (ng/mL) 10.32 ± 0.30 a 9.54 ±0.38 b 11.05 ± 0.39 a 10.51 ± 0.97 a 10.50 ± 0.88 a

Leptin (ng/mL) 4.15 ± 1.81 c 75.24 ± 13.84 a 61.19 ± 15.78 ab 59.93 ± 9.51 ab 56.08 ± 13.7 b

Insulin (ng/mL) 0.06 ± 0.03 c 1.44 ± 0.56 a 0.66 ± 0.38 b 0.71 ± 0.46 b 0.98 ± 0.63 b

M. alba extract (400 mg/kg bw), A. melanocarpa extract (400 mg/kg bw), or mixture of these two extracts was orally administered to
experimental mice fed a high-fat diet for 14 weeks. TC, total cholesterol, TG, triglycerides, HDL-C, high-density lipoprotein cholesterol,
LDL-C, low-density lipoprotein-cholesterol, VLDL, very low density-lipoprotein cholesterol. ND, normal diet, HD, high-fat diet, MA,
high-fat diet + M. alba 400 mg/kg bw, AR, high-fat diet + A. melanocarpa 400 mg/kg bw, MA + AR, high-fat diet + mixture of M. alba and A.
melanocarpa (400 mg/kg bw). Results are expressed as means± S.D (n = 10). Means with different superscript letters (a, b, c) are significantly
different from each other by Duncan’s test of ANOVA at p < 0.05. “a” denotes the highest value and “c” represents the lowest value.

3.4. Effect of MA and AR on Hepatic Lipids

Hepatic lipid profiles are shown in Table 3. HD mice had significantly higher levels of
hepatic TC and TG than the ND group (p < 0.05). There was a significant difference in TC
between the HD group and the groups treated with MA or AR alone. Hepatic TG were
significantly reduced in all treatment groups compared to the HD group.

Table 3. The effect of MA, AR on hepatic lipids in the experimental mice.

Parameters ND HD MA AR MA + AR

TC (mg/g tissue) 17.3 ± 1.6 b 23.7 ± 4.0 a 18.8 ± 3.0 b 21.0 ± 3.6 b 21.9 ± 3.9 ab

TG (mg/g tissue) 50.3 ± 7.7 b 66.1 ± 8.0 a 55.0± 8.7 b 49.9 ± 10.2 b 55.9 ± 8.6 b

M. alba extract (400 mg/kg bw), A. melanocarpa extract (400 mg/kg bw), or mixture
of these two extracts was orally administered to experimental mice fed a high-fat diet for
14 weeks. TC, total cholesterol, TG, triglycerides. ND, normal diet, HD, high-fat diet, MA,
high-fat diet + M. alba 400 mg/kg bw, AR, high-fat diet + A. melanocarpa 400 mg/kg bw,
MA + AR, high-fat diet + mixture of M. alba and A. melanocarpa (400 mg/kg bw). Results
are expressed as means ±S.D (n = 10). Means with different superscript letters (a, b) are
significantly different from each other by Duncan’s test of ANOVA at p < 0.05. “a” denotes
the highest value and “b” represents the lowest value.

3.5. Changes in Visceral Fat Volume and Histopathology after MA and AR Treatment

Micro-CT was used to investigate changes in visceral fat volume after treatment.
Visceral fat volume of the HD group was higher than that of the ND group (Figure 3).
Compared with the HD group, the visceral fat volume of all treatment groups was reduced.
The group treated with both MA and AR had a significantly reduced visceral fat volume
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than the group treated with each extract alone. As shown in Figure 4A,B, the size of
epididymal white adipose tissue (WAT) in the HD group was significantly higher than
that in the ND group based on H&E staining of epididymal WAT. Nevertheless, treatment
with MA, AR, and MA + AR reduced adipocyte size. Oil Red O and H&E staining of liver
tissue (Figure 4C,D) revealed that lipid droplets in the liver of HD group was more than
in the ND group and HD-induced ectopic lipid accumulation was seemed to reversed by
treatment with MA, AR, and MA + AR.
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Figure 3. Micro-CT analysis of abdominal fat volume in the experimental mice. M. alba extract (400 mg/kg bw), A.
melanocarpa extract (400 mg/kg bw), or mixture of these two extracts was orally administered to experimental mice fed
a high-fat diet for 14 weeks. (A) Micro-CT image of abdominal mouse area, (B) percentage of visceral fat volume. ND,
normal diet, HD, high-fat diet, MA, high-fat diet + M. alba 400 mg/kg bw, AR, high-fat diet + A. melanocarpa 400 mg/kg bw,
MA + AR, high-fat diet + mixture of M. alba and A. melanocarpa (400 mg/kg bw). Results are expressed as means ± S.D
(n = 10). Means with different superscript letters (a, b, c, d, e) are significantly different from each other by Duncan’s test of
ANOVA at p < 0.05. “a” denotes the highest value and “e” represents the lowest value.

3.6. mRNA Expression of Genes in Liver and Adipose Tissue

The mRNA expression of genes involved in lipid metabolism in the liver was analyzed
using real time-PCR (Figure 5A). Expression of adipogenesis related genes, such as SREBP-
1c, PPAR-γ, and C/EBP-α, was significantly higher in the HD group than the ND group. In
the MA and AR groups, the expression of these genes was decreased compared to the HD
group. There were significant differences in SREBP-1c, PPAR-γ, and C/EBPα expressions
in the MA + AR group compared to HD group. The mRNA expression of genes related to
fat accumulation, namely FAS and CD36, showed a similar pattern. Furthermore, mRNA
expression of the lipolysis-related genes PPAR-α and ACOX1was increased in the MA,
AR, and MA + AR groups compared with the HD group. As shown in Figure 5B, relative
C/EBP-α expression in adipose tissue was significantly higher in the HD group than the
other groups. Treatment with MA, AR, and MA + AR reduced expression of C/EBP-α.
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The expression of lipolysis-related genes such as PPAR-α and CPT-1a was significantly
increased in the AR and MA + AR groups compared to the ND, HD, and MA groups.
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3.7. Western Blot Analysis of Liver Tissue

As shown in Figure 6, levels of phosphorylated adenosine monophosphate (AMP)-
activated protein kinase (p-AMPK) and phosphorylated-acetyl-CoA carboxylase (p-ACC)
were significantly higher in all treatment groups compared with the HD group. The
MA + AR group showed a marked difference in expression of p-ACC compared to the
other treatment groups. These results suggest that the combination of MA and AR has an
anti-obesity effect by targeting the AMPK pathway and promoting the phosphorylation of
ACC, thereby suppressing lipogenesis.
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experimental mice fed a high-fat diet for 14 weeks. (A) Relative mRNA expression in liver, (B) relative mRNA expression
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melanocarpa 400 mg/kg bw, MA + AR, high-fat diet + mixture of M. alba and A. melanocarpa (400 mg/kg bw). Results are
expressed as means ± S.D (n = 10). Means with different superscript letters (a, b, c, d) are significantly different from each
other by Duncan’s test of ANOVA at p < 0.05. “a” denotes the highest value and “d” represents the lowest value.
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Figure 6. Proteins involved in lipid metabolism in the liver of the experimental mice. M. alba extract (400 mg/kg b.w), A.
melanocarpa extract (400 mg/kg b.w) or mixture extract were orally administered to experimental mice fed a high-fat diet for
14 weeks. AMPK, adenosine monophosphate (AMP)-activated protein kinase, p-AMPK, phosphorylated AMPK, ACC,
acetyl-CoA carboxylase, p-ACC, phosphorylated ACC. (A) Western blot, (B) relative expression of p-AMPK, and (C) relative
expression of p-ACC. ND, normal diet, HD, high-fat diet, MA, high-fat diet + M. alba 400 mg/kg bw, AR, high-fat diet + A.
melanocarpa 400 mg/kg bw, MA + AR, high-fat diet + mixture of M. alba and A. melanocarpa (400 mg/kg bw). Results are
expressed as means ± S.D (n = 10). Means with different superscript letters (a, b, c, d) are significantly different from each
other by Duncan’s test of ANOVA at p < 0.05. “a” denotes the highest value and “d” represents the lowest value.
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4. Discussion

The prevalence of obesity has increased during the past 35 years to the extent that
more than one third of the world’s population are overweight or obese [22]. Obesity is
diagnosed based on BMI in addition to changes in FFAs, and insulin levels, as well as
vascular muscle tone and glucose levels. Changes in physiology are dependent on the
regional distribution of body fat, and can result in insulin resistance, T2DM, cardiovascular
diseases, hypertension, and chronic respiratory failure [23]. Experts advise reducing body
weight and changing lifestyle by eating balanced meals and increasing energy expenditure
to remain healthy. Therapeutic drug intervention can help in achieving a normal body
weight. However, several anti-obesity drugs have been reported to have adverse reactions,
such as nausea, and cardiovascular and pulmonary hypertension [24]. Nutraceutical and
herbal medicines from natural compounds are, therefore, being actively researched [25].

In the present study, we investigated the anti-obesity effects of the combination of
MA and AR in a HD-induced obese mouse model. MA, AR, or a mixture of these two
extracts was administered orally to mice for 14 weeks. Treatment with MA and AR,
reversed obesity-induced changes in blood lipids, serum hormones, liver weight, and
epididymal fat weight, as much as individual treatment with these extracts. Moreover, the
expression of lipolysis-related genes in liver and adipose tissue was significantly increased
by MA + AR treatment.

Continuous consumption of a high-fat diet leads to a continual increase in body weight
and fat mass [26]. The increased body weight of all HD-fed groups compared to the ND
group indicated successful induction of obesity. A high-fat diet induces accumulation of fat
in organs, such as the heart, liver, intestine, and muscle [27,28], contributing to the increase
in body weight. All treatment group showed less ectopic lipid accumulation in the liver
than the HD group, as evidenced by a reduction in the number of globules in ORO-stained
and H&E-stained liver tissue stions. Furthermore, abdominal fat volume was also reduced
by MA, AR, and MA + AR treatment. Together, these changes explain the reduction in
body weight in the treated groups. A previous study reported that MA and AR reduced
tissue and body weight, consistent with our findings [10,18].

Persistent dyslipidemia increases the risk of T2DM and vascular diseases, such as
stroke, hypertension, and coronary artery disease (CAD) [29]. In the present study, MA
and AR treatment decreased TC, TG, LDL-C, and VLDL levels, consistent with a previous
report [18,30]. FFAs are present in the blood in obesity, and increase insulin resistance,
glucose production, inhibit movement of glucose into muscle cells, and downregulate the
expression of the insulin receptor. FFAs are, therefore, associated with insulin resistance
and T2DM [31,32]. All treatment group showed significantly reduced serum FFAs and
glycerol levels compared to the HD group, indicating that treatment with MA, AR, and the
combination of these two extracts improved obesity-induced T2DM. Leptin is a hormone
produced and sreted by adipocytes in direct relation to the volume of body adipose tissue.
Leptin regulates appetite, hunger, and satiety through the central nervous system [33].
Visceral obesity increases leptin concentration and causes leptin resistance. In contrast,
adiponectin level is inversely proportional to body fat mass. Adiponectin deficiency
causes metabolic syndrome, insulin resistance, and cardiovascular disease [34]. Previous
studies showed that MA and AR decreased leptin and increased adiponectin levels in
serum [18,35]. In our study, leptin level was significantly reduced in the MA + AR group
compared to the HD group, while MA and AR groups showed a tendency towards reduced
leptin concentrations compared to the HD group. There were significant differences in
adiponectin levels between the MA, AR, and MA + AR groups compared with the HD
group. A decreased adiponectin level increases glycemia by increasing gluconeogenesis
and reducing glucose uptake and it is associated with insulin resistance and, therefore,
T2DM. In addition, because insulin promotes fat synthesis in the liver, high levels of insulin
are produced in obese-patients [29]. Insulin levels and body weight were significantly
reduced in all treatment groups compared to the HD group. These results indicate that
MA and AR improve insulin resistance [36,37]. There are several prior studies on the anti-
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obesity effect of 1-deoxynojirimycin detected in MA. The 1-deoxynojirimycin is potential
α-glucosidase inhibitor, reduces the adipocyte size, regulates lipid parameters in the liver
and blood, and activate β-oxidation. A factor of activation β-oxidation is adiponectin [38].
Overall, MA and AR ameliorated the symptoms and complications of obesity in our
mouse model.

Hormones and adipokines produced by adipose tissue play a central role in obesity.
PPAR-γ and C/EBP-α play key roles in pre-adipocyte differentiation and adipogenesis [39].
Expression of these genes is regulated by the transcription factor SREBP-1c that is expressed
in adipose tissue and liver, and the proteins encoded by these genes synthesize TG from the
surplus energy sources ingested. SREBP-1c is responsible for the synthesis of fatty acids and
TG by controlling the expression of FAS [40–42]. FAS is key enzyme in de novo lipogenesis
that produces first fatty acids, increases insulin resistance, and converts malonyl-CoA to
palmitate [43]. CD36 is a membrane-bound protein expressed on monocytes, macrophages,
thrombocytes, myocytes, and adipocytes that regulates the uptake of fatty acids across the
membrane as a transporter [44]. In our study, the mRNA expression of SREBP-1c, PPAR-
γ, C/EBP-α, FAS, and CD36 in liver tissue showed decreased tendency in all treatment
groups. In the MA + AR group, a significant decrease in expression of all these genes
was found compared to the HD group. In the adipose tissue, the expression of C/EBP-
α, an important transcription factor involved in adipogenesis, was reduced in all the
treated groups compared to the HD group indicating that MA, AR, and MA + AR reduced
adipogenesis in the obese mice model. Furthermore, the expression of PPAR-α and CPT-1a
were increased in AR and MA + AR treated groups. Activation of PPAR-α in adipose
tissue accounts for its reduced adipocyte size and increased insulin sensitivity [45]. In
addition, the transcription factor, PPAR-α has been suggested to be a therapeutic target
for obesity [46] as targeting of this gene can improve serum lipid profiles, lipoprotein
metabolism, and fatty acid β-oxidation [47]. ACOX1 is the first enzyme in the fatty acid
β-oxidation pathway and has a positive relationship with PPAR-α [48]. CPT-1a catalyzes
the conversion of fatty acyl-CoA to fatty acyl carnitine. This is regulated by PPAR-α and is
the first step in mitochondrial oxidation [49]. The MA group had increased expression of
PPAR-α in the liver compared to the HD group, and expression of PPAR-α was increased
in the MA + AR group, albeit not significantly. However, ACOX expression in the liver was
significantly higher in the MA + AR group than the HD group. This suggests a synergistic
interaction between MA and AR that promote β-oxidation of fatty acids. Altogether, the
results of the present study indicated that MA and AR in synergy could improve obesity by
decreasing lipogenesis and increasing β-oxidation in the body. A previous study reported
that MA ethanol extract had an anti-adipogenic effect by decreasing adipogenic genes
expression in differentiated adipocytes [10]. AR has been shown to have an anti-obesity
effect by downregulating the expression of SREBP-1c, PPAR-γ, and C/EBP-α [18]. The
results of our study showed a similar pattern.

Activation of AMPK has been shown to reduce body weight gain HD-induced obese
mice [50]. AMPK is involved in lipid metabolism by inhibiting acetyl-CoA carboxylase
(ACC). AMPK induces phosphorylation of ACC, thus inhibits lipogenesis [51]. In addition,
AMPK also upregulates β-oxidation by increasing the expression of PPARα. A previous
study reported that chlorogenic acid-rich berry consumption improves insulin sensitivity
by upregulating AMPK, PPAR-α, and ACOX [52]. The results of the present study were
also in agreement with these results.

The activation of AMPK was noticeably increased in MA + AR group indicating that
action of MA + AR against HD-induced obesity is through down regulation of lipogenesis
and upregulation of β-oxidation. Figure 7 shows the anti-obesity mechanism of MA
and AR.
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Clinical trials of MA extracts have been conducted in reducing cholesterol levels and
blood glucose on the hypolipidemic and hypoglycemic effects [53]. AR has also been found
in clinical trials to cholesterol and blood pressure [54]. However, clinical trials that studied
both MA and AR together are insufficient. Clinical trials are needed to evaluate synergistic
effective and safe doses of these extracts in humans.

5. Conclusions

In summary, we observed that MA and AR interacted synergistically to ameliorate
the negative effects of obesity compared to each of these extracts individually in C57BL/6
mice. MA and AR extracts significantly reduced the HD-induced increase in body weight.
Serum and liver biochemical parameters, such as TG, LDL-C, VLDL-C, total-cholesterol,
FFAs, glycerol, and adiponectin improved upon MA and AR treatment. These changes
were associated with changes in the expression of transcription factors and coactivators
related to adipogenesis and lipolysis. Furthermore, both MA and AR stimulated AMPK
and ACC phosphorylation in liver tissue in a synergistic manner. Taken together, these
results demonstrated that MA and AR had a synergistic anti-obesity effect.
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