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Abstract 

Background:  Hepatocellular carcinoma (HCC) ranks the sixth prevalent tumors with high mortality globally. Alterna-
tive splicing (AS) drives protein diversity, the imbalance of which might act an important factor in tumorigenesis. This 
study aimed to construct of AS-based prognostic signature and elucidate the role in tumor immune microenviron-
ment (TIME) and immunotherapy in HCC.

Methods:  Univariate Cox regression analysis was performed to determine the prognosis-related AS events and gene 
set enrichment analysis (GSEA) was employed for functional annotation, followed by the development of prognostic 
signatures using univariate Cox, LASSO and multivariate Cox regression. K-M survival analysis, proportional hazards 
model, and ROC curves were conducted to validate prognostic value. ESTIMATE R package, ssGSEA algorithm and 
CIBERSORT method and TIMER database exploration were performed to uncover the context of TIME in HCC. Quan-
titative real-time polymerase chain reaction was implemented to detect ZDHHC16 mRNA expression. Cytoscape 
software 3.8.0 were employed to visualize AS-splicing factors (SFs) regulatory networks.

Results:  A total of 3294 AS events associated with survival of HCC patients were screened. Based on splicing sub-
types, eight AS prognostic signature with robust prognostic predictive accuracy were constructed. Furthermore, 
quantitative prognostic nomogram was developed and exhibited robust validity in prognostic prediction. Besides, the 
consolidated signature was significantly correlated with TIME diversity and ICB-related genes. ZDHHC16 presented 
promising prospect as prognostic factor in HCC. Finally, the splicing regulatory network uncovered the potential func-
tions of splicing factors (SFs).

Conclusion:  Herein, exploration of AS patterns may provide novel and robust indicators (i.e., risk signature, prognos-
tic nomogram, etc.,) for prognostic prediction of HCC. The AS-SF networks could open up new approach for investi-
gation of potential regulatory mechanisms. And pivotal players of AS events in context of TIME and immunotherapy 
efficiency were revealed, contributing to clinical decision-making and personalized prognosis monitoring of HCC.
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Immunotherapy
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Introduction
Hepatocellular carcinoma (HCC) is a malignant and 
aggressive disease marked with frequently diagnosed 
and high cancer-attributable mortality in the world [1–
3]. Despite great advance in HCC early diagnosis and 
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anti-tumor therapy, clinical treatment result is still unde-
sirable [4–6]. Both tumor, node, metastasis (TNM) cate-
gories and Barcelona Clinic Liver Cancer (BCLC) staging 
classification, which were widely used prognostic tools, 
failed to precisely predict results of patients with same 
clinicopathological stage [7–9]. Furthermore, the high 
heterogeneity of HCC remains great challenge against 
therapeutic benefits, which makes it difficult to accu-
rately predict clinical result [1, 10, 11].

A great part of HCC was derived from inflammatory 
liver diseases, which suggested that infiltrating immune 
cells in tumor immune microenvironment (TIME) might 
serve as pivotal regulatory roles in tumorigenesis and 
progression in HCC [12–14]. Recently, immunotherapy 
has received extensive attention since it yielded encour-
aging results in multiple malignancies [15]. However, only 
20% of HCC patients were observed objective response 
to immunotherapy according to preclinical trials [16]. 
Hence, the most effective strategy for precise prognostic 
predictions of how a given malignancy will respond to 
immunotherapy or tumor will progress may be one based 
on molecular risk distribution, identifying HCC patients 
on line with particular molecular signatures, enhancing 
prognostic precision and optimize immunotherapeutic 
benefit accordingly.

Alternative splicing (AS) defined as the mechanism by 
which edit pre-mRNA to produce mature mRNA, greatly 
contributed to the complexity of genome and the diver-
sity of proteome [17, 18]. It is well established that AS 
events included such main patterns as alternate acceptor 
site (AA), alternate donor site (AD), alternate promoter 
(AP), alternate terminator (AT), exon skip (ES), retained 
intron (RI) and mutually exclusive exons (ME) [19]. 
Unbalanced expression of AS occurs frequently in cancer 
and received extensive attention as pivotal role in tumor 
initiation, development, metastasis and response to treat-
ment [20–22]. Besides, splicing factors were found to 
act as a vital player in the regulation of AS events [23]. 
It was worth mentioned that aberrant expression of cru-
cial splicing factors can lead to the oncogenic splicing 
isoforms [24, 25].To date, multiple researches had been 
performed to unravel the biological relevance and clinical 
significance of AS events in HCC [26–28].

There have been several articles focusing on AS-based 
prognostic model [29–31], however, the correlation of 
AS prognostic signature with TIME and immunotherapy 
remains obscure.

Thus, it is imperative to perform a comprehensive 
analysis of AS events to uncover the characterization of 
TIME and underlying molecular mechanisms of tumori-
genesis, further optimize clinical benefits.

In this study, the AS pattern of TCGA LIHC cohort 
was outlined and AS events associated with the survival 

was determined through comprehensive bioinformatic 
analysis. Next, AS-based prognostic signatures were 
developed then validated, and an AS-clinicopathologic 
nomogram was constructed to facilitate clinical applica-
tion. Then, the correlation of prognostic signature with 
the complexity of TIME and immunotherapeutic effi-
cacy was investigated. Additionally, the potential role of 
ZDHHC16 in HCC was explored. Finally, an AS-SFs reg-
ulatory network was established to elucidate the poten-
tial mechanism involving in HCC progression.

Materials and methods
Multiomic data acquisition
The transcriptome information and survival information 
of the HCC patients were downloaded from The Cancer 
Genome Atlas (TCGA) portal (http://​cance​rgeno​me.​nih.​
gov) for subsequent analysis. The alternative splicing data 
of TCGA LIHC-cohort were obtained from SpliceSeq 
(http://​bioin​forma​tics.​mdand​erson.​org/​TCGAS​plice​
Seq). Samples were screened when setting PSI value 
exceeds 0.75 as filter cut-off point. All analyses were per-
formed based on the publication guidelines of TCGA. 
The analysis process flow chart was presented in Addi-
tonal file 1: Figure S1.

Process of AS profile identification
In TCGA splice-seq, the percent spliced in (PSI) value 
to quantify AS events were detected then calculated. 
By using UpsetR package, Upset plot was delineated 
to discovery the seven subtypes of AS events (alternate 
acceptor site (AA), alternate donor site (AD), alter-
nate promoter (AP), alternate terminator (AT), exon 
skip (ES), mutually exclusive exons (ME), and retained 
intron (RI)). The AS events were annotated by combin-
ing the splicing type, ID number in the SpliceSeq and 
the corresponding parent gene symbol. For example, in 
“MRPL43|12,849|AT”, MRPL43 denotes the correspond-
ing parent gene name, 12,849 represents the ID of splic-
ing variant and AT indicates the splicing type.

Identification of survival‑related AS events
When the standard deviation of PSI value is less than 
0.01, the AS data were excluded. Univariate Cox regres-
sion analysis was carried out to detect the association 
between AS events and overall survival (OS) of HCC 
patients (Additonal file 2: Table  S1), which were pre-
sented with the UpSet plot and the volcano map. Besides, 
the top 20 most significant AS events from the seven sub-
types were summarized in the bubble charts.

Construction and validation of prognostic signature
Firstly, Lasso regression analysis was employed to deter-
mine candidates in each splicing pattern and avoid 
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model over-fitting. Secondly, the identified AS events 
were introduced into Multivariate Cox regression analy-
sis to screen the prognostic predictor. Given the mode 
of AS events is independent from each subtype in post-
transcriptional modification, the identified AS events in 
each splicing subtype above were integrated to gener-
ate another prognostic signature. Subsequently, the risk 
scores were calculated according to each prognostic pre-
dictor and the formula for computing the risk score is as 
follows: Risk score = βAS event1 × PSIAS event1 + βAS 
event2 × PSIAS event2 + ⋯ + βAS eventn × PSIAS eventn. 
The specific formulas of each signature were presented in 
Additonal file 2: Table S2. Based on the median value of 
risk score, patients were ranked into low-risk group and 
high-risk group. Kaplan–Meier survival curves were ana-
lyzed with “survival” R package. Then, the time-depend-
ent receiver operating characteristic (ROC) curves were 
performed to examine the prognostic value of this sig-
nature. Besides, univariate and multivariate Cox regres-
sion were analyzed to confirm whether the signature can 
serve as an independent factor for prognostic prediction. 
Additionally, stratified survival analysis was conducted to 
further validate the prognostic performance independent 
from such clinical characteristics as age, gender, tumor 
stage, pathological grade, T category, N category and M 
category.

Construction of prognostic nomogram
To comprehensively assess prognosis predictive ability of 
risk signature, tumor stage, gender, age, WHO grade, T 
category, N category and M category for 1/2/3-year OS, 
time-dependent receiver operating characteristic (ROC) 
curves was perform to calculate the area under the curve 
(AUC) values [32]. To contribute a quantitative manner 
to predicting overall survival of patients with HCC, prog-
nostic nomogram which containing AS-based risk model 
and other clinical variables was established to estimate 1‐, 
2‐and 3‐year overall survival probability. Subsequently, 
the calibration curve which shown the prognostic value 
of as-constructed nomogram was delineated. A calibra-
tion curve close to 45° is an indication of good prediction 
ability of the model constructed by this factor.

Correlation of risk score with tumor infiltrating immune 
cells characterization
Immune infiltration information consists of every speci-
men immune cell fraction (i.e., B cells, CD4 + T-cells, 
CD8 + T-cells, dendritic cells, macrophages, and neutro-
phils, etc.,) were downloaded from tumor immune esti-
mation resource (TIMER) (https://​cistr​ome.​shiny​apps.​
io/​timer/). The correlation between tumor immune cell 
infiltrating with the prognostic risk score was performed. 
A single sample gene-set enrichment analysis (ssGSEA) 

was implemeted to elucidate the enrichment of the two 
distinct risky subgroups in 29 immune function‑associ-
ated gene sets via invoking the R package “GSEAbase”. 
Subsequently, the R package “ESTIMATE” was employed 
to assess tumor purity and the extent and level of infil-
trating cells, namely stromal cell and immune cell, that 
could validate significant distinct tumor immune micro-
environment characterization between two risky sub-
groups. The fraction of 22 immune cell types for each 
tumor specimen was developed through cell type identi-
fication by estimating relative subsets of RNA transcripts 
(CIBERSORT; https://​ciber​sort.​stanf​ord.​edu/).

Role of risk score in immune checkpoint blockade 
treatment
Refer to existing studies, expression level of immune 
checkpoint blockade-related key genes might be cor-
related with clinical outcome of immune checkpoint 
inhibitors blockade treatment [33]. Herein, six key 
genes of immune checkpoint blockade therapy: pro-
grammed death ligand 1 (PD‐L1, also known as CD274), 
programmed death ligand 2 (PD‐L2, also known as 
PDCD1LG2), programmed death 1 (PD‐1, also known as 
PDCD1), cytotoxic T‐lymphocyte antigen 4 (CTLA‐4), 
indoleamine 2,3‐dioxygenase 1 (IDO1), and T‐cell immu-
noglobulin domain and mucin domain‐containing mole-
cule‐3 (TIM‐3, also known as HAVCR2) in HCC [34–36] 
were extracted. To elucidate the potential player of as-
constructed risk signature in ICB treatment of HCC, 
AS-based prognostic signature and expression level of six 
immune checkpoint blockade key genes were correlated. 
Finally, the expression level of 47 immune checkpoint 
blockade-related genes (i.e., PDCD1, etc.,) between low-/
high-risk groups were compared.

Construction of splicing regulatory network
A list of 404 splicing factors (SFs, Additonal file 2: 
Table  S3) was referred to a previous research [37] and 
the RNA-seq profiles of SFs were downloaded from the 
TCGA database. The Spearman correlation analysis 
was performed to evaluate the association between the 
SFs and the survival-relevant AS events (Additonal file 
2: Table  S4). P < 0.001 and Correlation coefficient > 0.6 
was the cutoff values. Finally, Cytoscape (version 3.8.0) 
was employed to build an underlying SF-AS regulatory 
network.

Experimental validation
L02 cell (human hepatic cell line) and two human HCC 
cell lines (MHCC-97H cells and HCC-LM3) were pur-
chased from the Cell Bank of the Type Culture Col-
lection of the Chinese Academy of Sciences, Shanghai 
Institute of Biochemistry and Cell Biology. The cell 
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lines were all cultured in Dulbecco’s minimum essential 
media (DMEM) plus 10% fetal bovine serum (FBS; Inv-
itrogen, Carlsbad, CA, USA). All cell lines were grown 
without antibiotics in a humidified atmosphere of 5% 
CO2 and 99% relative humidity at 37℃. Three different 
cell lines were subjected to quantitative real-time poly-
merase chain reaction (qRT-PCR).

RNA isolation and qRT‑PCR analysis
Total RNA was extracted from cells using TRIzol (Inv-
itrogen, Carlsbad, CA, USA) according to provided 
instructions. RNA concentration and purity were 
measured in triplicates utilizing the NanoDrop 2000 
spectrophotometer (Thermo Scientific Inc., Waltham, 
MA, 93 USA). Then, total RNA was reverse tran-
scribed to cDNA using the cDNA Reverse Transcrip-
tion Kit (Vazyme, Nanjing, China). To determine the 
expression of ZDHHC16, cDNAs were subjected to 
qRT-PCR using SYBR Green Real-time PCR Master 
Mix (Takara) in Applied Biosystems 7500/7500 Fast 
Real-Time PCR System (Thermo Fisher Scientific). All 
samples were analyzed in triplicates. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) levels were used 
as the endogenous control and relative expression of 
ZDHHC16 was calculated using the 2−��Ct method. 
The sequences of primers used for PCR were as follows: 
ZDHHC16, 5′-CCA​CCA​GAC​TCC​ACC​ACC​TACC -3′ 
(forward) and 5′-GCC​ACA​GAA​CTG​CAC​AGG​AACC 
-3′ (reverse); and GAPDH, 5′-CAG​GAG​GCA​TTG​CTG​
ATG​AT-3′ (forward) and 5′-GAA​GGC​TGG​GGC​TCA​
TTT​-3′ (reverse).

Statistical analysis
The Wilcoxon test was employed to compare two 
groups, whereas the Kruskal–Wallis test was carried 
out to compare more than two groups. Overall survival 
(OS) refers to the interval from the date of diagnosis 
to the date of death. Survival curves were plotted via 
the Kaplan–Meier log rank test. Risk scores, clinical 
variables, immune cell infiltrating extent and immune 
checkpoints were correlated with Pearson correlation 
test. CIBERSORT algorithm results with p >  = 0.05 
were rejected for further analysis. Univariate and mul-
tivariate analyses were performed via Cox regression 
models to validate the independent prognosis predic-
tive performance of risk signature. The prognostic 
value of the AS-based signatures for 1-, 2- and 3-year 
OS was assessed with the ROC curves. p < 0.05 deemed 
as statistical significance. R software (version 4.0.2) was 
utilized for all statistical analyses.

Results
Clinical characteristics and integrated AS events profiles 
in HCC
377 HCC patients were obtained using the TCGA data-
base, and seven patients with incomplete information 
were excluded from this study. In total, 370 patients 
were enrolled. The basic clinical information of patients 
is shown in Table 1. The AS events profiles were com-
prehensively analyzed and the gene intersections 
among the seven subtypes of AS events was presented 
in UpSet plot (Additonal file 1: Figure S2A). These 
results showed that ES was the predominant splicing 
pattern meanwhile AD marked as the least frequent.

Identification of the survival‑relevant AS events
With the help of Univariate Cox regression analysis, a 
total of 3294 AS events which were significantly related 
with survival were identified (p < 0.05). The detailed 
description was recorded in TAdditonal file 2: able S1. 
The intersecting sets of genes and splicing subtypes 
were delineated in the UpSet plot (Additonal file 1: Fig-
ure S2B). Among these subtypes of AS events, ES was 
the predominant pattern. The volcano map was gen-
erated to display the AS events (Fig.  1a). The first 20 
significant survival-related AS events from the seven 
subtypes were summarized in Figs. 1b–h, 2.

Table 1  Baseline data of all HCC patients

Characteristic Type n Proportion (%)

Age  <  = 65 235 62.33

 > 65 141 37.40

unknow 1 0.27

Gender FEMALE 122 32.36

MALE 255 67.64

Grade G1–2 235 62.33

G3–4 137 36.34

unknow 5 1.33

Stage Stage I–II 262 69.50

Stage III–IV 91 24.14

unknow 24 6.37

T stage T1–2 280 74.27

T3–4 94 24.93

unknow 3 0.80

M stage M0 272 72.15

M1 4 1.06

unknow 101 26.79

N stage N0 257 68.17

N1 4 1.06

unknow 116 30.77
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Fig. 1  The survival-relevant AS events. a) The volcano plots of survival-relevant AS events. The most significant survival-relevant AAs, ADs, APs, ATs, 
ESs, MEs and RIs in TCGA LIHC cohort (b–h)

Fig. 2  Confirmation of ALL AS-based prognostic signature. a LASSO coefficient profiles of the whole AS events. b Ten‐time cross‐validation for 
tuning parameter selection in the lasso regression. c Heatmap of the ALL signature AS events PSI value in HCC. The color from red to blue shows 
a trend from high expression to low expression. d Distribution of ALL signature risk score. e The survival status and duration of HCC patients. f 
Kaplan–Meier curve presenting survival in the high-risk and low-risk sets. g ROC analysis of the risk scores for overall survival prediction. The AUC 
was calculated for ROC curves, and sensitivity and specificity were calculated to assess score performance. Proportional hazards model results. h 
Univariate Cox regression results. i Multivariate Cox regression results
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Development of the prognostic signature
Stepwise Lasso algorithm and multivariate Cox regres-
sion analysis were employed to estimate the prognos-
tic performance of these identified survival relevant AS 
events. The results of Lasso regression analysis including 
seven subtypes of AS events and amalgamated AS events 
with seven splicing types were displayed in Additonal file 
1: Figures S3A–S3G, S4A–S4G and 2A–2B. Then, multi-
variate Cox analysis was implemented to determine opti-
mal survival-relevant AS events. Lastly, eight AS (AA, 
AD, AP, AT, ES, ME, RI, and ALL) prognostic signature 
were constructed. Table 2 presented the detailed formu-
las of each signature.

Confirmation of the prognostic signature
Based on the cut-off value of median risk score, HCC 
patients were stratified into low and high-risk subgroups 
for further research. Heatmaps displayed the distribu-
tions of AS events PSI values with corresponding sub-
groups and patients (Additonal file 1: Figures S5A, S5D, 
S6A, S6D, S7A, S7D, S8A and 2C). The allocations of risk 
score (Additonal file 1: Figures S5B, S5E, S6B, S6E, S7B, 
S7E, S8B and 2D) and dot pot of survival status (Addi-
tonal file 1: Figures S5C, S5F, S6C, S6F, S7C, S7F, S8C and 
2E) suggested that high-risk HCC patients had shorter 
overall survival. Besides, Kaplan–Meier curve corrobo-
rated that patients with low-risk possessed significant 
better prognosis than patients in high-risk group (Addi-
tonal file 1: Figures  S9A, S9C, S9E, S9G, S10A, S10C, 
S10E and 2F; all P < 0.05). To assess the prognostic value 
of risk signatures in HCC cohort, ROC curve were fur-
ther analyzed. Area under curves of risk scores at 1-, 
2- and 3‐year survival times were all more than 0.75, sug-
gesting great sensitivity and specificity of their survival 
predictive ability (Additonal file 1: Figures S9B, S9D, S9F, 
S9H, S10B, S10D, S10F and 2G). Besides, results of uni-
variate Cox model (Additonal file 1: Figures S11A, S11B, 
S11C, S11D, S11I, S11J, S11K and 2H) and multivariate 
Cox regression analysis (Additonal file 1: Figures  S11E, 
S11F, S11G, S11H, S11L, S11M, S11N and 2I), suggesting 
risk scores could act an independent indicator in HCC.

A stratification analysis was employed to validate 
whether ALL prognostic signature still had powerful 
prognostic predictive ability when HCC patients classi-
fied into various subgroups based on clinical character-
istics. Relative to patients with low-risk, high-risk HCC 
patients presented poorer prognosis in both the early- 
and late-stage subgroups (Additonal file 1: Figures S12A, 
S12B). Similarly, ALL prognostic signature presented 
excellent prognostic prediction performance for patients 
in T1-2 or T3-4 status (Additonal file 1: Figures  S12C 
and S12D), patients male or female gendered (Additonal 
file 1: Figures S12E, S12F), patients in 1–2 or 3–4 tumor 

grade (Additonal file 1: Figures  S12G, S12H), patients 
aged <  = 65  years or > 65  years (FigAdditonal file 1: ures 
S12I, S12J), patients in N0 status (Additonal file 1: Fig-
ures  S12K), and patients in M0 status (Additonal file 1: 
Figures  S12L). These results suggested that it can be an 
outstanding predictor independent from clinical param-
eters in patients with HCC.

Correlation of ALL prognostic signature with clinical 
features and construction of AS‑clinicopathological 
nomogram
Differences of risk score among different subtypes accord-
ing to clinical variables were determined to uncover its 
clinical significance. The risk score increased signifi-
cantly with advanced tumor grade (most p < 0.05, Fig. 3a), 
advanced clinicopathological stage (most p < 0.05, Fig. 3b) 
and advanced T category (most p < 0.05, Fig. 3c), suggest-
ing risk score was positively correlated with tumor pro-
gression. To explore whether ALL prognostic signature 
was the best prognostic indicator among various clinical 
characteristics, age, gender, clinicopathological stage, and 
tumor grade were extracted as the candidate prognosis 
predictive factors. These clinical variables were consoli-
dated to conduct the AUC curve analysis for 1-, 2-, and 
3-year OS and risk signature obtained the most AUC 
value (Fig. 3d–f). Then, prognostic nomogram including 
risk score and clinicopathological stage were established 
to forecast prognosis of patients with HCC (Fig. 3g). Age, 
gender and tumor grade were rejected out of the nomo-
gram because of their AUCs were less than 0.6. Calibrate 
curves were approximately diagonal, indicating powerful 
prognostic predictive ability of 1-, 2- and 3-year OS in 
our nomogram plot (Fig. 3h–j).

Correlation of risk score with tumor immune environment 
characterization
To further examine whether risk score can act as 
immune indicators, the correlation analysis of prognos-
tic risk score with TICs from TIMER, immune score 
(calculated using the ESTIMATE algorithm), ssGSEA 
signatures and TICs subtype and level (calculated via 
CIBERSORT method) were carried out. Firstly, TIMER 
results showed that the as-constructed signature exhib-
ited the marked positive association with B cells infil-
tration (r = 0.116; p = 0.026), CD8 + T cells infiltration 
(r = 0.223; p = 2.349e − 05), Dendritic cells infiltration 
(r = 0.228; p = 1.564e − 05), Macrophages infiltration 
(r = 0.271; p = 2.357e − 07) and Neutrophils infiltration 
(r = 0.221; p = 2.945e − 05; Fig. 4a–e), indicating high-risk 
samples were infiltrated more immune cells. Likewise, 
low-risk patients obtained a higher stromal score which 
represented less immune infiltration (Fig.  4f ). However, 
there was no significant difference regarding to immune 
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score, estimate score and tumor purity (Additonal file 1: 
Figures  S13A, S13B and S13C). Subsequently, distinc-
tion of the immune-related signatures between these 
two subgroups was presented. Figure  4g and h showed 
that immune-related signature of each patient with cor-
responding immune scores in low-/high-risk groups. 
The results showed that the infiltration of aDCs, Mac-
rophages, Neutrophils, Tfh, Th1 cells, Th2 cells, Tregs, 
HLA molecule expression level and MCH class I expres-
sion, such immune signatures as APC costimulation, T 
cells costimulation, check-point, inflammation-promot-
ing, and IFN response were significantly increased with 
increased risk score (Fig. 4i). The CIBERSORT algorithm 
results indicated that proportion of reseing Dendritic 
cells was negatively associated with risk score (Fig.  4j). 
Above results indicated that ALL prognostic signature 
may provide a novel approach to elucidate the character-
istics of immunity regulatory network in HCC.

Correlation of ALL signature with ICB key molecules
With the emergence of immune checkpoint block-
ade (ICB) therapy, immune checkpoint inhibitors have 
considerably transformed clinical decision-making 
in cancer oncology [38–40]. Subsequently, six key 

immune checkpoint inhibitors genes (PDCD1, CD274, 
PDCD1LG2, CTLA‐4, HAVCR2, and IDO1) [34–36] 
were correlated. And the correlation between ICB key 
targets and ALL prognostic signature was analyzed to 
reveal the potential player of risk signature in the ICB 
treatment of HCC (Fig.  5a). The results indicated that 
ALL prognostic signature was significantly positive corre-
lated to CD274 (r = 0.26; p = 0.00015), CTLA4 (r = 0.33; 
p = 1.3e − 06), HAVCR2 (r = 0.41; p = 1.4e − 09), IDO1 
(r = 0.15; p = 0.03), PDCD1 (r = 0.16; p = 0.021) and 
PDCD1LG2 (r = 0.23; p = 0.001; Fig. 5b–g). Further cor-
relation analysis presented that 33 of 47 (i.e., PDCD1, 
CTLA4, etc.,) immune check blockade-associated genes 
expression levels were significantly upregulated in 
patients with high-risk (Fig.  5h), suggesting ALL prog-
nostic signature might act as nonnegligible and unfavora-
ble factor in immunotherapy operating.

ZDHHC16 independently affected prognosis 
and correlated with ICB key genes
ZDHHC16 was only one gene whose expression level 
was upregulated among the prognostic AS-related genes. 
Therefore, the role of ZDHHC16 in HCC was explored 
in further experimental validation. ZDHHC16 expression 

Fig. 3  Correlation of ALL prognostic signature with clinical features and construction of AS-clinicopathological nomogram. a Correlation of risk 
score with tumor grade. b Correlation of risk score with clinicopathological. c Correlation of risk score with T status. d–f Areas under curves (AUCs) 
for predicting 1-, 2-, and 3-year survival with different clinical characteristics. g Nomogram was assembled by stage and risk signature for predicting 
survival of HCC patients. h One‐year nomogram calibration curves. i Two‐year nomogram calibration curves. j Three‐year nomogram calibration 
curves
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level between normal tissues and tumor samples was 
compared based on TCGA data. Relative to tumor tis-
sues, ZDHHC16 expression level was lower in adjacent 
normal specimens (Fig.  6a). Taking advantage of qRT-
PCR, ZDHHC16 expression level in two distinct HCC 
cell lines and human hepatic cell line were determined. 
Consistent of results of online database, ZDHHC16 
was upregulated in cancer cells relative to normal cell 
(Fig.  6b). The expression level analysis among major 
pathological stages presented that ZDHHC16 expressed 
statistical significantly among different pathological 
stages (Fig.  6c, F = 3.45 and P = 0.0168). Additionally, 
the later tumor grade, the higher risk score (Fig.  6d, 
almost p < 0.05). To further assess the prognostic value 
of ZDHHC16 in HCC, Kaplan–Meier analysis were con-
ducted between ZDHHC16 low- and high-expressed 
patients. As presented in Fig. 6e and f, lower ZDHHC16 
expression level significantly suggested longer overall 
survival time (p = 0.0056) and longer disease-free survival 
time (p = 0.02). Besides, 16 of 47 immune check block-
ade-associated genes (i.e., PDCD1, CTLA4, etc.,) expres-
sion levels between low-ZDHHC16 and high-ZDHHC16 

groups were significantly dysregulated in between dif-
ferent subgroups (Fig. 6g). Then the correlation between 
the ZDHHC16 and ICB key targets adjusted by tumor 
purity using TIMER was analyzed to investigate the 
potential player of ZDHHC16 in ICB treatment of HCC. 
TIMER results presented ZDHHC16 was significantly 
positive correlated to CD274 (r = 0.132; p = 1.41e − 02), 
CTLA4 (r = 0.254; p = 1.79e − 06), HAVCR2 (r = 0.231; 
p = 1.50e − 05) and PDCD1 (r = 0.291; p = 3.66e − 08; 
Fig. 6h–k), suggesting ZDHHC16 may exert a vital player 
in ICB treatment of HCC.

Role of ZDHHC16 in context of TIME
To further elucidate the relationship between ZDHHC16 
and TIME characteristics in HCC, comprehensive anal-
ysis were performed as descripted previously. HCC 
patients were classified into high-/low- ZDHHC16 sub-
types based on the median ZDHHC16 expression level. 
ESTIMATE results indicated that patients with lower 
ZDHHC16 expression had a significant higher stro-
mal score and higher immune score relative to patients 
in high- ZDHHC16 group, suggesting less stromal cells 

Fig. 4  Correlation between infiltrating immune cells and ALL AS-based prognostic signature. a Relationship between this signature and B cells. 
b Relationship between this signature and CD8 + T cells. c Relationship between this signature and Dendritic cells. d Relationship between this 
signature and Macrophages. e Relationship between this signature and Neutrophils. (F) Comparison of stromal score between low- and high-risk 
groups. g Heatmap displayed enrichment of 29 immune signatures of low-/high-risk groups. Blue represents low activity and red represent high 
activity. h Heatmap of 29 immune signatures and immune scores of two different risk score groups. Blue represents low activity and red represent 
high activity. i Distinction of enrichment of immune-related signatures between risk-low and risk-high groups. j Difference of infiltrating immune 
cell subpopulations and levels between low-/high-risk groups
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and immune cells in low-risk samples. (Figs.  7a, b). 
Additionally, arm-level deletion was predominant type 
of mutation (Fig.  7c). Subsequently, expression level 
of ZDHHC16 was positively correlated with infiltra-
tion of main immune cells types (Fig.  7d). outcomes of 
ssGSEA showed that the infiltration fraction of B cells, 
neutrophils, NK cells, T helper cells and TIL, APC co-
inhibition, T cell co-inhibition, CCR, cytolytic activity, 
IFN-response type-I and HLA expression were signifi-
cantly increased when risk score declining (Fig. 7e). The 
CIBERSORT analysis results of TCGA cohort showed 
that the proportion of activated memory CD4 T cells was 
significantly higher in patients with low-risk (Fig. 7f ).

Development of the SF‑AS regulatory network
To elucidate the underlying mechanism of AS regula-
tion, a correlation network between the expression level 
of SFs and the PSI values of prognosis-related AS events 
was constructed. 55 up-regulated AS events (yellow ellip-
ses), 56 down-regulated AS events (blue ellipses) and 106 
SFs (Fig.  8) were identified. In our regulatory network, 
the top four most significant nodes were termed as the 
hub SFs or AS events (Additonal file 2: Table S4), includ-
ing one downregulated AS event (ACAA1-64,022-ES), 

one upregulated AS events (SCP2-3045-ES) and two SFs 
(ISY1 and CLK2). As such, these SFs exhibited promis-
ing potential to serve as pivotal regulators involving in 
the dysregulation of AS in HCC, further mediated tumor 
initiation and progression.

Discussion
As one of the most common type of malignant tumor, 
hepatocellular carcinoma (HCC) had high cancer-rele-
vant mortality globally [1–3]. Since such intricate molec-
ular mechanism as genomic complexities and epigenetic 
diversities, HCC was highly heterogeneous from both 
clinical standpoint and molecular level [41–43]. A sober 
reality is that a majority of HCC patients cannot obtain 
benefit from immunotherapy, due to tumor-promoting 
condition mediated by immunosuppressive cells (i.e., 
regulatory T cells, etc.,) [44]. Thus, there is an urgent call 
to develop powerful prognostic tools for immunothera-
peutic outcome prediction, which could contribute novel 
insight into individual tailored treatment in HCC.

Increasing studies have provided strong evidence to 
support that AS, which refers to post‑transcriptional 
modification procedure, function in physiological and 
pathological process [17]. Notably, abnormally regulated 

Fig. 5  Association between ALL AS-based prognostic signature and crucial immune checkpoint genes. a association analyses between immune 
checkpoint inhibitors CD274, PDCD1, PDCD1LG2, CTLA4, HAVCR2, and IDO1 and risk score. b association between risk score and CD274. c 
association between risk score and CTLA4. d association between risk score and HAVCR2. e association between risk score and IDO1. f association 
between risk score and PDCD1. g association between risk score and PDCD1LG2. h Comparison of immune checkpoint blockade-related genes 
expression levels between low-risk group and high-risk groups
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AS events participated well in tumor initiation and 
development, including HCC [21, 45]. Furthermore, 
dysregulated expressed genes can be employed as novel 
prognostic indicator and promising therapeutic targets. 
However, little to know the correlation of AS events with 
context of TIME and immunotherapeutic results in HCC.

In current study, AS data was obtained from TCGA 
SpliceSeq and comprehensive analysis of AS events 
in HCC samples. Taking advantage of univariate Cox 
regression analysis, 3294 AS events significantly asso-
ciated with the survival were identified to explore the 
prognostic value of AS events. Next, prognostic signa-
tures for HCC patients were proposed using systematic 
bioinformatic analysis. All eight (AA, AD, AP, AT, ES, 
ME, RI, and ALL) prognostic predictive signatures con-
structed by AS patterns presented powerful capability 
for the prognostic prediction in HCC. Notably, these 
AS-based prognostic signatures were robustly demon-
strated by K-M survival analysis, ROC curve and Cox 
regression analysis. Furthermore, this signature retained 
excellent prognostic performance when HCC cases 
divided into groups based on clinicopathological factors. 
To transform ALL risk model into further clinical prac-
tice, a nomogram graph including prognostic signature 

with clinicopathological stage was plotted, and there was 
high consistence between predicted outcome and actual 
outcome. Besides, the most significant associated SF-AS 
regulatory network in the TCGA LIHC cohort were 
screened.

To reveal the role of AS events in the context of TIME 
in HCC, TIMER database, ESTIMATE algorithm, 
ssGSEA method and CIBERSORT analysis were con-
ducted. These results presented that high-risk score 
group was marked with high infiltration of immune cells 
and more activated immune condition, which might pro-
mote immune recognition and trigger anti-tumor effect. 
These outcomes implied that risk score might facilitate 
immunotherapy results prediction. Since no ICB treat-
ment dataset in HCC cohort, it was unable to investigate 
the relationship between risk score and ICB immuno-
therapy response. Then, risk score was positively and sig-
nificantly correlated with six ICB key targets (i.e., CD274 
and CTLA4) and 33 (i.e., PDCD1LG2, etc.,) immune 
check blockade-associated genes expression levels, which 
imply that risk score might contribute to strategizing the 
tailored immunotherapy.

ZDHHC16 was a DHHC encoding protein, which was 
tightly correlated with protein palmitoylation in previous 

Fig. 6  The clinical significance of ZDHHC16 in HCC and in vitro study. ZDHHC16 are overexpressed in HCC tumor tissue (a) and HCC cell lines (b). 
c The expression of ZDHHC16 had significant difference between major pathological stages. d Correlation of risk score with tumor grade. Lower 
ZDHHC16 level predicts longer overall survival (e) and disease-free survival (f). g Comparison of immune checkpoint blockade-related genes 
expression levels between low-ZDHHC16 group and high-ZDHHC16 group. h Correlation of risk score with CD274. i Correlation of risk score with 
CTLA4. j Correlation of risk score with HAVCR2. (K) Correlation of risk score with PDCD1
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researches [46]. Wei Shi et  al. reported that ZDHHC16 
acted as a vital regulator in the process of NSPCs prolif-
eration [47]. Li Jian et  al. uncovered pivotal players for 
ZDHHC16 in the regulation of DNA damage responses 
and Atm activation(48). To date, little to know about the 
role of ZDHHC16 in tumors, especially in HCC. This 
study presents that ZDHHC16 is significantly upregu-
lated in HCC cell lines and suggested poor prognosis 
in HCC. ZDHHC16 expression was significantly posi-
tive associated with clinicopathological stage, tumor 
grade and ICB immunotherapy key genes (i.e., CD274, 
CTLA4, HAVCR2 and PDCD1, etc.). Nevertheless, fur-
ther research needed to explore the underlying biological 
roles of ZDHHC16.

Collectively, subjects with higher risk score or higher 
ZDHHC16 expression level presented more abundance 
of immune cells in tumor environment, suggesting acti-
vated immune phenotype, but shorter overall survival 
time. It could be speculated that anti-tumor effect of 
immune cells may be affected by immune checkpoint 
blockade pathways given risk score was correlated with 
immune checkpoint blockade targets expression.

Compared this research with existed studies that 
explored the novel prognostic factor in HCC, some supe-
riorities of our research should be noted. Firstly, this 

study contributed to investigate the potential roles of AS 
events in formation of TIME diversity and complexity 
and ICB treatment prediction, which has not been eluci-
dated before this study. Additionally, ESTIMATE R pack-
age, ssGSEA algorithm and CIBERSORT method and 
TIMER database exploration were performed to uncover 
the comprehensive landscape of TIME in HCC. Finally, 
to our knowledge, this work is the first placed emphasis 
on the biological functions of ZDHHC16 in HCC.

Conclusion
Collectively, systematical analyses in prognosis predic-
tive value of RNA splicing patterns were performed, 
which was designed to strengthen prognosis predic-
tion in HCC. It is worthwhile mentioned that novel and 
robust prognostic nomogram to predict outcome quan-
titatively was established, which exhibited encouraging 
potential into clinical application. Besides, the AS-SFs 
regulatory network suggested promising targets of the 
anti-tumor therapy in HCC. The comprehensive bioin-
formatic analysis of AS events robustly linked the AS 
atlas with TIME characterization and immunotherapy 
in HCC. Nevertheless, these findings should be vali-
dated in further experimental and clinical exploration 

Fig. 7  The role of ZDHHC16 in TIME features. a Comparison of stromal score, immune score and ESTIMATE score between low-/high-ZDHHC16 
groups. b Comparison of tumor purity between low-/high-ZDHHC16 groups. c Copy number of immune cells in HCC. d Relationship between 
risk score with B cells, CD8 T cells, CD4 T cells, Macrophages, Neutrophils and Dendritic cells. e Comparison of ssGSEA enrichment between 
low-/high-ZDHHC16 groups. f Comparison of CIBERSORT results between low-/high-ZDHHC16 groups
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which focusing on HCC tumorigenesis and progression 
mechanisms and the impacts of these AS events.
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