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Objective: The aim was to study the benefits and risks of anti-CD19 chimeric antigen
receptor (CAR) T-cells in adults with B-cell lymphoma.

Methods: From October 2015 to October 2021, we treated five patients with B-cell
lymphoma, comprising two with mantle cell lymphoma, one case of Burkitt lymphoma, one
case of diffuse large B-cell lymphoma, and one case of chronic lymphocytic leukemia/small
lymphocytic lymphoma. The patients were given the FC regimen 5 days before the infusion
of anti-CD19 CAR T-cells. The median total number of CAR T-cells infusions was 350*10̂6
(88*10̂6–585*10̂6).

Results: 1) Patients who received CAR T-cell induction therapy achieved complete
remission (CR) in Case 1 and Case 3 and partial remission (PR) in Case 2. Case 3’s
ATM and D13S25 gene deletions were negative 42 days after CAR T-cell therapy, and
molecular biology CR (mCR) and minimal residual disease (MRD) were negative for 5 years
and 6months. The patient in Case 3 was cured. 2) Case 4 patient’s TP53 gene mutation
became negative 1 month after CAR T-cell therapy. MRD was negative after CAR T-cell
therapy at 41 and 42months in Cases 4 and 5, respectively. 3) Case 1∼Case 3 patients
developed cytokine release syndrome (CRS) without encephalopathy syndrome,
accompanied with serious adverse events. CRS can be effectively managed with
tocilizumab, etanercept, glucocorticoids, and plasmapheresis.

Conclusion: Anti-CD19 CAR T-cell therapy is effective in treating relapsed/refractory
B-cell lymphoma, and the side effects of CAR T-cell therapy can be properly managed.
CAR T-cell therapy has high efficacy and presented no side effects in the treatment of MRD
in B-cell lymphoma (NCT03685786, NCT02456350).
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1 INTRODUCTION

B-cell lymphoma is the most common type of malignant lymphoma. Relapsed/refractory (R/R)
lymphoma is the main cause of treatment failure. In 2015, there were about 71,000 cases of non-
Hodgkin lymphomas (NHLs) with approximately 19,700 deaths related to the disease. NHL is the
seventh leading cause of new cancer cases (Cheson and Leonard, 2008). Till date, 30–50% of NHL
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patients are refractory to the standard treatment or relapse
after remission. The prognosis of these patients is extremely
poor, with a dismal objective response rate of 26% and a
median overall survival of 6.3 months after salvage treatment
(Coiffier and Sarkozy, 2016; Crump et al., 2017). Chimeric
antigen receptor (CAR) T-cell therapy represents a novel and
paradigm shift in the cancer treatment approach. The
immunotherapy approach using genetically modified
cytotoxic immune T-cells to target tumor-specific antigens
has resulted in durable remissions in R/R B-cell lymphoma.
Currently, there are two FDA-approved products for the
treatment of R/R B-cell NHL namely tisagenlecleucel and

axicabtagene ciloleucel (Davila et al., 2014a; Maude et al.,
2015). Tisagenlecleucel is also approved for the treatment of
relapsed and/or refractory pediatric B-ALL up to the age of
25 years. On February 5, 2021, the United States Food and
Drug Administration (FDA) approved lisocabtagene
maraleucel for the treatment of relapsed or refractory
large B-cell lymphoma (FDA, 2021). Structurally, CAR
T-cells are autologous T-cells that express cancer-targeted
CAR through genetic engineering. The CAR molecule is
composed of two parts: an antigen-recognizing
extracellular domain, commonly a single-chain antibody
fragment (scFv), and an intracellular signaling domain

TABLE 1 | Patient characteristics before CAR T-cell therapy and dose of CAR T-cell reinfusion.

Case 1 Case 2 Case 3 Case 4 Case 5

Sex M M M M F
Age (Age of CAR
T-cell therapy)

60/63 49 68 60 32

Diagnose MCL DLBCL (EB virus+) CLL/SLL MCL BL
Tumor burden The mass was 16 * 6.2 cm in

the abdominal cavity, and
multiple lymph nodes were
enlarged, with the maximum
diameter of 5.3 cm

Multiple lymphadenopathy with the
largest diameter of 3.5 cm

Multiple lymphadenopathy
with the largest diameter of
3.5 cm

Genetic mutations
persist

Genetic mutations
persist

Chromosome
karyotype

— — Normal Normal Normal

Gene mutation — TET2 mutation ATM and D13S25 deletion NOTCH1, TP53,
ATM mutation

C-MYC rearrangement

Therapeutic
purposes

Induction therapy Induction therapy Induction therapy Elimination of MRD
and maintenance
therapy

Elimination of MRD and
maintenance therapy

Chemotherapy
before CAR T-cell
therapy

R-CHOP*3, CHOP*1 R-Hyper CVAD*1, BV-DICE*1,
CHOP, EPOCH*1, EPOCH + L*1,
EPOCH + Ara-c*1, GDPE*1,
DHAP*1, MA*2

FCR*5, FR*1, BR*4 R-CHOP*3,
CHOP*1

R-CHOP*1, R-IVCA*1,
R + MTX*2,
R-DHAOx*1,
R-CODOX-M*3

Ibrutinib No No Yes Yes Yes
Auto-HSCT No No No No Yes
Allo-HSCT No No No No Yes
ECOG
performance-status
score

2/2 2 2 1 1

β2-MG (ug/ml) 5.25/6.25 3.33 3.84 2.94 3.33
Number of CAR
T-cell therapy
courses

2 1 1 1 1

Infusion volume of
viable CAR
T-cells (10̂6)

300/370 585 330 88 357

R-CHOP: rituximab, cyclophosphamide, Adriamycin, vincristine, and dexamethasone.
EPOCH: rituximab, etoposide, vincristine, pirarubicin, cyclophosphamide, and dexamethasone.
R-Hyper CVAD: rituximab, cyclophosphamide, pirarubicin, vindesine, and dexamethasone.
BV-DICE: rituximab, ifosfamide, bortezomib, carboplatin, and dexamethasone.
FCR: fludarabine, rituximab, and cyclophosphamide.
BR: rituximab and bendamustine.
R-DHAOx: dexamethasone, rituximab, cytarabine, and oxaliplatin.
R-CODOX-M: rituximab, ifosfamide, vindesine, pirarubicin, and MTX.
R-IVCA: rituximab, ifosfamide, etoposide, and cytarabine.
GDPE: gemcitabine, cisplatin, dexamethasone, and etoposide.
DHAP: cisplatin, Ara-c, and dexamethasone.
MA: MTX + Ara-c; MTX: methotrexate.
Ara-c: cytarabine; L: L-asparaginase.
MCL: mantle cell lymphomas; BL: Burkitt lymphoma; DLBCL: diffuse large B-cell lymphoma; CLL/SLL: chronic lymphocytic leukemia/small lymphocytic lymphoma; MRD: elimination of
minimal residual disease.
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(Essand and Loskog, 2013; Dotti et al., 2014). The latter
merges signaling domains from the T-cell receptor (TCR)
complex and co-stimulatory protein, such as CD134/OX40
(Pulè et al., 2005) and CD137/4-1BB (Imai et al., 2004;
Stephan et al., 2007; Carpenito et al., 2009).

2 METHODS

2.1 Case and Data
Patients with R/R B-cell lymphoma admitted to the First Affiliated
Hospital of Shenzhen University/Shenzhen Second People’s
Hospital (Shenzhen, China) between October 2015 and October
2021 were selected based onWHO lymphoma classification criteria.
The lymphoma was diagnosed in 2015 and was screened according
to clinical trials inclusion and exclusion criteria. The patients with
CD19-positive lymphoma cells were examined for pathological
biopsy and immunohistochemistry of lymphoid tissue before
chimeric antigen receptor T-cell (CAR T-cell) therapy. The
patients in the group were fully aware of the clinical research
and signed informed consent.

2.2 Clinical Characteristics
We collected the general information of patients included in
this study, including gender, age, and disease and evaluated
tumor burden of patients before CAR T-cell therapy. The
characteristics of the five patients (Case 1∼Case 5) are
shown in Table 1. The five patients were diagnosed with
B-cell lymphoma, with ages ranging from 32 to 68 years,
with a median of 60 years. Before receiving CAR T-cell
therapy, all patients received 2–9 chemotherapy regimens.
The median follow-up time was 36 months (Table 2). There
are two cases of mantle cell lymphoma (MCL), one Burkitt
lymphoma (BL), one DLBCL, and one CLL/SLL, with four
males and one female. It is worth noting that three patients
have a history of using ibrutinib. Case 3 relapsed after
receiving ibrutinib for 10 months prior to CAR T-cell
therapy and then discontinued the use. Case 4 continued to
receive ibrutinib from 1 year prior to CAR T-cell therapy till
date, and Case 5 only received ibrutinib for 4 months after

CAR T-cell therapy. Additionally, four of the five patients had
genetic abnormalities prior to CAR T-cell therapy (Table 1): In
Case 3, the bone marrow biopsy showed ATM and D13S25
deletions; in Case 4, the bone marrow biopsy showed
NOTCH1, TP53, and ATM mutations; in Case 5, tumor
tissue showed only a C-MYC-positive, while gene mutation
in bone marrow remained negative. In Case 1 and Case 3,
treatment was carried out with anti-CD19 CAR T-cell-induced
significant therapy. Although imaging examination revealed
that patients of Cases 4–5 had achieved CR prior to CAR T-cell
therapy, the molecular genetics did not achieve remission.
Therefore, the therapeutic goal of the two patients was to
eliminate MRD and maintain therapy.

2.3 CAR T-Cell Therapy
2.3.1 Pretreatment Scheme
FC scheme (fludarabine 25–30 mg/m2 × 3 days;
cyclophosphamide 250–300 mg/m2 × 3 days).

2.3.2 Treatment Process
The peripheral blood lymphocytes were collected and sent to the
laboratory for genetic transformation into anti-CD19 CAR T-cells
1 month before transfusion. The patients received the FC regimen
on the fifth day (day-5–3) before CAR T-cell infusion. CAR T-cells
were reinfused into the patient on day 0–2 with 10, 30, and 60% of
the anti-CD19 CAR T-cells consecutively. The non-steroidal anti-
allergic drugs were used to avoid an allergic reaction. The
antipyretic analgesic acetaminophen was administered to
prevent fever before CAR T-cell infusion.

2.3.3 Preparation and Reinfusion of CAR T-Cells
The median of the total number of reinfused CAR T-cells was
350*10̂6 (88*10̂6–585*10̂6). The CAR T-cell expansion
in vitro in Case 4 was relatively poor, and thus the dose of
reinfusion is lower than that in others. The CAR T-cell
reinfusion was only administered for two consecutive days,
and all patients except Case 4 received three times of
reinfusion in the first course of reinfusion. In addition,
only one patient received the second course of CAR T-cell
reinfusion due to relapse (Table 1).

TABLE 2 | Value of measurable lymph nodes, extranodal lesions, and spleen (CT) (mm).

Submandibular Parotid
gland

Supraclavicular Cervical Groin Axillary Mesentery Abdominal
cavity

Spleen

1 First
course of
treatment

Before CAR
T-cell

20 × 9 15 × 6 30 × 12 32 × 13 53 × 22 27 × 11 — 160 × 62 —

After CAR T-cell 9 × 4 8 × 4 12 × 7 14 × 5 27 × 10 14 × 4 — 48 × 15 —

Second
course of
treatment

Before CAR
T-cell

14 × 10 13 × 7 83 × 25 11 × 7 36 × 15 21 × 7 — 42 × 15 —

After CAR T-cell 5 × 3 7 × 4 40 × 12 7 × 3 13 × 5 10 × 3 — 21 × 6 —

2 Before CAR
T-cell

17 × 9 12 × 8 15 × 7 23 × 10 16 × 11 35 × 16 — — —

After CAR T-cell 14 × 7 15 × 9 9 × 8 26 × 11 40 × 12 20 × 14 — — —

3 Before CAR
T-cell

18 × 6 17 × 8 18 × 5 19 × 10 35 × 27 35 × 15 44 × 15 — —

After CAR T-cell <8 <8 <8 <8 <6 <6 <8 — —

-: normal; After CAR T-cell: 30 days after CAR T-cell infusion.
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2.3.4 Testing Indicators
The serum cytokine levels and peripheral blood CAR levels were
measured on days 0, 4, 7, 14, and 28.

The complete blood cell count (CBC), CD19, and IgG and
other related indexes of peripheral blood were monitored every
3 days. The levels of CD19, CAR, and cytokines were detected
every 3 months after the reinfusion of CAR T-cells. CT scans were
performed on the 30th day after the reinfusion of CAR T-cells,
every 3–6 months for the next 5 years, and every year after
5–10 years.

2.3.5 CRS Treatment
The patients’ symptoms and syndromes, as well as their
cytokines, CRP, and ferritin levels, were all monitored. The
CRS was controlled by using tocilizumab and etanercept, alone
or in combination. If the aforementioned treatment is ineffective,
we try to control CRS by using glucocorticoids and/or
plasmapheresis to reduce high levels of inflammatory factors
and cytokines.

2.4 Reference Standard
CAR T-cell therapy was evaluated according to Lugano standard
(2014). The diagnostic criteria for CRS are classified into four
grades based on Lee scale, Penn scale, and CAR-TOX (Lee et al.,
2014; Neelapu et al., 2018; Porter et al., 2018). We use the Penn
scale to further divide the CRS into five grades, while other
adverse reactions were assessed using The National Cancer
Institute Common Terminology Criteria for Adverse Events
(CTCAE 5.0).

3 RESULTS

3.1 Tumor Burden (Short-Term Effects
(<1Month))
The short-term effect of CAR T-cell therapy was observed
within 1 month in Cases 1–3, whose purpose was to induce
treatment. The clinical effect of CAR T-cell therapy in Case 1
and Case 3 was relatively obvious, especially in Case 3 which
attained CR in a short time with reduced tumor burden (long
diameter of the lymph node was less than 1.5cm, no residual
extranodal lesions, and the size of the spleen returns to normal).
PR was obtained in the first and second courses of CAR T-cell

therapy (the sum of PPD (longest diameter × short diameter
perpendicular to the longest diameter) of six target lesions,
that is, SPD (sum of product of vertical diameter of multiple
lesions) ≥ 50%) in Case 1 (Table 2). In Case 2, there was no
significant change in the lesions before and after treatment
(Table 2). It should be noted, however, that the physical
examination of Case 2 on day 14 showed that all of the
enlarged superficial lymph nodes could not be touched.
However, due to the rapid progression of the patient’s
condition, he was unable to go to the ward for CT
examination. In Case 4, the ATM, NOTCH1, and TP53
genes tested negative based on the next-generation
sequencing (NGS) data 1 month after CAR T-cell therapy
in bone marrow (Table 3).

3.2 CAR T-Cell (Short-Term Effects
(<1Month))
Taking the median of CAR and CD19 data of five patients, we can
find that CAR copies peaked at day 7, and the expression of CD19
gradually decreased to 0 until day 14, and the slope of CD19
decline was the largest when CAR copies were the highest
(Figure 1). The median amplification multiple of CAR was
16.94 (9.12, 249.3), and the median amplification duration was
7 days (2, 20).

TABLE 3 | Result of CAR T patients.

Case 1 Case 2 Case 3 Case 4 Case 5

Best response CR PR* mCR mCR -
Gene mutation after CAR T-cell
therapy

— Persistent
existence

Negative for ATM and D13S25
deletion

Negative for TP53, ATM, and NOTCH1
mutation

Persistent
existence

CRS 2 3 2 No No
CRES No No No No No
PFS (month) 29/-▲ 1.2 64 38 39
Current outcome Survival Death Survival Survival Survival
Follow-up time 65 1.6 65 39 40

▲: Case 1: PFS was obtained in the first course of treatment for 29 months/unclear in the second course of treatment.
*:Case 2 had no objective imaging evidence of PR, but physical examination showed that all superficial lymph nodes retracted and could not be touched.

FIGURE 1 | Trend of CD19 and CAR.
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3.3 Tumor Burden (Long-Term Effects
Time(>1Month))
The long-term therapeutic effect of patients treated with CAR
T-cell therapy to induce remission is expected from 1 month after
CAR T-cell therapy. The best response of patients was from Case
1 and Case 3 whose treatment induced complete remission. The
Case 1 patient had got partial remission (PR) in a short time of the
first course of CAR T-cell therapy and progressed after 29 months
of PR for the first course of treatment. In the second course of
CAR T-cell therapy, PR was achieved again in the short term, and
CR was obtained in the first year of telephone follow-up.
Unfortunately, due to the loss of follow-up, the specific time
and duration of CR were unknown. More importantly, Case 3 not
only achieved CR in the short-term efficacy assessment, but it also
obtained negative ATM and D13S25 gene deletion results
(molecular biology complete remission, mCR) at day 42 after
CAR T-cell therapy. The Case 3 mCR has lasted 5 years and
6 months and is now considered clinically cured and alive. On the
other hand, Case 2 progressed on the 35th day and died on the
47th day after CAR T-cell reinfusion.

Case 4 and Case 5 had MRD eliminated and maintained CAR
T-cell therapy. ATM, NOTCH1, and TP53 mutation of Case 4
turned negative in the NGS result at 1 month after CAR T-cell
therapy in bone marrow, and TP53 was still negative in FISH at
day 180. At the end of follow-up for Case 4, NGS data still showed
that ATM, NOTCH1 and TP53 were negative. Interestingly,
Cases 4 and 5 were MRD negative at 41 and 42 months after
CAR T-cell therapy, respectively (Table 3).

4 TOXICITY AND TREATMENT

4.1 CRS
CRS was found in the patients of Cases 1–3, including patients in
Case 1 and 3 with CRS grade 2 and Case 2 patients with CRS
grade 3. The patient of Case 1 was treated twice with CAR T-cells,
with CRS grade 2 appearing in both treatment courses. The
patients of Case 4 and Case 5, who had MRD eliminated and
maintained therapy, did not have CRS (Table 1).

4.1.1 Fever
All CRS patients had chills and fever. The body temperature of
CRS patients began to drop on the seventh day after it exceeded
39°C, but they were unable to return to normal temperature and
had repeated low fever, and the body temperature returned to
normal after 1–2 weeks. We found that two patients with good
curative effect (Case 1 and Case 3) had fever on the day of
reinfusion, while the patient with poor curative effect (Case 2)
had delayed fever and fever appeared on the seventh day. The
patient’s body temperature gradually returned to normal after
being treated with the recombinant humanized monoclonal
antibody against human interleukin-6 (IL-6) receptor,
tocilizumab, and glucocorticoids. In this study, we observed
that the level of cytokines (IL-6) in Case 2 was significantly
higher than those in Case 1 and Case 3. The body temperature
and shock symptoms could not be effectively controlled after the
use of tocilizumab.We used plasma exchange and glucocorticoids

to reduce the high level of cytokines, as well as fluid replacement
and dopamine, and achieved satisfactory results (body
temperature returned to normal; shock was controlled). In
addition, we also found that the trends in body temperature,
IL-6, and CRP of three patients with CRS were similar and
roughly parallel (Figure 2).

4.1.2 Respiratory and Circulatory System
In Case 2 and Case 3 of hypotension to shock, one of them
showed a decrease in blood oxygen saturation, and the
aforementioned symptoms were relieved by using
plasmapheresis after the poor effect of conventional support.
Case 1 showed chest distress, shortness of breath, palpitation, and
increased heart rate, and the symptoms were relieved after
symptomatic and supportive care.

4.2 Other Adverse Events
4.2.1 Hematological Changes
Upon CAR T-cell therapy, two patients had leukopenia and
neutropenia with fever, one patient had neutropenia with
fever, and two patients had leukopenia without fever. Also,
three patients had thrombocytopenia, and two patients had
lymphocytopenia. Furthermore, platelets, leukocytes, and
lymphocytes (median) decreased on day 0 and PLT gradually
increased to normal on day 7, while leukocytes and lymphocytes
gradually increased on day 14 (Figure 3).

4.2.2 Non-Hematological Adverse Events
The patients had diarrhea, abdominal pain, abdominal
distension, perianal burning, pain, oral ulcer, and other
discomfort symptoms. The level of alanine aminotransferase
(ALT) showed a slight upward trend, but imaging showed no
obvious organic lesions in the liver and kidney (Figure 4). The
adverse events associated with CRS grade 2 were significantly
higher than those associated with CRS grade 1 or no CRS group
(Table 4).

At the same time, we observed that IL-10 and EB virus DNA
copy increased approximately parallel after CAR T-cell infusion
in Case 2 (Figure 3).

5 DISCUSSION

Following a decade of preclinical optimization, anti-CD19 CAR
T-cell therapy has produced impressive clinical results in patients
with B-cell malignancy. CAR T-cell therapy is emerging as a
promising therapeutic option on B-cell malignancies, with the
potential for durable disease control following a single treatment.
CAR T-cell therapy distinguishes itself from other therapies that
require repeated and/or continuous administration. The previous
NHL CR rate reported was 57.1% (Davila et al., 2014b;
Kochenderfer et al., 2015). In this report, we demonstrated the
potential of anti-CD19 CAR T-cell therapy for R/R B-cell
lymphoma. Additionally, we demonstrated that the study’s
objective response rate was 80% (4/5), while a CR rate of
66.6% (2/3) was observed. Interestingly, the gene deletion
ATM and D13S25 which was initially positive for Case 3
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patient resulted negative at day 42 post CAR T-cell therapy; also,
after 1 month of CAR T-cell therapy, the TP53, ATM, and
NOTCH1 gene mutations in Case 4 were found to be
negative. Additionally, there are promising prospects in MRD
elimination and maintenance therapy. Case 4 was MRD negative
41 months after receiving CAR T-cell therapy, while in Case 5 the
progression-free survival (PFS) was 42 months. It should be noted
that in this study patients with TP53 gene mutation turned
negative only 1 month after receiving CAR T-cell therapy. The
TP53 gene hot spot mutation is highly immunogenic and can
trigger T cell responses to new antigens in tumors. Preliminary
studies show that peripheral blood lymphocytes can recognize
tumors with TP53 gene mutation after in vitro stimulation and in

vivo immunization. All the above suggest that cancer patients
with TP53 gene mutations may be more suitable for
immunotherapy including CAR T-cell therapy used in this
study. Although we use anti-CD19 CAR T-cells for treatment,
the high-immunogenic response of TP53 gene mutation
enhances the anti-tumor T-cell response of cancer patients. It
improves the efficacy of anti-CD19 CAR T-cell-targeted therapy
suggesting that the TP53 mutation could be a potential target of
CAR T-cell therapy. We speculate that anti-CD19 CAR T-cells
could have a therapeutic effect on TP53 gene mutations
(Malekzadeh et al., 2019; Chasov et al., 2020; Titov et al., 2020).

Although the results of anti-CD19 CAR T-cell therapy are
quite satisfactory, there are some side effects or relapses. It is well

FIGURE 2 | Changes in temperature and IL-6 after transfusion of CAR T-cells in patients with CRS.

FIGURE 3 | Trend of other indirect monitoring indicators.
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established that lymphoma affects solid organs such as the lymph
nodes, liver, and spleen. CAR T-cell therapy for lymphoma has
been hampered by a number of common factors unique to solid
tissues, such as factors in the tumor microenvironment, obstacles
for CAR T-cells homing to tumor site, and also low tumor
penetration between CAR T-cells and tumor cells.

The low transfection rate for the CAR T-cells has been
reported due to individual factors which could be a part of the
reasons for poor therapeutic effects (Bonati et al., 2015; Enblad
et al., 2015; Filley et al., 2018). At present, a new type of CAR
T-cell has been developed in Japan, which can penetrate into
tumor tissues and induce a robust T cell and dendritic cell (DC)
response and as well as play a synergistic antitumor role. It has
been shown to achieve 100% curative effect in various tumor
animal models; the clinical application of this technique may

improve the efficacy of CAR T-cells in NHL (Adachi et al., 2018).
In addition, there are many reasons for relapses: first, repeated
antigen exposure can lead to T-cell exhaustion. Second, the
mechanism of CD19-negative relapse may be attributed to the
presence of CD19 blast primitive cells prior to the relapse. Under
the repeated selection of anti-CD19 CAR T-cell therapy, CD19
cells develop as dominant clones and eventually lead to CD19-
negative recurrence. Also, the deletion or alternative RNA
splicing of exon 2 of chromosome 16, where the CD19 gene is
located, resulted in the downregulation of B-cell transcription
factors pair box 5 (PAX5) and early B-cell factor 1 (EBF1), which
leads to lymphatic cell transformation to myeloid cell and
recurrence (Fischer et al., 2017; Li and Chen, 2019).

Common toxicities of CAR T-cell therapy that have been
observed include CRS, macrophage activation syndrome (MAS),
and neurotoxicity (Grupp et al., 2013; Davila et al., 2014b; Frey
and Porter, 2019; Murthy et al., 2019). Many cytokines released
during CRS are found to be elevated, and the main cytokines
related to the pathogenesis of CRS include IL-6, IL-10, IFN—γ,
MCP-1, and GM-CSF (Martinez et al., 2009; Hunter and Jones,
2015; Tanaka et al., 2016; Wang and Han, 2018; Murthy et al.,
2019). These toxicities can be self-limiting requiring only
symptomatic care or may be treated with the anti-human
interleukin 6 (IL-6) receptor monoclonal antibody and
necrosis factor receptor type II antibody fusion protein and/or
glucocorticoids (Murthy et al., 2019). The goal of treatment of
CRS was to avoid toxicities and maximize the anti-tumor effect of
cellular therapy. In the current study, fever, dyspnea, and shock
were observed for CRS patient, and the IL-6 antagonist

FIGURE 4 | Trend of IL-10 and EBV-DNA copies of Case 2.

TABLE 4 | Number of the patients of the adverse event.

All Grades 1 and 2 Grades ≥3 No CRS

Fatigue 3 1 2 0
Elevated BNP 2 1 1 0
Dyspnea 2 0 2 0
Diarrhea 1 0 1 0
Perianal pain 1 0 1 0
Mouth ulcer 1 0 1 0
Neutropenia 3 1 1 1
Leukopenia 5 1 2 2
Thrombocytopenia 3 0 1 2
Lymphopenia 2 0 1 1
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administered was obviously effective. When the effect of IL-6
antagonists and necrosis factor receptor type II antibody is
inadequate, glucocorticoids are used. At the same time, fever,
dyspnea, and shock can be alleviated in most cases after
symptomatic treatment. Overall, these symptoms can be
alleviated by reducing cytokines in vivo with IL-6 antagonists,
necrosis factor receptor type II antibodies, or glucocorticoids.
Therefore, we consider that fever, dyspnea, and shock are mainly
attributed to CRS. Tocilizumab, a humanized IL-6 receptor
antagonist mAb, works on both the membrane-bound IL-6
receptor and soluble IL-6 receptor by competitively competing
with IL-6 for binding to both receptors, leading to decreased IL-6
signaling and reducing immune activation and inflammation
(Nishimoto and Kishimoto, 2008; Kotch et al., 2019). It was
approved by the FDA for the treatment of severe or life-
threatening CAR T-cell-induced CRS in adults and pediatric
patients ≥2 years old (FDA, 2017). Tocilizumab was later
shown to reduce fever and CRS symptoms without affecting
CAR T-cell levels in serum or bone marrow (Davila et al., 2014b).
In addition, CRS can cause the rise of a variety of cytokines,
including IL-6, TNF-α, and IL-10. We also try to use etanercept
(Deeks, 2017) alone to reduce TNF-α to control CRS, which
showed obvious effect. The glucocorticoids may be an alternative
treatment for severe CRS and ineffective tocilizumab and/or
etanercept treatment after CAR T cell therapy. CRS can also
produce high levels of inflammatory factors and various
cytokines, leading to life-threatening symptoms. When the
patient’s vital signs are stable, the application of tocilizumab/
etanercept or glucocorticoids can show significant curative effect
regardless of the level of cytokines. However, we did not get the
ideal effect when the high level of cytokines and vital signs were
unstable. But, we observed that plasmapheresis has an immediate
effect. CRS-related symptoms disappear as the high level of
cytokines is controlled. Excessive inflammatory factors may
also be controlled using extracorporeal blood purification
techniques, such as high-volume hemofiltration, cascade
hemofiltration, plasmapheresis, and coupled plasma filtration
adsorption. The main objective of these techniques is to
selectively eliminate high molecular from medium-weight
components, such as cytokines (Lysenko et al., 2017). In
addition, anakinra (Giavridis et al., 2018; Norelli et al., 2018)
(inhibition of IL-1 binding to IL-1RI), dasatinib (Montero et al.,
2011) (inhibition of T cell activation and T cell signal kinase), and
lenzilumab (Teachey et al., 2016; Sterner et al., 2019) (GM-CSF
antibody) may also be able to control CRS. Reducing and
managing toxicity, as well as using CAR T-cell therapy in
conventional clinical practice, still needs to be explored and
resolved. CRS is the most common and potentially most
serious adverse event after the reinfusion of CAR T-cells; if
CRS can be effectively controlled, anti-CD19 CAR T-cell
therapy is extremely safe and effective.

In our study, no correlation between cytokine levels and the
severity of CRS cells were observed, which is consistent with the
previous literature. The current research study also focuses to find
cytokines that can accurately and effectively differentiate CRS
response and to formulate stratified diagnosis and treatment
strategies (Frey and Porter, 2016; Park et al., 2016; Hay et al.,

2017; Neelapu et al., 2018) or to facilitate clinical detection
indicators (CRP is currently recommended in many studies)
(Davila et al., 2014b; Bonati et al., 2015). The detection trend
of CRP in this study is similar to that of IL-6, which indicates that
it can reflect CRS but cannot reflect the severity of CRS.

After CAR T-cell therapy, one MCL patient and one BL
patient were given ibrutinib to maintain therapy and
continuous CR for 41–42 months. The BTK inhibitor ibrutinib
improves response of anti-CD19 CAR T-cell therapy in patients
of MCL and reduces cytokine release syndrome (CRS). The
ibrutinib and CAR T-cell derive additional synergy from
ibrutinib-mediated T-cell mobilization and ibrutinib-mediated
reduction in inhibitory receptor expression on CAR T-cells. Also,
the killing of MCL cells by anti-CD19 CAR T-cells was
significantly augmented in the presence of ibrutinib, suggesting
an additive cytotoxic effect of the combination of both ibrutinib-
sensitive (MCL-RL) and -resistant (JEKO-1) MCL cells.
Therefore, ibrutinib and CAR T-cell may work in synergy for
an enhanced antitumor effect (Ruella et al., 2016).

We noticed that IL-10 was significantly elevated in Case 2 with
EBV-positive DLBCL. The BCRFL-coding frame of EBV is
homologous to human IL-10, which is also known as viral IL-
10. It has an immunosuppressive effect similar to IL-10. It has
been reported that EBV and IL-10 work in synergy to promote
tumorigenesis (Beatty et al., 1997; Liu et al., 1997; Irons and Le,
2008; Samanta et al., 2008; Davis et al., 2010). Hence, CAR T-cell
therapy is both effective and safe. We will continue to improve the
prospect of oncology to ensure that such therapy can be safely
administered to all patients.

6 CONCLUSION

CAR T-cells are not only effective and safe in the treatment of R/R
B-cell lymphoma, but they are also effective in the treatment of
MRD of invasive B-cell lymphoma. CRS is the most common and
serious side effect in the course of CAR T-cell treatment. When
symptomatic treatment of CRS fails to give satisfactory results, CRS
can be controlled by the IL-6 receptor antagonist. In the event
that adverse effects remain uncontrollable after the administration
of the IL-6 receptor antagonist, glucocorticoids and/or
plasmapheresis can be administered for the treatment of CRS.
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