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The host defense against pathogens varies among individuals. Among the factors

influencing host response, those associated with circadian disruptions are emerging.

These latter depend on molecular clocks, which control the two partners of host defense:

microbes and immune system. There is some evidence that infections are closely related

to circadian rhythms in terms of susceptibility, clinical presentation and severity. In this

review, we overview what is known about circadian rhythms in infectious diseases and

update the knowledge about circadian rhythms in immune system, pathogens and

vectors. This heuristic approach opens a new fascinating field of time-based personalized

treatment of infected patients.
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INTRODUCTION

The defense against pathogens varies among individuals. Several heritable and non-heritable
influences may account for these inter-individual variations. It now appears that the most
important variations of host response among individuals include those associated with circadian
disruptions (1). The circadian rhythm (Latin origin: circa: almost; dies: day), also called biological
clock, is found in all living organisms, including eukaryotes and prokaryotes, and is defined as
a period of about 24 h, temperature-compensated and entrained by a Zeitgeber (German name
for synchronizer) (2, 3). The idea that an intrinsic rhythmicity governs host adaptation to the
environment was introduced three centuries ago with the movement of mimosa leaves and, one
century later, by the demonstration of gene-encoded rhythm in Drosophila melanogaster (4–7).
This fascinating field of research is expanding with the recent awarding of the Nobel Prize to Hall,
Rosbash and Young (8).

The function of circadian rhythms is to anticipate the changes and cycles of the surrounding
world, such as day/night cycle and earth rotation, in order to optimize the response of organisms
to these changes (9, 10). In mammals, including humans and non-human primates, this biological
rhythmicity is coordinated by a central molecular oscillator, the suprachiasmatic nucleus (SCN),
which ensures synchronization with light/dark cycle through specialized neurons from retina that
receive photonic signals and the SCN then sends projections to other regions of the brain with local
clocks such as immune organs, leading to activation of peripheral clocks (11–14). Interestingly, the
SCN triggers a circadian rhythm independently of any temporal reference and is an autonomous
timekeeper (15). In peripheral tissues, most cells have an internal molecular clock (16), but the
function of these specific oscillators is not fully understood.
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FIGURE 1 | Circadian rhythm of the immune system components. The suprachiasmatic nucleus is the central oscillator that mediates all circadian variations in

humans. It receives synchronization information with the day/night cycle via its retinal connection and then sends projections to other regions of the brain with local

clocks such as immune organs (lymph nodes, spleen, thymus, and bone marrow) and activates peripheral clocks (activation of circadian feedback loops). In most

immune cells (represented by functions such as phagocytosis and cytokine production), the feedback loops function as follows: once its gene is expressed, the

BMAL1 protein dimerizes with CLOCK in the nucleus; the CLOCK/BMAL1 heterodimer binds to the E-box promoter sequences and induces expression of Pers, Crys,

Reverbs, Rors, and Ccgs. The PERs and CRYs proteins dimerize in the presence of the casein kinase 1 (Ck1), then return to the nucleus to prevent the binding of the

dimer CLOCK/BMAL1 on DNA. PERs proteins are phosphorylated by Ck1 and then degraded by the proteasome. REVERBS and RORs have antagonistic effects on

Bmal1 expression: they bind the promoter of its gene and then induce (RORs) or inhibit (REVERBs) its expression. DBP protein induces the expression of Pers and

Ccgs by binding D-box promoter sequences; it is inhibited by NFIL3. Positive and negative factors are represented by red and green arrows, respectively.

The molecular mechanisms of circadian rhythms have been
well-investigated so far. It involves the clock genes present in
two main feedback loops (Figure 1). First, the positive loop
consists of the genes encoding circadian locomotor output
cycles kaput (CLOCK), brain and muscle arnt-like protein 1
(BMAL1), and retinoic acid-related orphan receptor α, β and
γ (RORs) proteins. Second, the negative loop involves the
genes encoding Period (PER) 1, 2, 3, cryptochrome (CRY) 1, 2
and REVERB-α, -β (also called NR1D1/2 or nuclear receptor
subfamily 1 group D) proteins (17, 18). In most somatic

Abbreviations: ANOVA, analysis of variance; ARNTL, aryl hydrocarbon receptor

nuclear translocator-like; BMAL1, brain and muscle arnt-like protein 1; Ccgs,

clock-controlled genes; Ck1, casein kinase 1; CLOCK, circadian locomotor output

cycles kaput; CRY, cryptochrome; DBP, d-box binding protein; DCs, dendritic

cells; DDT, dichloro-diphenyl-trichloroethane; HC, hepatitis C virus; HSV, herpes

simplex virus; Ig, immunoglobulin; IL, interleukin; ILC, innate lymphoid cells;

LPS, lipopolysaccharide; miR, microRNA; NFIL3, nuclear factor, interleulin-3

regulated; NK, natural killer; NR1D, nuclear receptor subfamily 1 group D; PER,

period; ROR, retinoic acid-related orphan receptor; RORγT, RAR-related orphan

receptor gamma; SCN, suprachiasmatic nucleus; SSA, singular spectrum analysis;

TLR, toll-like receptor; TNF, tumor necrosis factor.

cells, the transcription factor formed by the dimerization of
BMAL1 and CLOCK proteins binds the E-box sequences of
the promoters of the other clock genes (Per, Cry, Reverb, and
ROR), inducing their expression and translation (19). The
CLOCK/BMAL1 transcription factor controls a third circadian
regulatory loop, DBP (D-box binding protein) by binding the
D-box sequences of gene promoters (9). Following the action of
the dimer CLOCK/BMAL1, the clock-controlled genes (Ccgs)
are expressed. These latter control 30% of the mammalian
genome and regulate numerous physiological functions
(16), including body temperature, blood pressure, hormone
concentrations, blood circulation, urine output, metabolism,
hair growth and immune system (14). In this context,
during pathological conditions the involvement of circadian
rhythm is now admitted but its investigation remains to date
complex (20).

Here, we will summarize what is known about rhythmicity
in infectious diseases. Then, we will update the knowledge
about circadian rhythms in immune system, pathogens and
vectors. Finally, we will translate this heuristic approach into
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a fascinating process for time-based personalized treatments of
infected patients.

CIRCADIAN RHYTHMS OF IMMUNE
EFFECTORS, PATHOGENS AND VECTORS
IN INFECTIONS

The occurrence of infectious diseases results from the
conjunction of different factors including the ability of the
host to coordinate the immune response, the nature and the
virulence of the microorganisms and, sometimes, the presence
of vectors such as mosquitoes. If the rhythms of immune system
have been a source of recent reviews, those of pathogens and
vectors are less investigated. We will summarize what is known
about circadian rhythms of the immune system, microbes and
vectors with a special attention to microbiota.

Circadian Rhythms of Immune Effectors
It is well-established that the immune response varies according
to circadian rhythms. These variations concern innate and
adaptive immune responses at both quantitative and qualitative
levels. At the quantitative level, the circulating number of
hematopoietic stem and progenitor cells, and most mature
leukocytes increases during the resting phase for rodents and
the night for humans (21). The migration of immune cells to
the tissues, a major phase of anti-microbial response, occurs
preferentially during the active phase. This response also involves
neuro-mediators released locally by sympathetic nerves, thus
underlying the role of central pacemaker in addition to peripheral
clocks (22). It has recently been shown that neutrophil traffic
is regulated through a timer program. The deletion of aryl
hydrocarbon receptor nuclear translocator-like protein 1 (Arntl)
and Cxcr2 genes prevents diurnal rhythms, called neutrophil
aging (23). The homing of circulating lymphocytes into lymph
nodes and their egress into efferent lymphatic vessels obey to
a rhythmic process. The egress of cells is based on circadian
variations of CCR7 production and that of its ligand CCL21 in
both T and B lymphocytes (24).

The immune functions are modulated by circadian control.
Regarding the innate immune system, functions such as
particle uptake and release of oxygen derivatives and cytokines
exhibit circadian rhythms (25, 26). Regarding the adaptive
immunity, there is evidence that the functions of T and
B lymphocytes also exhibit circadian rhythms. Indeed, the
production of antibodies in response to thymo-dependent and
thymo-independent antigens oscillates with melatonin rhythm
in mice; melatonin suppression is associated with increased
levels of specific antibodies, which are corrected by the addition
of melatonin and light (27). Similarly, immunoglobulin (Ig)-
E levels and IgE-mediated allergic responses are regulated by
molecular clock in mice (28) and human mast cells; similar
results are obtained in human eosinophils activated with N-
formyl-methionly-leucyl-phenylalanine, a canonical chemotactic
peptide (29).

In mice, the peak of salivary IgA levels occurs during
the night; this response seems to be under the control of a

central pacemaker (30). The lessons from mice invalidated for
clock genes underline the role of these genes in the ontogeny
of B lymphocytes and plasma cells (31) The functions of T
lymphocytes are also controlled in a circadian manner. The
proliferative response of T lymphocytes to mitogens is strongly
rhythmic and is impaired when clock genes are mutated (32).
In addition, the clock genes are involved in the differentiation of
Th17 cells. The Th17 cell development is suppressed by nuclear
factor, interleulin-3 regulated (NFIL3), a circadian-regulated
transcription factor; Nfil3 and related orphan receptor gamma
(Rorγ t) are expressed in CD4+ T cells rhythmically during dark
phase and light phase, respectively (33, 34). The development
of regulatory T cells producing interleukin (IL)-10 is controlled
by melatonin, suggesting that all coordination of the immune
response is under circadian control (34).

These results clearly show that the immune system is
under the control of peripheral clocks. It is also regulated by
hormones and neuro-mediators that reflect the activity of central
pacemaker. The hypothalamic-pituitary-adrenal axis is activated
in response to stress and appears synchronized to glucocorticoid
circadian rhythms. Hence, oscillations of the lymphocyte number
in humans are inversely correlated with diurnal rhythm of
glucocorticoid production (35). It is likely that the rhythmicity of
the immune response involves numerous mechanisms, including
the contribution of light variation.

Circadian Rhythms in Microbes and
Pathogens
For a long time, it was believed that circadian rhythms are not
expressed by single-cell organisms such as prokaryotes. One
reason for this belief was the idea that organisms duplicating
more than once a day do not need a rhythm longer than their
life cycle (36). In the 1980’s, circadian rhythm was found present
in cyanobacteria (37–39), photoautotrophic organisms that
produce oxygen by photosynthesis as plants and eukaryotic algae
(40, 41). In cyanobacteria, photosynthesis occurs in daylight,
whereas nitrogen production peaks during the night (42). It has
also been shown a circadian variation of the expression of most
genes implicated in cell division, chromatin compaction and
photosynthesis (43).

Mechanistic studies have enabled the identification of clock
genes responsible for circadian rhythms have been recently
discovered in most organisms including fungi, algae and
photosynthetic bacteria; they are named Frq, Ibp, and Kai,
respectively (44, 45). Regarding cyanobacteria, the central
biochemical oscillator of their circadian rhythm is represented
by three proteins encoded by the KaiABC cluster (10, 46, 47),
SasA, CikA, and RepA, which control the timing training, and
output of the cyanobacterial cell signaling process (48). Several
studies have examined how functions the circadian loop of
cyanobacteria (40, 42, 49–51). A theoretical model of the KaiABC
oscillator suggests that ATP hydrolysis is a driving mechanism
of phosphorylation oscillations and that the frequency of ATP
hydrolysis in individual KaiC molecules is correlated with the
circadian rhythm frequency (50) (Figure 2). The reconstitution
of cyanobacterium circadian loop in vitro is associated with
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FIGURE 2 | Circadian rhythm in cyanobacteria. The KaiC protein (red diamond) has two loop domains (CI and CII) and serine (S) and threonine (T) phosphorylation

sites. At dawn, the increase in the ADP/ATP ratio, which reaches its maximum at noon, leads to the fixation of KaiA (yellow rectangle) on the CII domain, the

phosphorylation of the T site and the induction of a training signal of photosynthesis elements. At nightfall, the increase in oxidized quinones following the initiation of

the nitrogen cycle leads to the phosphorylation of the S site; KaiC is doubly phosphorylated. SasA (blue rectangle) is then fixed on the CI domain and activates the

transcription factor RepA, which in turn induces expression of the target genes involved in the clock loop or others functions such as their multiplication. Finally, KaiB

(green rectangle) releases KaiA and SasA, disable RepA via its interaction with the repressor CikA, and end up dephosphorylating KaiC which first finds itself serine

phosphorylated.

oscillations of Kai proteins (52, 53), validating the theoretical
approach of the KaiABC oscillator.

The belief that circadian rhythms are specific of cyanobacteria
and that eubacteria are “non-circadian” should be revisited.
Using a bioinformatics approach, homologs of KaiB and KaiC
genes have been found in non-circadian bacteria including
Pseudomonas species and in archaea (46). The functions of
non-cyanobacterial Kai proteins have not been described,
and it remains unknown whether these proteins interact
with input and output factors (54, 55). However, the KaiABC
oscillator, when expressed into the “non-circadian” bacterium
Escherichia coli, remains functional (56), suggesting that
“non-circadian” bacteria possess the armaturium needed
to circadian rhythms. We recently identified the RadA
gene from E. coli as a KaiC structural homolog using a
bioinformatic approach and showed the persistence of circadian
rhythm in RadA−/− and RecA−/− mutants, suggesting
that RadA is not the generator of circadian rhythm of E.
coli. Hence, it does not play the same role than KaiC in
cyanobacteria (unpublished data). To date, the identification
of circadian rhythms in eubacteria remains challenging for
the scientific community and opens new insights in terms of
antibiotic resistance that could provide an interesting new
therapeutic approach.

The circadian rhythms have been also described in parasites
Plasmodium sp. (57). With a blood stage lasting 24 h or multiple
of 24 h, its rhythm was found to be associated with recurrent
fever. It has been reported that circadian variations of parasites
are influenced by variations of glycemia from high levels during
the night to low levels during the day (58, 59). Therefore, the links
between rhythmicity of parasites and host homeostasis have been
suggested. Similarly, the appearance of filarial parasites is also
rhythmic (60). The parasites have their own circadian rhythm, as
exemplified by Trypanosoma brucei that can generate circadian
expression in the absence of host cells (61).

Circadian Rhythms in Vectors
The insect vectors have their own biological rhythm (62) that
depends on the response to daily light/dark cycle and molecular
clock activity. Anopheles mosquitoes that transmit malaria are
active at dusk, so their bites occur at night during the host’s
resting phase. In contrast, Aedes mosquitoes that transmit
dengue/yellow fever are day biters (63). The pathogens may affect
vector circadian rhythms. The dengue virus is responsible for
high amplitude of rhythmic locomotor activity of mosquitoes.
Aedes aegypti exhibits diurnal rhythms that contribute to
circadian transmission of Zika virus (64). The proteobacterium
Wolbachia, an endosymbiont of arthropods, was reported to
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influence sleep time in flies (65). Recently, it has been shown
that the daily activity of fly is affected by peripheral clocks and
Wolbachia presence in flies (66).

The existence of biological rhythms in vectors may affect
their resistance to toxic compounds. In Anopheles gambiae, the
genes encoding the metabolic resistance to dichloro-diphenyl-
trichloroethane (DDT) insecticide are rhythmically expressed
(67, 68). Correlations between circadian enzymatic detoxification
of insecticide and feeding time have been established (69). Thus,
it appears that interactions between the circadian rhythms of
the three partners involved in malaria transmission, namely
mosquitoes, parasites and human host, lead to the development
of the disease.

Rhythms of Intestinal Microbiota and
Medical Consequences
At the intersection of microbial world, immune response and
homeostasis, the intestinal microbiota exhibit variations of
circadian rhythms (70, 71). The human gastrointestinal tract
contains a large number of microorganisms, of which the most
studied are the bacteria (72). They contribute to maintain
various host physiological functions such as immune defense
and/or tolerance (73). Recently, the circadian rhythm of the
intestinal microbiome composition as well as the functions of
this microbial community related to the circadian rhythm have
been reviewed (74). Although intestinal bacteria are not exposed
to the light/dark cycle, they are subjected to circadian changes
associated to host activities, including food intake and exposure
to antibiotics (74, 75). Nevertheless, light variations affect the
abundance of some microbes such as Ruminococcus torques
known to affect gut barrier integrity (76) and that of Clostridia
sp. (77). Interestingly, it has been reported that Enterobacter
aerogenes, a gram-negative bacterium, is sensitive to melatonin
known to be a circadian rhythm synchronizer and expresses
circadian swarming and motility (78). These findings strengthen
the hypothesis of circadian rhythms in prokaryotes.

The use of mouse models in which the intestinal microbiota
is modulated or mice with a clock gene deficiency underlines the
association between the microbiota and circadian rhythm. Liang
et al. (79) found that the absolute number of fecal bacteria in
C57BL/6 mice follows a circadian rhythm and that mice deficient
in Bmal1 gene show an altered daytime rhythm of microbiota in
a sex-dependent manner. Mice deficient in Per1/2 and disrupted
sleep cycle show an almost total loss of rhythmic fluctuations of
microbiota and present intestinal dysbiosis (80). The circadian
rhythms of microbiota over 24-h periods also depend on the
host. Hence, this rhythmicity disappears in vitro when bacteria
are cultivated, suggesting a regulation by the host (81). Leone
et al. (82) showed that the relationship between microbiota and
circadian rhythms is affected by the type of diet in germ-free
mice. Indeed, bacteria from the family Lachnospiraceae exhibit
circadian rhythms under regular low-fat chow, which are absent
in mice with high fat diet. The diabetic mice exhibit a loss of
diurnal rhythms of bacteria such as Akkermansia genus (83).

The association between circadian variations of microbiota
and mechanisms of nutrition-associated disorders has been

recently reported. Based on the observation that circadian
misalignment promotes the occurrence of obesity, it has
been shown that disruption of circadian rhythms impacts gut
microbial composition and risk of obesity in rodents. In the
absence of microbiota, the recruitment of histone deacetylase 3
is defective and cyclical histone acetylation is lost, suggesting a
relationship between microbiota rhythms and epigenetic changes
(84, 85). In addition, a new target of diurnal rhythms of
microbiota, the group 3 innate lymphoid cells (ILC3), has
been recently reported (86). Indeed, a dysregulation of brain
rhythmicity affects circadian rhythms of ILC3 and microbiota,
suggesting that environmental light directly regulates diurnal
variations of enteric ILC3. In summary, a disruption of the
circadian rhythm, by mutation of clock genes or disruption of
the wake/sleep cycle, leads to changes in the composition of the
intestinal microbiota and metabolic changes in host, opening a
new fascinating field of investigations.

CIRCADIAN RHYTHM IN INFECTIOUS
DISEASES: FROM EXPERIMENTAL
STUDIES TO CLINICS

The study of circadian rhythms in infectious diseases is more
complex than the investigation of rhythmicity in immune
effectors and microbes. It requires an integrated approach
associating experimental investigations and clinical observations.
The aim of this section is to discuss the impact of infection
to host circadian rhythms, the role of circadian rhythms in the
susceptibility and/or resistance of individuals to infection and
finally the situation of septic syndromes.

Impact of Infection on Host Circadian
Rhythm
The evidence of circadian variations in infectious diseases due to
bacteria, parasites and virus is based on clinical observations and
on the use of animal models including mice invalidated for clock
genes (Table 1).

During infection, central and peripheral circadian rhythms
of the host may be altered. In infected mice, the interaction
of Streptococcus pneumonia with epithelial cells account for
circadian variations of pulmonary inflammation including
the release of inflammatory mediators and recruitment of
inflammatory cells. In the absence of Bmal1 gene, the recruitment
of neutrophils is increased in relation with a disruption of
CXCL5-glucocorticoid receptor interaction (87). Moreover, the
infection with Helicobacter pylori, that is responsible for gastritis
and paves the way of gastric cancer, involves alterations in gastric
acid secretion, which is regulated by circadian rhythm (89).
H. pylori dysregulates the molecular clock in gastritis through
the upregulation of Bmal1 gene expression in gastric epithelial
cells. Importantly, the expression of the Bmal1 gene is also
upregulated in gastric tissues from patients with atrophic gastritis
and dramatically increased in patients with precancerous lesions,
thus establishing a relationship between disrupted circadian
rhythm and the severity of the infection. In addition, H. pylori
disrupts the circadian rhythm of an important Bmal1 target, the

Frontiers in Immunology | www.frontiersin.org 5 July 2020 | Volume 11 | Article 1457

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Diallo et al. Clinical Chronobiology in Infectious Diseases

TABLE 1 | Circadian rhythm in infectious diseases.

Pathogens Circadian effects Clock gene/protein References

Streptococcus pneumoniae • The severity of the response depends on the time of the infection (higher

at the beginning of the resting phase compared to the active phase)

• Circadian phagocytosis in infected macrophages

Bmal1 (87, 88)

Helicobacter pylori • Molecular clock disruption which is related to an increase of the infection Bmal1 (89, 90)

Listeria monocytogenes • Disruption of the circadian circulation of inflammatory monocytes to

tissues

Bmal1 (91)

Mycobacterium tuberculosis • Infected patients coughing is more common during the day – (92)

Salmonella enterica serovar Typhimurium • Bacterial colonization of the colon is more pronounced during the resting

phase than during the active phase

Clock (93)

Hepatitis C Virus • Patients with chronic HCV infection develop a disrupted circadian rhythm Per2 REV-ERBα (94–96)

Influenza A virus • Mice infected before the onset of active phase exhibit higher mortality and

morbidity than mice infected before the rest phase

Bmal1 (96)

Herpes simplex virus • Viral replication 10-fold higher in mice infected during the resting phase

vs. the active phase

– (97)

Trypanosoma brucei • Circadian disruption of body temperature and locomotive activity

• Infected mice have a period of < 24 h and abnormal activity during the

resting phase.

Bmal1 (98)

Trichuris muris • Loss of cyclic antigen presentation

• The parasite persists in infected mice at night

Bmal1 (99)

Plasmodium chabaudi • Alteration of the circadian rhythm of blood glucose (hypoglycemia at the

end of the active phase)

Bmal1 (58)

gene encoding tumor necrosis factor (Tnf ), exacerbating the TNF
production (90).

Disruption of circadian rhythm was also observed during
intracellular bacterial infection. Listeria monocytogenes is a
foodborne gram-positive bacillus known to be pathogen
when T-cell mediated responses are impaired. The number
of inflammatory monocytes considered as the effectors of
inflammation and anti-Listeria immunity vary according to
a circadian rhythm. Their circadian traffic to the tissues is
disrupted by the myeloid impairment of Bmal1 gene (91). Our
team previously showed expression variations of clock genes in Q
fever, a zoonosis due to Coxiella burnetii, an obligate intracellular
bacterium. The analysis of microarrays performed to understand
sexual dimorphism in C. burnetii infection shows that circadian
genes (Bmal1, Clock, and Per2) are upregulated in the liver from
infected female mice, as compared with healthy females and
infected males (100). In patients, the Per2 gene is more expressed
in males with acute Q fever than in healthy volunteers (101),
suggesting that the unexpected relationship between circadian
rhythm and gender dimorphism of Q fever may be extended to
other human infectious diseases.

Interestingly, it was reported that parasites seem to be able to
synchronize circadian rhythm and immune response. Indeed, in
mice infected by Plasmodium chabaudi, the frequency of parasite
replication is related to the circadian rhythm of TNF expression
(59). Indeed, increased TNF is associated with a higher frequency
of non-replicating cyclic forms of trophozoites. Infection alters
circadian rhythms of blood glucose with a hypoglycemia at
the end of the active phase and a direct impact on parasites.
The oscillations of TNF and glucose levels seemed critical for
parasite replication (58). It is established that malaria due to

Plasmodium sp. exhibit a periodicity of fever that is secondary
to the burst of Plasmodium-infected red blood cells every 24–
72 h (58). Mice infected with T. brucei have a period shorter than
24 h and abnormal activity during the resting phase. This model
reproduces sleeping sickness considered a circadian disorder in
which infected individuals experience somnolence during the day
and insomnia during the night (102).

Different viruses alter circadian-regulated biological processes
such as CD4+ T cell numeration in human immunodeficiency
virus infection (103). Other interferences have been described for
simian immunodeficiency virus, coxsackievirus A16 (hand, foot
and mouth disease) and human T-lymphotropic virus (96). Liver
circadian-regulated genes that are likely targets for hepatitis C
virus (HCV)may affect viral hepatitis. Patients with chronic HCV
infection develop a disrupted circadian rhythm characterized by
altered sleep patterns, although the association of sleep disorders
and reduced survival in patients is debated (94). HCV infection
also leads to decreased expression of Per2 and Cry2 genes.
The Per2 gene is critical for the anti-viral response since its
overexpression in a hepatocyte cell line reduces HCV replication
and increases the expression of interferon-stimulated genes (95).
On the other hand, liver-associated microRNA (miR)-122 is
involved in HCV replication; miR122 is negatively regulated
by Rev-erbα, strengthening the idea that HCV replication
depends on the daily rhythm (104). The association between
hepatitis and circadian rhythms has potential implications for
the patient management. Hence, viral RNA levels rebound more
frequently in patients infected with HCV and undergoing liver
transplantation in the morning than in those transplanted in the
afternoon (105). Hepatic circadian gene oscillation is associated
with circadian rhythm and sleep in HCV infection (94).
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Patients infected with respiratory viruses exhibit daily
rhythms of clinical symptoms, such as increased nasal secretion
and body temperature in the morning compared to the late
evening in patients with cold or flu (106). Mice with deficient
molecular clock are highly susceptible to virus infection, as
shown by increased replication of influenza, respiratory syncytial
and parainfluenza type 3 viruses. Hence, Bmal1 appears as a
major clock gene controlling viral replication (107). The Bmal1
gene is also involved in the coordination of lung immune
response to virus since the deletion of Bmal1 gene exacerbates
acute bronchiolitis secondary to Sendai virus or influenza A virus
(96). In the same extend, the severity of influenza A infection is
directly controlled by clock genes expressed in lung epithelium
and natural killer (NK)1.1+ cells, a subset of NK cells (108). The
alteration of host circadian rhythm was also reported for Herpes
simplex virus (HSV). The pathogenicity of HSV results from
the interplay of viruses with circadian rhythms. The replication
of HSV depends on histone deacetylation, and transcriptional
machinery of HSV is associated with histone acetyltransferase, a
clock-controlled gene (109).

Circadian Rhythms in Susceptibility and/or
Resistance to Infection
Several studies reported that the susceptibility and the resistance
to infections are associated with host circadian rhythm. More
than 40 years ago, it was reported that susceptibility to S.
pneumoniae is altered in blind and adrenalectomized mice
with altered circadian rhythms (110). Recently, Kitchen et al.
(88) reported that macrophages from S. pneumonia infected
Bmal1-deficient-mice presented increase bacterial ingestion and
cytoskeletal change both associated with an impaired function
of RhoA pathway. The infection is more severe when mice
are infected at the beginning of the resting phase than during
the active phase (87). In contrast, an increased number of L.
monocytogenes is found in mouse tissues at the onset of the
resting phase as compared with the beginning of the active phase
(91). Salmonella enterica serovar Typhimurium is a foodborne
microorganism whose recovery depends on the cell-mediated
immune response. In mice, bacterial colonization of the colon
is more pronounced during the resting phase than during the
active phase. The inflammation induced by Salmonella sp. varies
similarly. This difference between resting and active time is
abolished in clock mutant mice (93). The circadian rhythm
pattern of S. typhimurium infection reflects circadian rhythm of
the innate immune cells. Hence, the ingestion of S. typhimurium
bacteria by peritoneal macrophages is maximum 16 h after
serum-mediated synchronization (111).

In infection due to Mycobacterium tuberculosis, it has been
shown that cough, a major symptom of tuberculosis, is more
frequent during daytime. This is related to highest sputum
bacillary load (92). In a mice model, rhythmic melatonin release
generated circadian rhythms in granulomatous lesions after
inoculation with BCG, an attenuated strain of M. bovis used
as a vaccine against M. tuberculosis infection (112). Moreover,
it has been shown that the expression of metalloproteinases
by peritoneal macrophages and spleen cells in response to

M. tuberculosis infection is controlled by the circadian clock
in a Bmal1-dependent manner (113). Surprisingly, although
it is well-established that corticosteroids increase susceptibility
to mycobacteria, there is no consensus on the relationship
between cortisol circadian rhythms and tuberculosis (114, 115).
Fever oscillations during daytime have been reported in Rocky
Mountain spotted fever due to Rickettsia rickettsii. They consist
of an elevated temperature in the evening with a decline early
in the morning, while the number of R. rickettsii DNA copies is
elevated in the blood of patients collected early in the morning,
suggesting that rickettsemia has a profile release similar to that of
cortisol (116).

Murine models of parasite infection confirm the involvement
of circadian rhythm in the evolution of several parasitic infections
(98). The moment of infection with the worm Trichuris muris
affects the kinetics of worm expulsion. Hence, mice infected
in the morning expel the parasite early, whereas the parasite
persists in mice infected during the night. When the Bmal1
gene is deleted in antigen-presenting dendritic cells (DCs),
the relationship of helminth expulsion and circadian rhythm
disappears (99).

The relation between circadian rhythm and the regulation of
the viral infection was also reported. Mouse models of infection
exhibit daily variations in virus susceptibility: mice inoculated
with Herpes virus at the beginning of the resting phase (in
the daytime) exhibit increased virus load as compared with
mice inoculated during the active phase (in the nighttime) (97).
Recently it has been shown in a murine model that the severity
of influenza An infection depends on the intrinsic pathogenicity
of the virus and the uncontrolled inflammatory response. Mice
infected before the onset of active phase exhibit higher mortality
and morbidity than mice infected before the rest phase. When
the Bmal1 gene is invalidated, the ability to fight the infection is
lost through the hyper-inflammation induced by infection at the
onset of the active phase (108).

Clinics: Septic Syndromes
Sepsis is an inflammatory response syndrome that appears after
infection, or without documented infection (117). It is the leading
cause of death of patients in intensive care units (118) and there
is some evidence that circadian rhythm and sepsis are tightly
associated (119).

Murine models of endotoxemia that mimic human sepsis
provide important information on the mechanisms involved
in sepsis and the association between sepsis and circadian
rhythm. The administration of lipopolysaccharide (LPS) to
mice induces a systemic inflammatory response in which
cytokine and chemokine productions are critical. The production
of inflammatory molecules including IL-6, IL-12p40, and
chemokines, such as CCL2, CCL5, and CXCL1 in response
to LPS is higher in mice inoculated early in the active
phase than in mice inoculated during the resting phase (120).
The endotoxemia in rats is associated with higher levels of
inflammatory markers during nighttime than during daytime.
In the presence of melatonin, daytime levels of inflammatory
markers are increased, underlying the role of melatonin in
circadian rhythm coordination in response to LPS (121).
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The endotoxemia in young human volunteers is characterized
by high levels of IL-10, an anti-inflammatory cytokine, during
daytime and high levels of inflammatory cytokines (TNF, IL-1,
and IL-6) and cytokine receptors during the nighttime (122).
This is consistent with placebo-controlled design studies that
show that males receiving LPS in the evening exhibit higher
rectal temperature and inflammatory mediator production than
those receiving LPS in the morning when cortisol production is
the highest (123). There is evidence that LPS response depends
on molecular oscillators. Hence, LPS injection induces a lesser
production of cytokines in Clock−/− bone marrow-derived
macrophages than in wild-type cells (93). The engagement of
Toll-like receptor (TLR)-9 induces circadian rhythm of TNF and
CCL2 with a peak during the active phase; cytokine rhythms are
disrupted when the Per2 gene is invalidated (124). The genes of
the molecular clock directly interact promoter regions of TLR
genes, thus leading to their circadian rhythm (21).

Clinical studies suggest an association between circadian
rhythm disruption and the development of sepsis. In a
prospective study, our group assessed the circadian rhythm of
cortisol and immune cells in 38 patients at day 2 after severe
trauma. The trauma patients who develop an episode of sepsis
later in their stay in the intensive care unit were compared
to those who did not develop sepsis. The septic patients had
higher levels of cortisol than the non-septic patients and delayed
acrophases (ie., the peak of production during the period).
The acrophases significantly differed between the two groups
for lymphocytes, IL-10, and TNF (125). This suggests that the
primary insult, represented here by trauma, is associated with
disruption of circadian rhythm that affects the host response.
In addition, admission to intensive care units is associated
with sleep disturbance, sedative infusions and loss of the daily
light/dark cycle (126). To counteract these adverse events, the

use of melatonin was assessed in three randomized controlled
trials (127–129). As the results of these three trials were
disappointing, experts made no recommendation on melatonin
use in intensive care units (130). Taken together, these findings
suggest that circadian disruption is not only associated to sleep
dependent of the melatonin, but is multifactorial, and that the
initial inflammatory process seems much more critical than the
hospitalization in intensive care units.

CIRCADIAN RHYTHMS AND
MANAGEMENT OF INFECTED PATIENTS

The investigation of circadian rhythms is well-established in
basic research, but its relevance in the medical field remains
limited. One of the challenges in the exploration of circadian
rhythms in healthy individuals and patients is the high degree
of interindividual variability. The circadian rhythm can be
evaluated over a period of 24 h with a sampling of at least
six points (Table 2). The sampling can be carried out in a
longitudinal or transverse manner; longitudinal sampling is
useful to obtain the time structure for one individual, whereas
transverse or cross-sectional sampling is applied to a group of
individuals. The circadian rhythm of individuals is evaluated
through measurement of biological variables such as the number
of circulating cells, ARN or protein expression of clock molecules
or levels of hormones and cytokines. The biological processes
associated with the circadian rhythm are also evaluated through
physiological variables, such as body temperature (131), blood
pressure or wake/sleep cycle. Finally, the circadian pacemaker
is directly studied using a bioluminescent system associated
with clock molecules. The analysis of biological or physiological
variables during the day are based on the Cosinor method

TABLE 2 | Circadian rhythm investigation from sampling to data interpretation.

Blood/Tissue/Serum Biological process

Time/Sampling • Six points minimum over 24 h

• Longitudinal sampling (conducted continuously over many cycles, preferably at regular intervals) or

• Transverse sampling (sampling of many individuals, once per individual)

Experiments Number of circulating immune cell Temperature, blood pressure, wake/sleep cycle

ARN expression (clock genes)

Protein expression (clock protein)

Hormones or cytokines level

Bioluminescence monitoring (clock genes, temperature …)

Analysis Cosinor and Cosinor fit

Parameters: mesor, amplitude, phase, period

Statistical tests: Analysis of variance (ANOVA), Metacycle, CircaCompare, Fourier spectral analysis, Singular

spectrum analysis (SSA)…

Interpretation • Lack of expression

• Lack of rhythm

• Alteration of the rhythm (modification of one or more parameters)

• Increase/decrease in mesor and/or amplitude

• Shift/phase change

• Lengthening/shortening of the period
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developed by Halberg et al. (132). This method enables the
measurement of several variables including period, mesor,
amplitude and phase of a cycle. These variables require an
algorithm-dependent analysis such as Metacycle (133) or, more
recently, CircaCompare (134) to estimate and statistically
support differences in circadian rhythm (Table 2).

The use of chronobiology in the medical field has been
well-documented in pharmacology. Indeed, circadian rhythm is
used to determine the better-timed drug delivery, also named
chronotherapy (135). This approach associates increased efficacy
and reduced toxicity of the drug by the circadian evaluation
of its absorption, its metabolism and its elimination (136,
137). The investigation of circadian oscillations in infected
patients constitutes a challenge. In patients with sepsis, the
measurement of body temperature or blood pressure at a
given point instead of circadian manner has been debated
(138, 139). We recently reported a circadian dysrhythmia of
core body temperature in trauma patients at risk of sepsis,
which is associated with increased mortality (131). In another
cohort of trauma patients, we showed that the evaluation
of the circadian rhythm through measurement of clock gene
expression is critical for the identification of a circadian rhythm
disruption associated with the occurrence of sepsis (125). The
measurement of circadian variations of biological and clinical
markers would permit a better stratification of patients, possibly
enabling the definition of a chronotype for each infected
patient (140).

The vaccination is a relevant example of a situation in
which circadian rhythms of host defense and microbes affect
the management of patients. Indeed, the antibody response
after vaccination depends on the time of administration.
In a randomized controlled trial including 276 adults, a
significant difference in adaptive response after influenza
vaccine administration was observed, with increased antibody
production when the vaccine is administered in the morning
compared to the afternoon (141). The vaccination of mice with
DCs loaded with antigen leads to the expansion of specific
CD8+ T cells and a better efficiency for a bacterial challenge if
the vaccination is done in the middle of the day as compared
with other time points. This response is abrogated when the
Bmal1 gene is invalidated in DCs (142) Even if these results
are promising, confirmation in other types of vaccination
remains required.

It is also likely that the circadian rhythms affect the
response to antibiotics. Antibiotic resistance is becoming a
major public health problem (143). Interestingly, it has been
hypothesized that pathogenic bacteria have an intrinsic circadian
rhythm that ensures antibiotic resistance. The resistance to
ampicillin, oxacillin, ceftriaxone, meropenem, gentamycin,
and ciprofloxacin in clinical strains of Enterobacteriaceae,
non-fermenting Gram-negative bacilli, and Gram-positive
Staphylococci has been investigating every 3 h for 24 h. The
presence of periods of sensitivity is attested by significant
changes in the minimum inhibitory concentrations of antibiotics
(144). Similarly, in patients with surgical site infections,

variations have been reported in Staphylococcus aureus coagulase
activity and temporal expression of antibacterial resistance
according to the moment of the sampling (145). Further studies
will determine the role of circadian rhythm of either the host or
the pathogen in this antibiotic resistance process, opening the
way for a new strategy of antibiotics administration.

CONCLUSION

The analysis of literature has shown that circadian rhythms
likely play a role in infectious diseases in terms of susceptibility,
clinical expression and outcome. The use of animal models
in which clock genes are invalidated has produced a large
amount of data supporting the role of circadian pacemakers
in the response to microbes. We have also analyzed the
mechanisms of the rhythmicity in infectious diseases. It is
clear that immune response to pathogens oscillate under
the control of peripheral molecular clocks and SCN. The
role of corticosteroids has to be considered according to
the consequences of its use in patients. Other partners of
infectious diseases present rhythms such as microbes and
vectors. The identification of molecular rhythms in prokaryotes,
particularly so-called “non-circadian” bacteria, will propose
a new approach to understand antibiotic resistance. At the
interface of immune response and host homeostasis, the rhythms
of microbiota provide exciting prospects of understanding
metabolic and inflammatory diseases. As circadian rhythms
are poised to become biomarkers to assess the outcome
of patients with infectious diseases including the risk of
complications, new tools for investigating host circadian changes
will be required. A clinical chronobiology is necessary to
analyze circadian variations at the individual level in infectious
diseases. This approach would pave the way for time-based
treatment and for administration of molecules known to
entrain rhythmicity.
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