
ORIGINAL RESEARCH
published: 15 September 2017

doi: 10.3389/fnhum.2017.00462

Frontiers in Human Neuroscience | www.frontiersin.org 1 September 2017 | Volume 11 | Article 462

Edited by:

Klaus Gramann,

Technische Universität Berlin,

Germany

Reviewed by:

Chang-Hwan Im,

Hanyang University, South Korea

Hasan Ayaz,

Drexel University, United States

*Correspondence:

Yingchun Zhang

yzhang94@uh.edu

Received: 23 June 2017

Accepted: 04 September 2017

Published: 15 September 2017

Citation:

Li R, Potter T, Huang W and Zhang Y

(2017) Enhancing Performance of a

Hybrid EEG-fNIRS System Using

Channel Selection and Early Temporal

Features.

Front. Hum. Neurosci. 11:462.

doi: 10.3389/fnhum.2017.00462

Enhancing Performance of a Hybrid
EEG-fNIRS System Using Channel
Selection and Early Temporal
Features
Rihui Li 1, Thomas Potter 1, Weitian Huang 2 and Yingchun Zhang 1, 2*

1Department of Biomedical Engineering, University of Houston, Houston, TX, United States, 2Guangdong Provincial

Work-Injury Rehabilitation Hospital, Guangzhou, China

Brain-Computer Interface (BCI) techniques hold a great promise for neuroprosthetic

applications. A desirable BCI system should be portable, minimally invasive, and

feature high classification accuracy and efficiency. As two commonly used non-invasive

brain imaging modalities, Electroencephalography (EEG) and functional near-infrared

spectroscopy (fNIRS) BCI system have often been incorporated in the development of

hybrid BCI systems, largely due to their complimentary properties. In this study, we

aimed to investigate whether the early temporal information extracted from singular

EEG and fNIRS channels on each hemisphere can be used to enhance the accuracy

and efficiency of a hybrid EEG-fNIRS BCI system. Eleven healthy volunteers were

recruited and underwent simultaneous EEG-fNIRS recording during a motor execution

task that included left and right hand movements. Singular EEG and fNIRS channels

corresponding to the motor cortices of each hemisphere were selected using a general

linear model. Early temporal information was extracted from the EEG channel (0–1 s)

along with initial hemodynamic dip information from fNIRS (0–2 s) for classification using

a support vector machine (SVM). Results demonstrated a lofty classification accuracy

using aminimal number of channels and features derived from early temporal information.

In conclusion, a hybrid EEG-fNIRS BCI system can achieve higher classification accuracy

(91.02 ± 4.08%) and efficiency by integrating their complimentary properties, compared

to using EEG (85.64 ± 7.4%) or fNIRS alone (85.55 ± 10.72%). Such a hybrid system

can also achieve minimal response lag in application by focusing on rapidly-evolving brain

dynamics.

Keywords: NIRS, EEG, hybrid BCI, general linear model, principal component analysis

INTRODUCTION

Brain-Computer Interface (BCI) systems, which use cortical activity to control external
devices, have shown promising potential for multiple applications (Wolpaw et al., 2002).
One of the main focuses of current BCI-related research is increasing the efficiency of
real-time reactions while using a convenient setup that minimizes the burden on the user.
Considering factors like setup cost and time resolution is therefore essential when choosing
measurement modalities for a BCI study. BCI systems can be either invasive or non-invasive
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(Blankertz et al., 2007; Miller et al., 2010; Brunner et al., 2011),
though non-invasive BCIs are usually preferable since they incur
neither the expenses nor safety risks of electrode implantation.

Over the past few decades, different non-invasive methods,
including Electroencephalography (EEG) (Salvaris and
Sepulveda, 2010; Choi, 2013; Rejer, 2015), functional Near-
Infrared Spectroscopy (fNIRS) (Coyle et al., 2004, 2007; Khan
et al., 2014; Naseer et al., 2016), functional Magnetic Resonance
Imaging (fMRI) (Lee et al., 2009; Sorger et al., 2009), and
Magnetoencephalography (MEG) (Waldert et al., 2008), have
been extensively explored. Each modality has its own strengths
and limitations, so it falls to the experimenter to select an
appropriate method with high efficiency and low cost. Current
practice then shows that EEG and fNIRS are considered the
leading non-invasive BCI modalities due to their modest costs
and practicality (von Lühmann et al., 2015; Lin and Hsieh, 2016;
Khan and Hong, 2017).

Electroencephalography (EEG) is a non-invasive brain
imaging technique that uses scalp electrodes to measure the
voltage fluctuations induced by the mass electrical activity of
neurons. While this technique provides a direct measurement of
brain activity, EEG systems can be sensitive to noise. In particular,
EEG is highly vulnerable to motion artifacts, which would inhibit
BCI accuracy in a practical setting (Yuan et al., 2008; He et al.,
2011).

Functional near-infrared spectroscopy (fNIRS) is a non-
invasive optical imaging technique that usually utilizes two
distinct wavelengths (between 600 and 1000 nm) to measure
the concentration changes of oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) that are coupled with the
metabolic activity of neurons in the outer layers of the cortex.
These measures have proven to be similar to the blood oxygen
level dependent (BOLD) response obtained by fMRI (Ferrari and
Quaresima, 2012; Boas et al., 2014), though the fNIRS system is
portable and features a much higher sampling rate. The main
limitations of fNIRS-based BCI lie in the long delay of the
hemodynamic response, which takes 4–6 s to reach its maximum
amplitude, and the limited penetration depth of infrared light,
which limits detection to outer cortical regions. These result in
a poor temporal efficiency which is considered to be a major
obstacle for a real-time fNIRS-based BCI application (Naseer
and Hong, 2015). In light of these weaknesses, fNIRS does
feature enhanced spatial accuracy—hemodynamic signals do not
spread between channels like electrical signals—and a remarkable
resilience to motion artifacts, making the technique useful for
mobile and prosthetic applications.

The complimentary individual properties of EEG and fNIRS
have led to active investigations of the benefits of integrated EEG
and fNIRS in a number of BCI studies (Fazli et al., 2012; Putze
et al., 2014; Buccino et al., 2016). In general, integrated EEG-
fNIRS approaches offer various benefits over single-modality
methods by capitalizing on their individual strengths; EEG
provides favorable temporal resolution (about 0.05 s), while
fNIRS offers better spatial resolution (about 5 mm) and is
robust to noise (Nicolas-Alonso and Gomez-Gil, 2012; Waldert
et al., 2012). Secondarily, EEG and fNIRS signals are associated
with different aspects of cortical activity, providing a built-in

validation for identified activity. Measurements obtained from
each of these two modalities thereby provide complementary
information and can be used to enhance the performance of BCIs.

In hybrid EEG-fNIRS BCI applications, the main challenge
is how to improve the classification accuracy while reducing
the complexity of system and improving response time (Naseer
and Hong, 2015; Shin et al., 2017; Zafar and Hong, 2017).
Since Fazli et al. (2012) showed that BCI performance in a
binary motor task can be enhanced by incorporating EEG
features with those derived from the fNIRS signals, hybrid
EEG-fNIRS BCIs have become a major research focus. These
multimodal BCIs have shown enhanced classification accuracy
in a variety of tasks, including mental arithmetic (MA), hand
rotations, and movements (Naito et al., 2007; Abibullaev and
An, 2012; Yin et al., 2015). However, some methodological
limitations remain unsolved. For example, most hybrid EEG-
fNIRS systems have relied on principle component analysis
(PCA) or common spatial pattern (CSP) methods to transform
the original data and select the components with largest
discriminability between the two target classes (Blankertz et al.,
2008; Li et al., 2015). As a result, multiple channels—usually
all available channels from both hemispheres—are required
to perform feature extraction, classifier training, and classifier
testing. This dramatically increases both computational and
systemic costs and reduces the stability of the system setup.
Furthermore, the purpose of integrating EEG and fNIRS in a BCI
study should be to achieve a true multimodal integration that
accentuates the favorable properties of each individual approach
(Al-Shargie et al., 2016). In particular, the spatial information
of fNIRS could be further exploited to enhance hybrid EEG-
fNIRS studies. Unfortunately, most hybrid BCIs simply process
the signals separately and combine two groups of features for
classification. Finally, although high classification accuracy has
been achieved (Mihara and Miyai, 2016), the temporally slow
hemodynamic response and wide time window used for feature
extraction remain major issues associated with the use of fNIRS
for BCI applications (Naseer and Hong, 2015).

In this study, we aimed to perform a binary classification
of left and right hand movements in a hybrid EEG-fNIRS BCI
system using signals obtained from the motor cortex. A channel
selection criterion based on the general linear model (GLM) was
proposed. The early information from the selected EEG channels
was extracted using a short time window (0–1 s) while the initial
dip (0–2 s) of the hemodynamic response was captured from the
selected fNIRS channels. To our knowledge, this is the first hybrid
EEG-fNIRS-based BCI study to take advantage of the spatial
information of fNIRS for channel selection and apply the early
temporal information of both modalities to enhance the transfer
rate of the system while maintaining a decent performance.

MATERIALS AND METHODS

Participants
Eleven healthy, right-handed subjects (n = 11, male, 25.5 ±

3.2 years) participated in this experiment. The experiment was
approved by the local ethics committee (Guangdong Provincial
Work Injury Rehabilitation Center, China), and performed in
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accordance with the Declaration of Helsinki. Each subject was
fully informed about the purpose of the research and provided
written, informed consent prior to the start of the experiment.
No participants had any history of neurological or psychiatric
disorders or disease. No participants had any previous experience
with the experimental task and all were naive to the BCI.

Experiment Paradigm
The experiment was performed in a confined room to reduce
any environmental disturbances. During the experiment, subjects
were seated in a comfortable chair and asked to remain still
and relaxed. Subjects received visual instruction through a
screen placed 1m in front of their eyes (Figure 1A). The motor
execution paradigm used in the experiment consisted of 50
randomized trials of left and right hand grasping tasks (25 trials
for each hand movement). Each trial started with 20 s of rest,
indicated by a “+” symbol, followed by 5 s of motor execution, in
which an arrow was shown pointing either left or right, as shown
in Figure 1B. Subjects were asked to squeeze a rubber ball with
the corresponding hand for the entire duration that the arrow
stimulus was shown.

System Setup
A concurrent EEG and fNIRS measurement setup was employed
in this study. EEG signals were recorded at 500 Hz using a
BrainAmp DC EEG recording system (Brain Products GmbH,
Germany). Sixteen EEG electrodes were placed on the scalp over
the left and right motor cortices (FFT7h, FFC5h, FFC3h, FFT8h,
FFC6h, FFC4h, FTT7h, FCC5h, FCC3h, FTT8h, FCC6h, FCC4h,
CCP5h, CCP3h, CCP4h, and CCP6h). Two EEG electrodes were
attached on both mastoids, the average of their signals was used
as re-reference signal in preprocessing raw EEG data. FNIRS
signals were recorded simultaneously using a NIRScout system
(NIRx Medizintechnik GmbH, Germany) with 12 sources and
12 detectors. The inter-optode distance was 3 cm and a total of
34 fNIRS channels were equidistantly distributed throughout the
motor cortex areas. The wavelengths used for oxy- and deoxy-
hemoglobin detection were 760 and 850 nm, respectively. The
fNIRS signals were acquired at a sampling rate of 7.81 Hz. A
schematic illustration of the location of EEG electrodes and
fNIRS channels is shown in Figure 2.

Data Preprocessing
Raw EEG signals of all channels were first re-referenced by
subtracting the average of two EEG channels on both mastoids.
Since the valuable EEG information related to motor function
is usually related to frequencies below 40 Hz (Pfurtscheller and
Neuper, 2001), raw EEG signals were first down-sampled to
250Hz and filtered from 1 to 45Hz using a 3rd order Butterworth
band-pass filter. Single-trial EEG data was segmented from 2 s
prior to the onset of movement instruction (baseline: −2–
0 s) to 5 s after the onset (execution: 0–5 s), resulting in 25
segmented trials for each hand movement. Baseline correction
was performed by subtracting the mean value of individual
baseline interval from its corresponding segmented trial.

To process the fNIRS signal, the concentration changes of
hemoglobin (HbO and HbR) were computed using the Modified

FIGURE 1 | The experiment setup. (A) The environment of concurrent

EEG-fNIRS measurement. The subject included in the figure was provided

written, informed consent for the publication of this figure. (B) The paradigm

used in the experiment. The “+” indicates the rest condition, the left arrow

indicates left hand grasping task, and the right arrow indicates the right hand

grasping task.

Beer-Lambert Law (the differential path length factors for the
higher (850 nm) and lower (760 nm) wavelengths were 6.38
and 7.15, respectively) (Scholkmann et al., 2014). A 4th order
Butterworth band-pass filter was applied from 0.01 to 0.2 Hz
to remove artifacts, including cardiac interference (0.8 Hz) and
respiration (0.2–0.3 Hz) (Zhang et al., 2005). In addition, spline
interpolation was performed to remove any motion artifact
contamination from the fNIRS signal (Scholkmann et al., 2010).
Single trial fNIRS data was segmented from 5 s prior to the onset
of movement instruction (baseline:−5–0 s) to 20 s after the onset
(execution: 0–20 s), creating fNIRS trials that directly correspond
to those obtained through EEG segmentation. The mean value
of each baseline signal was subtracted from associated execution
task.

Channel Selection
Before features can be extracted, it is essential that appropriate
channels are selected if a BCI system is to achieve favorable
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FIGURE 2 | (A) Real photo of a subject wearing the cap completely mounted with EEG electrodes, fNIRS sources and detectors. (B) The configuration of the EEG

electrodes and fNIRS optodes on the cap. Red circles denote the sources of fNIRS, green circles denote the detectors of fNIRS, the purple lines denote the fNIRS

channels, and light blue and dark blue circles denote the EEG electrodes.

accuracy with minimal complexity. Previous work has suggested
different approaches for selecting the most representative
channels or signal components for classification, including
common spatial patterns (Blankertz et al., 2008), bundled-
optode-based approaches (Nguyen and Hon, 2016), and channel-
averaging approaches (Khan and Hong, 2015). A main goal of
this paper is to use the spatial information from fNIRS to identify
the single fNIRS channel and EEG channel on each hemisphere
that yields the most significant differences between the binary
motor tasks, which will enable increased classification accuracy
with as few channels as possible. Here, the general linear model
(GLM), a well-known and widely used method that fits the
expected hemodynamic response to the measured fNIRS signal,
was applied to show the channels that yield the largest contrast
between the two classes (Penny et al., 2011).

Both HbO and HbR concentration changes reflect changes in
the hemodynamic response, though it has been suggested that
HbO is a more sensitive indicator in fNIRS studies (Holper et al.,
2009). Therefore, HbO was adopted in the GLM analysis of the
present study.

The GLMmodel is given by:

Y = Xβ + ε

where Y is an N×Mmatrix of measured data (where N denotes
the number of data points and M denotes the number of fNIRS
channels), X is an N × L design matrix (where L denotes the
number of the conditions, including the tasks and any term that
is considered as a source related to the variance of the data).
β is a L × M matrix of regression coefficients to be estimated
where L is associated with the number of the conditions and the
value of β reflects the magnitude of the condition-evoked brain
response. Finally, ε is an N × M matrix of residual error. In this

present study, β is a 3×Mmatrix assigned with three conditions,
where the first row indicates the left hand movement, the second
row indicates the right hand movement, and the third row is a
constant term on all channels.

The regression coefficient β and the residual error ε can be
tested through a one-sample t-test to identify the channels with
t-values that represent a significant contrast between the two
motor execution tasks. This t-value is calculated by:

t =
cT ∗ β

√

ε2cT
(

XTX
)−1

c

where c is the contrast vector, which determines the contrast
between specific conditions.

In our study, the following criterion was used to select
the EEG channel and fNIRS channel of interest. First, the
regression coefficient β of each individual fNIRS channel was
estimated through the GLM, from which a group of channels
with t-values that represent a significant contrast between the
two motor execution tasks were selected as candidate channels.
For each hemisphere, an fNIRS channel that yielded the highest
t-value among those candidate channels was selected. One EEG
channel, which was adjacent to the chosen fNIRS channel, was
selected for classification. Therefore, the two EEG channels were
selected according to the two fNIRS channels with the greatest
discriminatory potential. The subject-specific locations of the
selected channels are summarized and shown in Figure 3 and
Table 1.

EEG Feature Extraction
In order to extract the features associated with early temporal
information, EEG data from 0 to 1 s (0 s denoting the onset
of the stimuli) was segmented out from the selected channels,
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FIGURE 3 | (A) Group-wise location summary of the selected EEG and fNIRS channels for all subjects. (B) Zoom-in view of the group-wise summarized location. An

orange triangle represents a pair of selected fNIRS channel and their corresponding EEG channel. The number in the triangle represents the number of subjects

whose selected channel is located at the given area.

TABLE 1 | The overall selected fNIRS channels and EEG electrodes of all subjects.

Subject no. Left hemisphere Right hemisphere

NIRS EEG NIRS EEG

1 7 FCC3h 31 CCP4h

2 12 CCP3h 28 CCP4h

3 12 CCP3h 24 FFC6h

4 15 CCP3h 26 FCC6h

5 12 FCC3h 28 FCC4h

6 11 FCC5h 28 FCC4h

7 12 CCP3h 22 FFC6h

8 12 CCP3h 26 FCC4h

9 12 CCP3h 28 FCC4h

10 14 CCP5h 29 FCC6h

11 10 FCC3h 27 FCC6h

resulting in a 1 s-long time window of EEG data with 250
points for each trial. The discrete wavelet transform (DWT) was
then employed to decompose the segmented single trial EEG
data (Samar et al., 1999), DWT is a technique that decomposes
time series data of each selected EEG channel into a number
of layers. In each layer the signal is filtered with a quadrature
mirror filter (a low-pass filter and a high-pass filter). The output
of each layer is a series of detail coefficients (from the high-
pass filter) and approximation coefficients (from the low-pass
filter). In this study we assumed that the wavelet approximation
coefficients from the output of the last DWT layer contained
the main power of the event-related oscillation in brain activity
(Subasi, 2007), which can be used for the discrimination of
left and right hand movements. Here, the segmented signals
of the selected EEG channels were decomposed with a 4-layer
“Symlet” wavelet, resulting in 22 approximation coefficients for
each trial. Then all approximation coefficients of the selected EEG

channels were combined into a 44-dimensional EEG feature set
(22-dimensional× 2 channels) for the single trial classification of
the left and right hand movements.

fNIRS Feature Extraction
The peak information from the HbO and HbR signals has been
widely used in many fNIRS-based BCI studies (Naseer and
Hong, 2015). However, the inherent delay of the hemodynamic
response impedes the efficiency of a real-time fNIRS-based BCI
application.

The hemodynamic feature of interest in the current
study is known as the initial dip—a metabolically-linked
phenomenon wherein HbO concentration decreases slightly or
HbR concentration increases slightly 0–2 s after the presentation
of stimuli (Frostig et al., 1990). This fluctuation is considered to
be the early and rapid metabolism of blood-borne oxygen by the
responding population of neurons, occurring before the main
activity-coupled vascular response. Though the initial dip has a
relatively low amplitude, Zafar et al. have shown that detecting
and classifying the initial dips is feasible with fNIRS (Zafar et al.,
2016). As a result of their rapid evolution in the face of stimuli
the initial dip information was extracted for classification in this
study.

Prior to the extraction of initial dip information, principal
component analysis (PCA) was performed to further remove
any artifacts remaining in the preprocessed fNIRS signal. In this
manner, the N-trial fNIRS data set from the selected channel was
transformed into N linearly uncorrelated components known
as principal components, ordered by the amount of variance
of the original data that each component accounts for. The
application of PCA to filter the multi-trial fNIRS data within a
channel assumes that the event-evoked hemodynamic response
is the main component across all trials. This means that the
hemodynamic response provides the dominant contribution to
the variance of the fNIRS data and implies that the first several
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principal components will be similarly linked to the expected
event-evoked hemodynamic response.

The PCA filtration is given by:

Y = E ∗ X

where X is the N × M data matrix (in which N denotes the
data points of each trial and M denotes the number of trials),
E is the eigenvector matrix with the dimensions N × N, and Y
is the N × M matrix consisting of the N uncorrelated principal
components. By keeping the first R components with the largest
variances and removing the remaining components, the original
data X can be reconstructed by:

Xrecon = Ynew ∗ ETnew

where Xrecon is the N × M filtered data, Enew is the new
eigenvector matrix with dimension N× R, and Ynew is the N× R
matrix consisting of the R uncorrelated principal components.

In our study, all trials of each hand movement were filtered by
PCA with the first component accounting for approximately 70%
of the variance of the data set. Then the mean values of the HbO
and HbR fluctuations within the 0–2 s interval were computed
for each trial, resulting in a 4-dimensional fNIRS feature set (2
mean values (HbO + HbR) × 2 channels) for the single trial
classification of the left and right hand movements.

Classification
Prior to the classification, we constructed three different feature
sets: EEG-only feature set, fNIRS-only feature set, and a hybrid
feature set (EEG + fNIRS). The EEG-only feature set contained
44 approximation coefficients obtained from the selected EEG
channels for each trial, while the fNIRS-only feature set contained
4 hemodynamic features (mean values of HbO and HbR of the
two selected fNIRS channels) for each trial. Then all single trial
features in both modalities were respectively normalized and
rescaled between 0 and 1. The hybrid feature set was formed as a
48- dimensional feature vector for each trial, which contained the
normalized EEG features (44 dimensional) and fNIRS features
(4 dimensional). In summary, the dimensions of hybrid feature
vectors were 48 features × 25 trials for either a left or right hand
movements.

A support vector machine (SVM) was applied to perform
the classification of the two-hand motor execution for each
individual subject. The goal of SVM is to construct a hyper-plane
that maximize the margins between the classes by minimizing
the cost function (Drucker et al., 1997). In this study a SVM
toolbox named “LIBSVM” was employed to train the SVM
classifier and perform the prediction (Chang and Lin, 2011). In
particular, a Radial Basis Function (RBF) kernel which works
under both linear and nonlinear situations was applied with
default parameters (penalty parameter C = 1, γ = 1/number
of features). As the obtained feature set was small (25 trials in
total for each motor task), the Leave-One-Out cross-validation
(LOOCV) method was utilized by randomly selecting one trial
as a testing set and using the remaining 24 trials as the training
set to train a classifier for prediction until all trials were tested.

The classification accuracy for each subject was calculated as the
ratio between the number of correct predictions and the total
number of predictions. Classification was performed separately
using three kinds of feature sets for comparison; an EEG-only
feature set, an fNIRS-only feature set, and a hybrid feature set
(EEG + fNIRS). A flowchart is presented in Figure 4 to describe
the study design.

RESULTS

Figure 3A shows a summarized mapping of the EEG and fNIRS
channels selected from each subject for classification based on
the GLM results. Each triangle indicates an EEG-fNIRS pair of
selected channels. The number in the orange triangle represents
the number of subjects whose selected channel is located at the
given area, as shown in Figure 3B. The selected fNIRS channels
and EEG channels of each individual subject are shown in
Table 1.

One goal of our study was to comparatively evaluate the
classification reliability of the features extracted from EEG,
fNIRS, and EEG + fNIRS based on the results of the GLM. To
do this, we performed a single-trial classification of the left vs.
right motor execution task. Classification accuracies obtained
from each subject by the three different feature sets can be seen
in Table 2. A classification accuracy of 100% would indicate that
the two motor tasks are perfectly separable, while a classification
accuracy of 50% would represent the poor performance of a
random classifier in the context of the binary classification task.
Figure 5 shows the histogram plot of all classification results,
with the overall classification accuracies of all three feature sets
exceeding 85%. Specifically, the average accuracy of the EEG-only
feature set (85.64 ± 7.4%) slightly outperformed the fNIRS-only
feature set (85.55± 10.72%). The best performance, however, was
achieved from the hybrid EEG-fNIRS feature set (91.02± 4.08%),
providing an improvement in the classification accuracy and
minimizing the standard deviation. To examine how significantly
the hybrid feature set outperformed the single modality, paired
t-test was applied to test the classification results obtained by the
three different feature sets. Prior to the paired t-test, the W/S
test was firstly performed to test the normality of the obtained
classification accuracies, which is the prerequisite of paired t-test
analysis (Kanji, 1993). The result revealed that all the accuracies
were normally distributed at a significance level of 0.05 [qEEG =

3.5124, qfNIRS = 3.6365, qHybrid = 3.4275, qcritical = (2.74 3.80)].
The statistical results of paired t-test are shown in Figure 6. It
can be observed that the classification performance based on the
hybrid feature set was significantly improved over classification
based on EEG-only features (P= 0.0123) and classification based
on fNIRS-only features (p= 0.0457) as well.

DISCUSSION

Multi-modal imaging has been reported to improve classification
accuracy over unimodal methods (Fazli et al., 2012). In this paper,
we attempted to achieve the highly accurate and computationally
efficient classification of a binary motor execution task using a
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FIGURE 4 | The flow chart of the study.

TABLE 2 | Summary of SVM classification accuracies for feature sets of

NIRS-only (HbO + HbR), EEG-only and hybrid (EEG + fNIRS).

Subject no. Accuracy (%)

EEG fNIRS EEG + fNIRS

1 80.0 56.0 82.0

2 96.0 94.0 96.0

3 92.5 82.5 95.0

4 85.0 85.0 90.0

5 90.0 92.5 95.0

6 85.0 90.0 92.5

7 87.5 90.0 90.0

8 70.0 82.5 87.5

9 77.5 95.0 92.5

10 88.6 88.6 88.2

11 90.0 85.0 92.5

Mean (%) 85.64 85.55 91.02

Std. (%) 7.40 10.72 4.08

hybrid BCI design. This was performed through the selection
of singular hemispheric EEG and fNIRS channels and the
application of rapidly-evolving temporal features from both
modalities. The results indicated that the multi-modal fNIRS-
EEG approach significantly improved the performance over that
of unimodal alone, yielding an average accuracy of 91.02± 4.08%
and proving the suitability of the hybrid approach for binary
motor execution tasks.

Channel selection plays a crucial role in the design and
application of a BCI system, especially with respect to the
number and the location of the selected channels. For the
classification of motor execution tasks, it is quite common
to utilize multiple channels from the C3 and C4 areas (Fazli
et al., 2012; Buccino et al., 2016). These methods, however,
might not be able to minimize the variation from subject to
subject, as identical channels may align with different brain
regions. Although recent studies have investigated the efficiency
of different channel selection criteria (Blankertz et al., 2008;
Khan and Hong, 2015; Nguyen and Hon, 2016), few efforts
have been made to optimize the number and location of these
channels. A previous fNIRS study proposed a selection criterion
based on high t-value channels from the auditory cortex during
the classification of four sound categories (Hong and Santosa,
2016). This method, however, still relied on multiple channels
with no noticeable improvement in performance. In this study,
we only made use of single EEG and fNIRS channels from
each hemisphere with the highest t-value based on the GLM
results for classification. Here we attempted to capitalize on
the spatial information from fNIRS, a valuable advantage of
fNIRS technology, to ensure that the most effective channels
were chosen for feature extraction and classification. As such
we might be able to reduce the complexity of a BCI system
and minimize the burden on the user. Table 3 summarized the
results of recent EEG-fNIRS-based BCI studies using different
numbers of channels and different lengths of time windows
in motor execution or imagery tasks. It is noticeable that
although very few channels were selected in our study, the
average accuracy among all subjects tended to be slightly lower

Frontiers in Human Neuroscience | www.frontiersin.org 7 September 2017 | Volume 11 | Article 462

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Li et al. Hybrid EEG-fNIRS System

FIGURE 5 | Classification accuracies of two hand movements obtained from

three feature sets (EEG + fNIRS, EEG-only, and fNIRS-only).

FIGURE 6 | Statistical plot of the classification accuracies obtained from the

three feature sets, respectively. The asterisk “*” indicates a significant

difference (p < 0.5, t10, 0.975 denotes the critical value with 10 degree of

freedom and significant level = 0.05).

but still comparable with previous studies reported in Table 3.
Results demonstrated that it is feasible to take advantage of
the high spatial resolution offered by fNIRS to select channels
for classification, to therefore reduce the channel number and
the complexity of the BCI system while maintaining desirable
performance.

In addition to the classification performance, the proposed
channel selection criterion applied the spatial information from
fNIRS to the selection of both the EEG and fNIRS channels,
establishing a connection between the two modalities rather
than performing the separated channel selection performed in
previous studies (Fazli et al., 2012; Buccino et al., 2016; Khan
and Hong, 2017). The reliability of this proposed method was
validated by the favorable classification performance shown in
Figure 5, where all of the average classification accuracies using
the three different feature sets exceeded 85%. It is noteworthy
that, while all selected channels were located within the motor
cortex, the exact channel of interest varied by subject (Figure 3).
This shows that the proposed channel selection method was able

TABLE 3 | Summary of recent EEG-fNIRS-based BCI studies using a motor

execution or imagery task.

Reference Task Channel no. Accuracy

Fazli et al., 2012 Hand griping 24 fNIRS channels 93.2%

(Motor execution) 37 EEG electrodes

Khan et al., 2014 Finger taping 12 fNIRS channels 94.7%

(Motor execution) 8 EEG electrodes (Motion vs. Rest)

Koo et al., 2015 Hand grasping 8 fNIRS channels 88%

(Motor imagery) 6 EEG electrodes

Yin et al., 2015 Hand clenching 24 fNIRS channels 89%

(Motor imagery) 21 EEG electrodes

Buccino et al.,

2016

Arm raising and hand

griping

34 fNIRS channels 72.2%

(Motor execution) 21 EEG electrodes (Right vs. Left)

to identify appropriate, subject-specific channels according to
the GLM results, minimizing any error from potential variation
in channel positions. The mapping results therefore emphasize
the importance of selecting customized channels from each
individual subject instead of simply choosing motor-related
channels—like C3 or C4—for motor task classification. One
limitation of this criterion is that multiple channels are needed
to cover the targeted area and obtain the GLM results during the
training session. However, even if the selection of appropriate
channels (EEG and fNIRS) requires extra channels during the
training session, selection would enable a simplified practical BCI
system that can be adjusted and tailored to fit each individual
user.

One concern of the GLM-based channel selection is the
reliability of applying this approach. The performance of the
GLM may be subject to artifacts that contaminate the raw
data, such as motion artifacts, low frequency trends, and
serial correlations (Hu et al., 2010). It is therefore necessary
to ensure that data is appropriately processed and that these
artifacts are effectively removed before to applying the GLM.
In the present study, to ensure that reliable GLM results could
be obtained, spline interpolation and bandpass filtration were
applied to remove motion artifacts and low frequency trends.
As our study solely relies on a single channel chosen on
each hemisphere, channels contaminated by other artifacts that
could not be removed through preprocessing methods would
possibly decrease the performance of classification. This may
have been the case for subject 1, who consistently showed
lower classification accuracies, regardless of the feature set
(Figure 5, Table 2). More effective preprocessing algorithms
can be furthered explored in our future work to improve the
stability of the GLM and alleviate this issue. It should be
noted that, while unimodal classification may have been poor
in this case, the hybrid combination revealed the potential
to stabilize the classification performance with a higher mean
accuracy and smaller standard deviation (Figure 6, Table 2).
Apparently, the inclusion of the different information measured
by EEG and fNIRS is beneficial to the robustness of the
BCI. Another concern of the GLM-based channel selection
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method is whether the proposed method is superior to
the conventional approaches, which was not done in this
very initial study. Since few studies considered to apply
the GLM-based method in a hybrid EEG-fNIRS-based BCI
study, a comprehensive comparison between the proposed
method and the conventional approaches, including different
features, channels of different numbers and time windows of
different lengths, would be actively investigated in our future
work.

EEG-based BCIs have been reported to yield superior
temporal results in real-time BCI applications (Nicolas-Alonso
and Gomez-Gil, 2012). Recently, fNIRS-based BCIs have also
been developed that show favorable classification rates by using
different combinations of features and various classifiers (Naseer
and Hong, 2015). These fNIRS-based BCIs, however, are not yet
viable as an alternative to EEG-based BCIs; the most reliable
feature of fNIRS is the HbO peak information, which shows a
long delay in the response to stimuli (Naseer and Hong, 2015).
In this study, we aimed to enhance the response efficiency of a
hybrid system while maintaining favorable accuracy. This was
performed by focusing on the initial dip of the hemodynamic
response, which has been proven to be a potential feature
for fNIRS-based BCI application (Zafar and Hong, 2017).
Generally it is difficult to detect the initial dip due to its short
duration and high sensitivity to low frequency artifact (e.g.,
Mayer wave). In order to obtain a clean initial dip in single-
trial fNIRS signal, a PCA-based algorithm was employed to
extract the main component, which was considered the true

hemodynamic response associated with the motor execution
task. In the present study, we selected the first principal

component, which accounted for over 70% of the total variance

of the original signal. Figure 7 shows the original averaged
HbO and HbR signals as well as the PCA-corrected HbO
and HbR signals in a selected channel on left hemisphere of
a subject. It could be observed that while the original HbO
signals induced by two hand movements were quite similar,
the PCA-corrected signals clearly showed a difference in the
initial dips of the HbO signals, which can be extracted for
the binary class classification. And the results showed that
this was sufficient to achieve a high classification accuracy. In
particular, the lofty classification accuracies obtained by the
fNIRS-only classifier (85.55 ± 10.72%) as well as from hybrid
classifier (91.02 ± 4.08%) demonstrated the effectiveness of the
initial dip in discriminating the binary motor tasks. By applying
a 0–2 s time window to the fNIRS signal, it was observed
that the addition of fNIRS features significantly enhanced
the performance of the EEG-based BCI without significantly
increasing the time delay, demonstrating the advantage of a
hybrid EEG-fNIRS system and showing that early temporal
features can be used to create a faster and more stable BCI
system, which overcomes the problem in Fazli’s study (Fazli et al.,
2012).

A secondary limitation of our study lies in the configuration
of the EEG electrodes and fNIRS optodes, where the EEG
electrodes were surrounded by the fNIRS channels, as shown
in Figure 2. Although we chose EEG electrodes that were
close to the selected fNIRS channels, placing the EEG
electrodes on the surface pathways of the fNIRS channels
may optimize the channel configuration and enhance the
physiological consistency between the EEG and fNIRS channels.
This problem may be addressed by using a customized cap in the
future.

FIGURE 7 | Example (Subject 2) of the average HbO and HbR signals of a selected channel on left hemisphere before (A,C) and after (B,D) the PCA denoising. The

“0” denotes the onset of the stimuli. LH: Left Hand (blue); RH: Right Hand (red).
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CONCLUSION

In this study, a hybrid EEG-fNIRS configuration for binary
motor task classification was proposed. Singular EEG and fNIRS
channels were selected from themotor cortex of each hemisphere
based on the general linear model. Early temporal information
from the EEG and fNIRS signals were extracted for classification
using a SVM. The high accuracy and efficiency of classification
results are encouraging and suggest the integration strategy
developed in this study as a promising approach to develop a
high-performance BCI system.
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