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Abstract: Cancer stem cells (CSCs), which have the capacity to self-renew and differentiate into
various types of cells, are notorious for their roles in tumor initiation, metastasis, and therapy resis-
tance. Thus, underlying mechanisms for their survival provide key insights into developing effective
therapeutic strategies. A more recent focus has been on exosomes that play a role in transmitting
information between CSCs and non-CSCs, resulting in activating CSCs for cancer progression and
modulating their surrounding microenvironment. The field of CSC-derived exosomes (CSCEXs) for
different types of cancer is still under exploration. A deeper understanding and further investigation
into CSCEXs’ roles in tumorigenicity and the identification of novel exosomal components are neces-
sary for engineering exosomes for the treatment of cancer. Here, we review the features of CSCEXs,
including surface markers, cargo, and biological or physiological functions. Further, reports on the
immunomodulatory effects of CSCEXs are summarized, and exosome engineering for CSC-targeting
is also discussed.

Keywords: exosome; cancer stem cell; cancer stem cell-derived exosome; immunotherapy; exo-
some engineering

1. Introduction

The majority of human cancers display heterogeneity in morphology, expression of cell
surface markers, and proliferative or angiogenic potential [1]. During tumor progression,
intrinsic mechanisms, including acquired mutations and the “cells of origin”, drive a
heterogeneous population of tumor cells, and extrinsic factors from the microenvironment
influence the fate of the cells [2]. This results in tumor cells with genetically distinct
molecular signatures and therapy resistance [3]. Intravital microscopy studies have shown
that tumor cells dynamically interact with their microenvironment, leading to metastasis
from the primary tumor [4]. Lineage-retracing experiments in cancer models revealed a
subpopulation of cancer cells displaying stem cell-associated characteristics, called cancer
stem cells (CSCs), driving tumor growth [5].

CSCs or cancer-initiating cells, which are masked in tumors and have the capacity
to self-renew and differentiate into various types of cells, are known to contribute to
tumorigenesis [6,7]. Since the CSC concept emerged in the 1990s, it has been one of the most
popular cancer research models. The clonal evolution model postulates that malignancies
result from the accumulation of genetic instability and sequential selection within the
original clone, leading to intra-tumoral heterogeneity [8]. Markers and properties of CSCs
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have been identified in hematological malignancies, including leukemia, as well as solid
tumors, including brain tumors, breast, colorectal, ovarian, pancreatic, and prostate cancers,
multiple myeloma, and melanoma [9–14]. CSCs exhibit chemo- or radio-resistance, which
is attributed to the epithelial–mesenchymal transition (EMT), the signaling pathways, and
the DNA damage checkpoint activation, along with the upregulation of CSC markers,
including aldehyde dehydrogenase [15,16]. It has been reported that signaling pathways,
such as Wnt, transforming growth factor (TGF)-β, Notch, Hedgehog, JAK-STAT (Janus-
activated kinase/signal transducer and activator of transcription), and platelet-derived
growth factor receptor (PDGFR), are employed by CSCs. Thus, CSCs are highly sought-
after as therapeutic targets for the battle against treatment resistance and tumor relapse.

Localized tumor microenvironments as CSC niches have been investigated using 3-D
tissue models and microfluidics [17]. Mesenchymal stem cells (MSCs) in the microenvi-
ronment secrete proteins, including cytokines and growth factors, which play roles in the
differentiation of MSCs [18]. The more recent focus has been on the role of the exosomes
secreted from CSCs in modulating CSC niches. Exosomes containing a wide range of RNAs,
DNAs, and proteins are released outside of the originating cells through the fusion of mul-
tivesicular endosomes or multivesicular bodies (MVBs) with the plasma membrane [19].
The involvement of exosomes in the phenotype transformation from non-CSC to CSC has
been recently evidenced by the presence of exosomal FMR (fragile X mental retardation)
1-AS (antisense RNA) 1, the X chromosome long non-coding RNA (lncRNA), which is
overexpressed in malignant tumor tissues and activates TLR (Toll-like receptor) 7-NF-κB
(nuclear factor kappa-light-chain-enhancer of activated B cells) signaling [20].

Exosomes have been reported to interact with the immune cells modulating the host’s
immune response and tumor progression [21]. Tumor-derived exosomes (TEXs) induce
apoptosis of the activated cluster of differentiation (CD) 8+ T cells, suppress natural killer
(NK) cell activity, promote the induction of regulatory T cells (Tregs) and myeloid-derived
suppressor cells, and interfere with monocyte differentiation. While TEXs form the im-
munosuppressive environment, Treg-derived exosomes inhibit the induction of cytotoxic
T lymphocytes. Furthermore, exosomes released from the NK cells have shown strong
cytotoxicity against tumor cells; this finding has been substantiated by the FasL expressed
on the membrane of NK cell-derived exosomes as well as its role in the killing of Fas+ tumor
cells [22,23]. In addition, a cell-free cancer vaccine candidate using α-fetoprotein-enriched
exosomes derived from dendritic cells (DCs) can contribute to adoptive immunother-
apy [24]. This stimulates the production of interferon-γ and interleukin (IL)-2 and reduces
the expression of TGF-β and IL-10 at the tumor site. The feasibility and safety of DC-
derived exosomes and autologous TEXs for the treatment of cancer have been tested in
clinical trials [25–28].

Hence, a deeper understanding and further investigations of the role of CSC-derived
exosomes (CSCEXs) in tumorigenicity and the identification of exosomal components could
aid in the engineering of exosomes to enhance therapeutic efficacy [29]. The physiological
and functional properties of CSCEXs are still under exploration. The immunosuppressive
and pro-tumoral capacity of CSCEXs has been studied [30,31]. The CSCEXs induce EMT
through the transfer of microRNAs (miRs) to cancer cells and elevate the level of metastasis
mediators [32,33]. As cellular expression levels and paracrine or juxtacrine signaling,
changed through the transportation of CSCEXs’ miRs into the recipient cells, also contribute
to drug resistance, the chemotherapeutic effects, such as cell cycle arrest and apoptosis of
cancer cells, can be inhibited by CSCEXs [34,35].

In this review, the features of CSC-associated exosomes, including surface markers,
cargo, biological or physiological functions, and immunomodulatory effects, are summa-
rized, and future possibilities for the development of exosome-based cancer immunothera-
peutics are discussed.
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2. Exosomes Derived from Cancer Stem Cells (CSCs)
2.1. CSC-Derived Exosomes (CSCEXs)
2.1.1. Expression of CSC Biomarkers in Different Cancer Types

Pancreatic CSCs represent less than 1% of all pancreatic cancer cells and express the
surface markers CD44+, CD24+, and epithelial-specific antigen (ESA)+. CD44+, CD24+,
and ESA+ CSCs showed robust transcriptional upregulation of the sonic hedgehog and
polycomb group gene family member BMI (B cell-specific Moloney murine leukemia virus
integration site)-1. Additionally, pancreatic adenocarcinomas contain 1–3% of CD133+

cancer cells, some of which also show a high expression of CXC chemokine receptor
4 (CXCR4). These CD133+ and CXCR4+ cells, but not CD133+ or CXCR4 cells, were
able to metastasize, and the abrogation of the signaling by CXCR4 similarly blocked
tissue invasion. Thus, there may be more than one type of CSC involved in pancreatic
adenocarcinomas [36,37].

The presence of CSCs has also been studied in other types of cancer. In hepatocel-
lular carcinomas, the presence of a CD90+ subpopulation of tumor cells signifies hepatic
CSCs [38]. Colorectal CSCs express CD133+, ESA+ (EpCAM+), CD166, CD44, CD49f, and
ESA. CD133+ colon CSCs produce IL-4, which is likely to act via CXCR4 to enhance their
survival and autocrine growth, which has therapeutic implications [39–41]. Integrins
a2/b1, B-cell lymphoma (BCL)-2, β-catenin, BMI-1, bromodeoxyuridine (BrdU), Ki67,
CD44, CD133, CD49f (integrin a6), CK5/14, CK8/18, glutathione S-transferase (GST)-p,
ATP-binding cassette subfamily G member (ABCG) 2/Hoechst 33342, octamer-binding
transcription factor (OCT) 3/4, P63, P27, stem cell antigen (SCA)-1, and SMO (Smoothened)
are the CSC markers detected in prostate cancers [42,43].

To date, the known representative markers of cancer stem cells (CSCs) comprise CD44,
CD24, CD105, and CD133, and additional surface traits are typically tissue-specific [44].
Depending on the cancer type, CSCs have been found to express differential markers in
several investigations, and extracellular vesicles (EVs) released from these CSCs share
common surface markers [45,46]. Accordingly, recent investigations have reported the
tissue-specific surface expression of markers in released CSCEXs.

Brain tumor CSCs were found to express the exosomal markers tumor susceptibility
gene (TSG) 101 and flotillin 1, as well as upregulating tenascin-C, resulting in suppressed
T cell activity [47]. In hepatic carcinomas, exosomes released from hepatic CSCs were
found to exert protumorigenic and prometastatic effects by altering the expression of the
targeted molecules p53, BCL-2, vascular endothelial growth factor (VEGF), TGF-β, and
matrix metalloproteinase (MMP)-9 [46]. Pancreatic CSCs express upregulated CD44v6 and
tetraspanin (TSPAN) 8, and these have been found to release exosomes that contribute to
the survival, proliferation, apoptosis, drug resistance, and metastatic potential of pancreatic
cancer cells [48,49]. The macrovesicles released from CD105+ renal cancer cells were
observed to mediate the angiogenic effects, both in vitro and in vivo [50]. Furthermore,
exosomes derived from Piwil2-induced CSCs have been found to alter fibroblasts into
cancer-associated fibroblasts (CAFs) [51].

2.1.2. CSCEXs and Their Cargo

EVs released from CSCs play multiple roles, not only by the surface expression of
various markers but also by delivering cargo to the receiving cells in the tumor microenvi-
ronment (Figure 1) [52]. Exosomes released from CSCs deliver cargo that is thought to be
responsible for establishing the pre-metastatic niche, thus contributing to increasing the
metastatic potential of CSCs and other associated cells [53,54].
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Figure 1. Schematic diagram of cancer stem cell-derived exosomes (CSCEXs) and their cargo. (a) General exosomal
markers. (b) The content unique to tumor-derived exosomes [55]. (c) CSCEXs promote cancer stemness, epithelial–
mesenchymal transition (EMT)/metastasis, and tumor angiogenesis, and contribute to immunosuppression in the tumor
microenvironment [52]. CSCEXs mediate multiple actions through the delivery of microRNA (miR), long non-coding RNA
(lncRNA), circular RNA (circRNA), proteins, cytokines, or transcription factors.

lncRNA H19 was discovered to be secreted through exosomes of CSCs and inter-
nalized by surrounding cells that absorb miRs, such as lethal-7 (let-7); this was found
to promote the stemness phenotypes of cells surrounding CSCs [56]. A study on breast
cancer stem cells showed that released exosomes carry high miR levels associated with
metastasis [57], and another study reported that CSC-derived exosomes enhanced cancer
cell resistance to chemotherapy, such as doxorubicin and paclitaxel by miR-155 [58]. In
colon cancer MSCs, exosomal miR-30a and miR-222 enhanced the tumorigenic phenotype
of cancer cells [59]. Analysis of CSCEXs from gastric cancer revealed 11 miRNAs as char-
acteristic features, and this was proposed as a predictive biomarker for metastasis [60].
CSCEXs from gliomas were shown to express high levels of miRNA-21, upregulating VEGF
and thus mediating angiogenic effects [61]. Another study reported that hypoxic glioma
CSCs contained Linc01060, which activated pro-oncogenic signaling pathways in glioma
cells to promote cancer progression [62]. miR-210-3p in lung CSCEXs was found to target
the fibroblast growth factor receptor-like 1 (FGFRL1) and promote a pro-metastatic phe-
notype [63]. Exosomes derived from oral squamous cell carcinoma stem cells were found
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to express downregulated miR-21 and miR-34, contributing to cancer progression [64].
Furthermore, in gemcitabine-resistant pancreatic CSCs, exosomes were found to express
high levels of miR-210, directly transferring the resistant phenotype to receiving cancer
cells [34]. In prostate cancer, exosomes from CSCs and non-CSCs have been shown to have
different miRNA contents, in which CSCEXs contribute to the premetastatic niche [65].
Similarly, the promotion of metastasis and EMT by CSCEX in renal cell carcinomas was
observed by miRNA-19b-3p [32] and was also shown to contain several proangiogenic mR-
NAs, promoting angiogenesis and the formation of premetastatic niches [50]. Additionally,
in papillary thyroid carcinoma, the promotion of EMT was observed through the transfer
of lncRNA in papillary thyroid carcinomas [66].

2.1.3. The Current Efforts to Define Differences between CSCEXs and TEXs

Despite the difficulties in distinguishing the CSC population in a tumor lesion, there
are current efforts to study the differences between CSCEXs and TEXs. CSCEXs in human
prostate cancer were reported to accommodate their unique miRNA content, such as
the overexpression of has-miR-1307-5p, compared to exosomes derived from bulk tumor
cells [65]. Exosomes secreted by gastric cancer stem-like cells and differentiated cells
showed their miRNA expression signature, respectively [60].

Although both CSCEXs and TEXs seem to affect tumor progression, the biomark-
ers/cargos expressed in CSCs contribute to metastasis more than those expressed in
non-stem tumor cells do [67]. Pancreatic CSCEXs transferred the pancreatic CSC marker
CD44v6 into non-CSCs, which could reprogram non-CSCs to induce apoptosis resistance,
tumor cell motility, and EMT [68]. Interestingly, the injection of colorectal CSCEXs into
mice prolonged the viability of neutrophils in the bone marrow, and the neutrophils stim-
ulated with CSCEXs promoted tumorigenesis [69]. Further research is needed to define
the differences in biomarkers/cargos and the biological functions between CSCEXs and
non-stem TEXs accurately.

3. Biological and Physiological Roles of CSCEXs

The complex relationship between CSCs differentiating into cancer cells and their
dedifferentiation into CSCs is a dynamic process. As a crucial part of the intermediary
cross-talk between all cells within the tumor microenvironment, exosomes are presumed to
play a significant role in regulating the balance between CSCs and non-stem cancer cells.

The main function of CSCs is in tumorigenesis and the promotion of cancer cell
stemness through the secretion of paracrine factors. Thus, to date, it has been generally
speculated that the exosomes derived from CSCs would share this trait and contribute to
a pro-tumorigenic microenvironment. Many properties associated with cancer-derived
exosomes (CDEXs) overlap with the newly discovered functions of CSCEXs. However,
it is important to note that many studies have reported difficulties in distinguishing
exosomes released from CSCs from similar subclones within complex tumor tissues [70].
Currently, only a few studies have reported the physiological functions of CSCEXs, which
are summarized in relation to the known markers and cargo in the above sections (Table 1).

3.1. Role of Exosomes in the Maintenance of Homeostasis between CSCs and Non-Stem
Cancer Cells

Homeostasis in the cancer microenvironment is accomplished through the crosstalk
between CSCs and non-stem cancer cells, in which the exosomes act as carriers of the
important markers required for the regulation of cancer stem cell differentiation and tumor
cell dedifferentiation.
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Table 1. Functions of surface markers/cargo found in tissue-specific cancer stem cell-derived exosomes (CSCEXs).

Source Surface Marker/Cargo Effect Reference

Breast CSCs miR-155 Enhanced resistance to doxorubicin,
paclitaxel [58]

Colorectal CSCs
miR-30a, miR-222 Promotion of tumorigenicity through

targeting MIA-3 [59]

Triphosphate RNAs Promotion of tumor phenotype of
neutrophils [69]

circRNA-ABCC1 Promotion of cancer stemness [71]

Gastric CSCs

hsa-miR-1290, -1246, -21-5p,
-100-5p, -20a-5p, -26a-5p,
-24-3p, -182-5p, -378a-3p,
-148a-3p, -17-5p, -23a-5p;

has-let-7f-5p, -7a-5p, -7g-5p

Predictive biomarkers for metastasis [60]

Claudin7 Promotion of metastasis [72]

Glioblastoma CSCs
Tenascin C Inhibition of T cell proliferation and

activation [47]

Linc01060 Promotion of cancer progression by
activation of pro-oncogenic signaling [62]

Notch1 Promotion of cancer stemness [73]

Lung CSCs miR-210-3p
Pro-metastatic phenotype in lung

cancer cells by targeting the fibroblast
growth factor receptor-like 1 (FGFRL1)

[63]

Oral squamous cell carcinoma
CSCs Downregulation of miR-34 Cancer progression [64]

Pancreatic CSCs
miR-210 Gemcitabine-resistant phenotype

transference to pancreatic cancer cells [34]

CD44v6 Promotion of cancer stemness and
metastasis [68]

Prostate CSCs Hsa-miR-1307-5p, -139-5p,
-148a-3p, -183-5p Contribution to the premetastatic niche [65]

Renal cell CSCs

Proangiogenic mRNAs (VEGF,
angiopoietin1, MMP-2,

MMP-9)

Angiogenesis and promotion of
premetastatic niche formation [50]

miR-19b-3p Promotion of EMT [32]

Papillary carcinoma CSCs lncRNA DOCK9-AS2
Promotion of proliferation, migration,

and invasion by activation of
Wnt/β-catenin pathway

[66]

CSC: cancer stem cell; CSCEX: cancer stem cell-derived exosome; miR: microRNA; MIA: melanoma inhibitory activity; circRNA: circular
RNA; has: homo sapiens; LINC: long intergenic non-protein coding RNA; VEGF: vascular endothelial growth factor; FGFR1: fibrob-
last growth factor receptor-1; MMP: matrix metalloproteinase; EMT: epithelial-to-mesenchymal transition; lnc: long noncoding; AS2:
antisense RNA2.

Evidently, the exosomes released by stem cell-like breast cancer cells are rich in stem
and metastasis-associated mRNA and promote the tumorigenic potential of the recipient
cells. The Wnt pathway’s abnormal activation results in tumor development, and the regu-
lation of the self-renewal and differentiation of CSCs, because Wnt signaling plays a major
role in growth, development, metabolism, and stem cell maintenance. It has been highly
substantiated that fibroblast exosomes activate the Wnt signaling pathway of colorectal
cancers (CRCs), allowing CRCs to exhibit stem cell properties, including spherocytosis and
tumorigenicity, as well as increasing the proportion of CSCs in CRCs [74,75].

Similarly, exosomes derived from MSCs promote breast cancer cell proliferation by
activating the Wnt signaling pathway. In lymphoma, exosomes secreted by collateral cells
transport the Wnt signaling pathway in Wnt3a-activated receptor cells, thereby mediating
the transformation between the side-population cells and the non-side population cells.
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However, other signaling pathways have also been activated by exosomes, such as gastric
cancer cell-derived exosomes, which promote tumor cell proliferation through the PI3K
(phosphoinositide 3-kinase)/Akt (protein kinase B) and MAPK (mitogen-activated protein
kinase)/ERK (extracellular-signal-regulated kinase) signaling pathways, and exosomes
released from stromal cells that activate the Notch3 signaling pathways in breast cancer
cells [75,76].

3.2. EMT, Exosomes, and CSCs

The uptake of TEXs into the organ-specific recipient cells induces pre-metastatic
niches and the recruitment of bone marrow progenitors [77,78]. The EMT process plays
an important role in regulating the self-renewal and differentiation of CSCs, and cells can
obtain stem cell phenotypes through EMT processes. TGF-β, which is capable of inducing
the onset of EMT, was found in TEXs in recent studies. For instance, exosomes derived from
chronic myeloid leukemia transport TGF-β1 abundant in the exosomes to the recipient
cells and promote leukemic cell proliferation, colony formation, and tumor formation
in vivo. Exosomes released by colon cancer-initiating cells transport cld (claudin) 7 into
low metastatic cells, inducing their EMT process [79,80]. CSCEXs were reported to induce
EMT in renal cell carcinoma and thyroid cancer via the transfer of miR-19b-3p and lncRNA,
respectively [66,81]. Namely, CSCEXs relay CSC secretion and therapy resistance via the
transfer of miRs and lncRNAs [82].

3.3. Transport of Reprogramming Transcription Factor

Aberrant expression of reprogramming transcription factors in tumor tissues can
induce the conversion of non-CSCs to CSCs, and exosomes can regulate the dynamic
balance of cancer stem cells by transporting these transcription factors or by regulating the
expression levels of the transcription factors in the recipient cells. For example, exosomes
secreted by pre-adipocytes promote early breast cancer formation and tumor growth
in vivo by transporting the transcription factors SOX (Sry-related high mobility group box)
2 and SOX9 [83,84]. In addition, the miRNAs contained in exosomes also play an essential
role in the regulation of tumor cell proliferation, self-renewal, and tumorigenicity. A high
expression of miR-222 in melanoma cell-derived exosomes can increase the malignant
phenotype of melanoma cells; gastric cancer cells can selectively encapsulate let-7 miRs
into exosomes and release them into the tumor microenvironment, thereby promoting
the malignant phenotype and tumor growth of gastric cancer. Other oncogenic miRNAs,
such as miR-21 and miR-34a, have also been found to be abundant in tumor cell-derived
exosomes [85,86].

3.4. Immunological Effects of CSCEXs

Many studies have revealed that CDEXs or TEXs mediate immunosuppressive func-
tions in the tumor microenvironment [87,88]. Thus, it is logical to presume that CSCEXs
share these traits in modulating the tumor immune microenvironment (Figure 2) [89].

Analysis of brain tumor CSCs showed an exosomal release of tenascin-C, which in-
hibited T cell activation and proliferation [47]. Exosomes from colorectal cancer stem
cells have been observed to upregulate interleukin-IL-1β and transform neutrophils into
a pro-tumoral phenotype [69]. In another study, colorectal CSC-derived exosomes were
loaded onto DCs, which induced CSC-specific T cell responses [90]. Exosomes derived from
glioblastoma stem cells were reported to drive the M1 to M2 phenotype transition of mono-
cytes via the STAT-3 pathway, creating an immunosuppressive microenvironment [31].
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Figure 2. The involvement of CSCEXs in modulating tumor-infiltrating lymphocytes. CSCEXs are known to exhibit the
inhibition of proliferation and activation of CD8+ T cells, dendritic cell maturation, as well as multiple immunosuppressive
effects exerted on M2 macrophages, protumoral monocytes, and neutrophils.

CSCEXs were also found to contribute to PD-L1 (programmed cell death ligand 1)
upregulation in macrophages [31] and to promote the differentiation of peripheral blood
monocytes into cells phenotypically similar to M-MDSCs (myeloid-derived suppressor
cells) [91]. Furthermore, in glioblastoma CSCs, the secretion of the macrophage migration
inhibitory factor (MIF) activates MDSCs and induces immunosuppression [92]. Lastly, in
a renal cancer model, CSC-derived EVs mediated the inhibition of DC maturation and T
cell-mediated immune responses (Table 2) [93].

There is still much that is unknown regarding CSCEX-mediated immunomodulation
in the tumor microenvironment; however, the cross-talk between CSCs and exosomes holds
great promise in the development of targeted anti-cancer immunotherapy [95,96].
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Table 2. Immunological properties of cancer stem cell-derived exosomes (CSCEXs).

Source Surface Marker/Cargo Immunological Effects Reference

Colorectal CSCs
Triphosphate RNAs

Neutrophil transformation into
pro-tumoral phenotypes, interleukin

(IL)-1β secretion
[69]

CSCEX loaded onto dendritic
cells (DCs)

Activation of CSC-specific T cell
response [90]

miR-146a
Increase in tumor-infiltrating CD66+

neutrophils, decrease in
tumor-infiltrating CD8+ T cells

[94]

Glioblastoma CSCs

Tenascin-C Inhibition of T cell activation,
proliferation [47]

Eukaryotic initiation factor 2,
mTOR, and ephrin B signaling

pathways

M1 to M2 transition of monocytes via
the STAT-3 pathway, upregulation of

PD-L1 in macrophages
[31]

Increased IL-10 and Arg1,
downregulated MHC class II

cell surface receptor
(HLA-DR)

Differentiation of peripheral blood
monocytes into cells similar to

M-MDSCs
[91]

MIF Activation of MDSCs [92]

Renal CSCs HLA-G Impairment of DC maturation and T
cell-mediated immune response [93]

CSC: cancer stem cell; CSCEX: cancer stem cell-derived exosome; IL: interleukin; DC: dendritic cell; mTOR: mechanistic target of
rapamycin; Arg1: gene encoding the protein arginase; MHC: major histocompatibility; HLA: human leukocyte antigen; MIF: gene encoding
macrophage migration inhibitory factor; STAT: signal transducer and activator of transcription; PD-L1: programmed cell death ligand 1;
MDSC: myeloid-derived suppressor cell.

4. Potential for Exploiting CSCEXs

Stem and progenitor cells mediate regenerative properties through paracrine factors,
including cytokines and exosomes [30]. The impact of CSCs and CSCEXs on tumor progres-
sion can be inferred from the differential expression of several miRNAs in ductal carcinoma
in situ stem-like cells. Non-invasive breast CSCs with downregulated miR-140 and upregu-
lated miR-21 and miR-29a show tumorigenicity and a migratory capacity [97,98]. Thus, the
specific targeting of RNAs that are aberrantly expressed in CSCs could help in designing
CSC-based therapeutics. We can target CSCs using DNA vaccines or mRNA vaccines, but
mutagenicity, short half-life, and autoimmunity are the limitations of conventional DNA
vaccines or mRNA vaccines [99]. Cell-to-cell transport of exosomal circular noncoding
RNAs is involved in the regulation of CSC phenotypes and can influence the tumor mi-
croenvironment [100]. So far, the clinical use of circular noncoding RNAs as cancer vaccines
has not yet been proven.

4.1. Effects of Exosomes on Cancer Stem Cells

Exosomes mediate various effects on CSCs by stimulating the Wnt, Notch, Hippo,
Hedgehog, NF-κB, and TGF-β pathways, among others [101]. It follows that exosomes can
exert numerous downstream effects involving differentiation, tumorigenesis, and other
crucial endogenous functions of CSCs [102].

In breast cancer, CD44− cell proportions were observed to increase from CD44high/CD24low

CSCs through cell cycle inhibitory miRNA delivery by exosomes [103]. Moreover, in ovarian
cancer, the exosomal release of miRNA-454 was observed to sustain the stemness phenotype of
cancer cells [104]. Another example of prostate CDEXs with the surface expression of caveolin-1
was observed to transform CSCs into a metastatic phenotype via NF-κB signaling [105]. Fur-
thermore, the interactions of CSCs with CAFs have been observed by using CAF-derived
exosomes and their miRNA content, such as miR-21, miR-378e, and miR-143 [53]. These
were also observed to promote tumor progression, except for miR-320, which antagonized the
premetastatic niche formation [53].
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Recent studies have proposed superior tumor growth inhibitory effects by targeting
CSCs rather than the whole tumor [106]. Thus, potential strategies for targeting CSCs
by delivering miRNAs to inhibit the EMT or the formation of premetastatic niches have
been thoroughly researched [107]. Neutralizing antibodies, or antibody-mediated CSC
therapies, aim to target CSCs in various cancers to attenuate the stemness phenotype
of these cells [107]. Exosome signaling is also known to induce the production of CSCs,
ameliorate treatment resistance, and prevent tumor relapse [108]. There is also a growing
interest in exosome engineering to target specific signaling pathways by miR or siRNA
inhibitors for CSC modulation [101].

4.2. Targeting Cancer Stem Cells through Engineered Exosomes

The identification of various potential markers of CSCs expressed in different cancer
types provides a possible means for targeting CSCs specifically using engineered exosomes.
Targeting the CD44 expressed in hepatocellular carcinoma in metastatic hepatocellular
CSCs using anti-CD44 antibody-coated exosomes could directly induce CSC death. Like-
wise, the CSC markers of different cancers, such as CD24+, CD133, CD90+, ESA+ (EpCAM+),
CD166, CD44, CD49f, integrins a2/b1, BCL-2, β-catenin, BMI-1, BrdU, Ki67, CD44, CD133,
CD49f (integrin a6), CK5/14, CK8/18, GST-p, ABCG2/Hoechst 33342, OCT3/4, P63, P27,
SCA-1, SMO, and CD200, can be targeted using engineered anti-antibody-coated exosomes.
In addition, exosomes engineered for targeting different signaling pathways that contribute
to self-renewal, differentiation, tumor initiation, and drug resistance in CSCs could aid in
the effective design of engineered exosomes for cancer treatment [109,110].

According to the differential roles of surface markers/cargo in exosomes derived from
CSCs and non-stem cells, exosomes engineered with surface markers/cargo unique to
CSCs are expected to have potential for the treatment of cancer. CSCEXs contain multi-
ple stemness marker proteins, such as CD44v6 and Notch1, which generate transient or
dynamic tumor heterogeneity in the tumor microenvironment compared to non-cancer
exosomes [73]. CSCEXs’ RNA cargo, such as miR-19b-3p, playing a unique role in metas-
tasis can also be envisaged as a therapeutic target. The exosomal miR-210-3p isolated
from lung CSCs contributed to the pro-metastatic niche of lung cancer, while miR-210-3p
in non-stem TEXs mainly promoted tumor angiogenesis. Triphosphate RNAs unique to
CSCEXs, which facilitate the pro-tumoral phenotype of neutrophils, can be targeted for
cancer immunotherapy [69].

5. Conclusions and Future Directions

CSCs, or cancer-initiating cells, are tumorigenic and give rise to local and distal tumor
recurrence. A subpopulation of cancer cells possessing self-renewing and multipotent
properties is a potent hindrance to conventional cancer therapies that solely target the
existing malignant cells. Many investigations have focused on gaining insights into the
biological properties of CSCs and their secretions for the development of novel therapeutic
interventions specifically targeting CSCs. Recent investigations have established the sig-
nificance of exosomes in cell-to-cell communication and the formation of a unique niche
for the homeostasis of CSCs and non-stem cancer cells; this makes CSCs an ideal target
in disrupting this balance. We can focus on targeting and exploiting Evs, including the
exosomes released from CSCs, as a potential strategy for eliminating CSCs [111].

Further efforts are needed to elucidate the complex biological effects of CSCEXs
on tumorigenesis, metastasis, and cancer immunity. Thus, a better and more thorough
understanding of the characteristics and contents of these CSCEXs and other EVs may
give way to the development of new clinical diagnostic/prognostic tools and therapies to
prevent tumor resistance and relapse [112].
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