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Abstract: L-DOPA therapy in Parkinson’s disease (PD) is limited due to emerging L-DOPA-induced
dyskinesia. Research has identified abnormal dopamine release from serotonergic (5-HT) terminals
contributing to this dyskinesia. Selective serotonin reuptake inhibitors (SSRIs) or 5-HT receptor
(5-HTr) agonists can regulate 5-HT activity and attenuate dyskinesia, but they often also produce a
loss of the antiparkinsonian efficacy of L-DOPA. We investigated vilazodone, a novel multimodal
5-HT agent with SSRI and 5-HTr1A partial agonist properties, for its potential to reduce dyskinesia
without interfering with the prokinetic effects of L-DOPA, and underlying mechanisms. We as-
sessed vilazodone effects on L-DOPA-induced dyskinesia (abnormal involuntary movements, AIMs)
and aberrant responsiveness to corticostriatal drive in striatal medium spiny neurons (MSNs) mea-
sured with in vivo single-unit extracellular recordings, in the 6-OHDA rat model of PD. Vilazodone
(10 mg/kg) suppressed all subtypes (axial, limb, orolingual) of AIMs induced by L-DOPA (5 mg/kg)
and the increase in MSN responsiveness to cortical stimulation (shorter spike onset latency). Both the
antidyskinetic effects and reversal in MSN excitability by vilazodone were inhibited by the 5-HTr1A

antagonist WAY-100635, demonstrating a critical role for 5-HTr1A in these vilazodone actions. Our
results indicate that vilazodone may serve as an adjunct therapeutic for reducing dyskinesia in
patients with PD.
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1. Introduction

Parkinson’s disease (PD) is a devastating neurodegenerative disorder that is caused by
a progressive loss of nigrostriatal dopamine (DA) neurons. Current therapeutic approaches
typically focus on restoring central DA function, and treatment with the DA precursor
levodopa (L-DOPA) remains the most effective pharmacological strategy to alleviate motor
symptoms in PD [1–3]. However, long term L-DOPA treatment also produces debilitating
motor side effects characterized by involuntary movements known as L-DOPA-induced
dyskinesia [4–6]. In fact, the incidence of L-DOPA-induced dyskinesia is estimated to reach
90% after 10 years of treatment [7–9], which significantly reduces the therapeutic window
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and quality of life for patients with PD [10–12]. Thus, understanding the mechanisms
underlying L-DOPA-induced dyskinesia is a critical step to improve L-DOPA therapy.

Several pathophysiological changes after DA denervation and chronic L-DOPA treat-
ment have been identified that contribute to the development and expression of L-DOPA-
induced dyskinesia. Many of these involve alterations in corticostriatal functional connec-
tivity and dysregulation of striatal output (for reviews, see e.g., [13–16]). These cellular
and molecular alterations include pre- and postsynaptic changes in the striatum [16]. For
example, pronounced postsynaptic modifications occur in medium spiny projection neu-
rons (MSNs), including DA receptor supersensitivity [17], which involves abnormally
enhanced activation of intracellular signaling pathways, resulting in aberrant regulation of
ion channels and receptors that produces abnormal responsiveness to corticostriatal inputs,
as well as altered gene regulation and other effects (e.g., [14,18,19]).

Presynaptic changes associated with L-DOPA-induced dyskinesia include large fluc-
tuations in striatal DA levels upon L-DOPA administration [2,20–22]. It is now accepted
that these DA fluctuations drive postsynaptic changes in MSNs and L-DOPA-induced
dyskinesia (e.g., [16]). These DA surges occur with severe loss of nigrostriatal DA neurons,
and it is agreed that such L-DOPA-derived DA is released from other cells [16]. Of partic-
ular interest are the serotonergic (5-HT) fibers emanating from the dorsal raphe nucleus
(DRN), which have the machinery to convert L-DOPA to DA and then release it [23,24].
These 5-HT fibers increase in density in the DA-depleted striatum (e.g., [25–27]). Further
findings show that L-DOPA-derived DA released from 5-HT neurons is indeed critical for
L-DOPA-induced dyskinesia ([21,22,28–31]; see [16,32], for recent reviews).

Attempts were made to pharmacologically regulate such abnormal DA release from
5-HT terminals and mitigate L-DOPA-induced dyskinesia by targeting the activity of 5-
HT neurons in animal models [32,33]. For example, studies have investigated the use
of selective 5-HT reuptake inhibitors (SSRIs), which block the 5-HT transporter [34–37],
and agonists of the 5-HT1A receptor (5-HTr1A), which stimulate 5-HT1A autoreceptors on
5-HT neurons to attenuate their activity and abnormal DA release from their terminals
(e.g., [30,37–44]). Results showed that many of these drugs significantly reduced dyskinesia
scores in animal models. However, often these agents also diminished the prokinetic
effects of L-DOPA, especially at higher doses, thus limiting their potential usefulness
(e.g., [36,37,42,43,45]; see [32], for review). Clinical trials have so far been performed with
5-HTr1A agonists [32], and these were typically less successful. For example, sarizotan, a
5-HTr1A full agonist, showed promise in early preclinical [45,46] and clinical studies [47],
but was ultimately not found to be superior to placebo in clinical trials [48].

Recent studies investigated a novel SSRI antidepressant, vilazodone, which was
approved by the U.S. Food and Drug Administration (FDA) in 2011 [49], as a potential
therapeutic to treat L-DOPA-induced dyskinesia. Vilazodone differs from previous agents
in that it combines 5-HTr1A partial agonist activity with its SSRI properties [50–52]. Early
findings showed that vilazodone attenuated development and expression of L-DOPA-
induced dyskinesia at doses that did not interfere with L-DOPA’s prokinetic efficacy [53,54].
Moreover, vilazodone also suppressed L-DOPA-induced aberrant gene regulation in striatal
MSNs, a molecular correlate of L-DOPA-induced dyskinesia [54].

In the present study, we further investigated the impact of vilazodone on L-DOPA-
induced dyskinesia and underlying mechanisms in the unilateral 6-hydroxydopamine
(6-OHDA) rat model of PD. For one, we assessed vilazodone effects on the various subtypes
of L-DOPA-induced dyskinesia (measured as “abnormal involuntary movements”, AIMs)
in this model. Moreover, using in vivo electrophysiological techniques, we investigated the
impact of vilazodone on the aberrant responsiveness to corticostriatal drive in striatal MSNs
in the dyskinetic state. Furthermore, we determined whether these vilazodone effects were
mediated by stimulation of 5-HTr1A. Our results show that vilazodone attenuated all types
of L-DOPA-induced AIMs, as well as the increased MSN responsiveness to cortical drive,
and that these effects were dependent on 5-HTr1A activation.
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2. Results
2.1. Evaluation of 6-OHDA Lesion

Stepping tests were performed before and after the 6-OHDA lesion to assess the impact
of DA cell loss on forelimb movements. Only animals exhibiting a severe loss of forelimb
movements, with a drop from a pre-surgery rate of approximately 11 adjusting steps with
the forepaw contralateral to the lesion to three or fewer steps at 4 weeks post-surgery,
were considered significantly impaired and were included in this study (Figure 1A). This
approach has previously been shown to predict near-total DA lesions [55–57]. Tyrosine
hydroxylase (TH) immunohistochemistry and cell counts were performed to confirm the
lesions. The number of DA neurons in the substantia nigra pars compacta (SNc) ipsilateral
(lesion) and contralateral (intact) to the side of 6-OHDA infusion was determined. Our
results show that rats with three or fewer adjusting steps displayed a loss of DA neurons
with a range of 87.9–98.6% (mean ± SEM, 93.95 ± 0.72% of intact side; Figure 1B).
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Figure 1. Unilateral DA lesion by 6-OHDA produces a contralateral forelimb stepping deficit.
(A) Forelimb stepping scores (mean ± SEM) in tests performed pre- and four weeks post-surgery.
These tests revealed that the 6-OHDA lesion produced a stepping deficit in the forelimb contralateral
to the lesion, while stepping with the ipsilateral (intact) forelimb was not affected. The stepping
scores given are from the included animals that showed three or fewer adjusting steps with the
contralateral forelimb (n = 33). (B) Number of TH-positive cells in the SNc ipsilateral to the lesion,
expressed as percentage of the TH-positive cells on the intact side. The included animals displayed a
loss of 87.9–98.6% of TH-positive (DA) neurons on the side of the lesion (mean ± SEM, 93.95 ± 0.72%
of intact side).

2.2. Vilazodone Suppresses Established AIMs, but Does Not Affect Improved Stepping
Performance, after L-DOPA Treatment

During the first week of drug treatment, all rats received L-DOPA (6/Veh/LD) and
displayed axial, limb, and orolingual AIMs on the side of their body contralateral to the
6-OHDA lesion. These AIMs typically lasted for up to 3 h, with a peak in severity occurring
around 30–90 min after L-DOPA administration (Figure 2). AIM subtypes were scored on
the last three days of the week, and 3-day averages for each subtype and total scores are
presented (Figure 2).
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Figure 2. Vilazodone significantly inhibits expression of established AIMs, while not affecting the prokinetic effects of
L-DOPA. (A) Experimental design/timeline of study. (B–E) AIMs in 6-OHDA-lesioned rats treated with vehicle (10%
cremophor in 0.9% saline) + L-DOPA (5 mg/kg, i.p.) (6/Veh/LD) for two weeks (B,C), and in 6-OHDA-lesioned rats treated
with vehicle + L-DOPA (6/Veh/LD) in week 1 followed by vilazodone (10 mg/kg, i.p.) + L-DOPA (6/VIL/LD) in week 2
(D,E). The video analysis revealed that vilazodone co-administration in week 2 significantly attenuated the expression of
AIMs compared to L-DOPA-only treatment in week 1, for axial, limb and orolingual AIMs (individual animals) (D) and
for total AIM scores (mean ± SEM) across 180 min after L-DOPA administration (E). *** p < 0.001, 6/VIL/LD (week 2) vs.
6/Veh/LD (week 1). (F) Forelimb stepping scores after these drug treatments. Scores (mean ± SEM) from 4 weeks after the
lesion (before the start of the treatment protocol, “baseline”) and 1 h after L-DOPA administration on the second day of
treatment week 2 are shown. The forelimb stepping test revealed that vilazodone, while inhibiting L-DOPA-induced AIMs,
did not negate the prokinetic effects of L-DOPA in stepping behavior (6/VIL/LD vs. 6/Veh/LD, p > 0.05). ### p < 0.001, vs.
ipsilateral (INTACT) side; *** p < 0.001, vs. contralateral (LESION) baseline.
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In week 2, rats received pretreatment with either vehicle or vilazodone 30 min prior to
L-DOPA administration (Figure 2A). In vehicle-pretreated rats (6/Veh/LD, n = 8), AIM
scores did not differ between week 2 and week 1, for axial, limb, orolingual, or total
AIMs (all Z ≤ −1.26, p > 0.05; Wilcoxon matched-pairs signed-rank test) (Figure 2B,C). In
contrast, vilazodone administration before L-DOPA (6/VIL/LD, n = 14) almost completely
suppressed established axial, limb, orolingual, and total AIMs, compared to week 1 (all
Z = −3.29, p < 0.001) (Figure 2D,E).

To evaluate drug effects on motor performance in these animals, we compared the
number of forelimb adjusting steps before the start of the treatment protocol (i.e., 4-week
counts, “baseline”) with stepping rates 1 h after L-DOPA administration on the second day
(Tue) of treatment week 2 (Figure 2F). Two-factor ANOVA analysis revealed significant
main effects of treatment (F(2,91) = 8.940, p < 0.001) and side (ipsilateral vs. contralateral
to the lesion) (F(1,91) = 321.1, p < 0.001), with a significant interaction (F(2,91) = 8.798,
p < 0.001). Tukey post-hoc tests revealed differences between groups as follows. Stepping
with the forelimb contralateral to the 6-OHDA lesion was significantly reduced, compared
to ipsilateral stepping, in all three conditions (p < 0.001). After L-DOPA-only treatment
(6/Veh/LD), this motor performance was significantly improved (p < 0.001, vs. baseline).
Similarly, rats that received vilazodone + L-DOPA co-treatment (6/VIL/LD) displayed
a significant improvement in contralateral forelimb adjusting steps (p < 0.001, vs. base-
line). These two groups did not differ in their contralateral steps (p > 0.05, 6/Veh/LD vs.
6/VIL/LD) (Figure 2F).

2.3. 5-HTr1A Agonism Mediates Impact of Vilazodone on AIMs

In week 1 of our 5-HTr1A antagonist experiment (Figure 3A), rats (n = 11) received
repeated L-DOPA-only treatment (6/Veh/LD) and developed stable AIMs. Friedman
ANOVAs showed a significant effect of treatments (all X2(2) > 18.73, p < 0.001). Dunn’s
post-hoc tests revealed differences between treatment groups as follows. Consistent with
our previous outcomes, vilazodone pretreatment (6/VIL/LD) in week 2 significantly
reduced axial, limb, orolingual, and total AIMs compared to L-DOPA-only in week 1
(p < 0.001, vs. 6/Veh/LD) (Figure 3B,C). In contrast, administration of WAY-100635 (WAY),
a selective 5-HTr1A antagonist, together with vilazodone and L-DOPA (6/W/VIL/LD)
in week 3 significantly attenuated the antidyskinetic efficacy of vilazodone (p < 0.05, vs.
6/VIL/LD; p > 0.05, vs. 6/Veh/LD) (Figure 3B,C).

Drug effects on motor performance in these animals were assessed with the forelimb
stepping test. Two-factor ANOVA analysis of forelimb adjusting steps revealed significant
main effects of treatment (F(3,48) = 19.57, p < 0.001) and side (ipsilateral vs. contralateral
to the lesion) (F(1,48) = 541.1, p < 0.001), with a significant interaction (F(3,48) = 16.19,
p < 0.001). Tukey post-hoc tests revealed the following differences between treatments.
Stepping with the forelimb contralateral to the lesion was significantly reduced in all
four conditions (p < 0.001). After treatment with L-DOPA-only (6/Veh/LD), vilazodone
+ L-DOPA (6/VIL/LD) or WAY + vilazodone + L-DOPA (6/W/VIL/LD), this stepping
performance was significantly improved (p < 0.001, vs. baseline). Importantly, WAY
administration (6/W/VIL/LD) did not alter this therapeutic efficacy as compared to
L-DOPA-only treatment (p > 0.05, vs. 6/Veh/LD), or vilazodone + L-DOPA treatment
(p > 0.05, vs. 6/VIL/LD) (Figure 3D).
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design/timeline of study. (B,C) AIMs in 6-OHDA-lesioned rats treated with vehicle + L-DOPA (5 mg/kg, i.p.) (6/Veh/LD)
in week 1, vilazodone (10 mg/kg, i.p.) + L-DOPA (6/VIL/LD) in week 2 and WAY-100635 (0.5 mg/kg, i.p.) + vilazodone +
L-DOPA (6/W/VIL/LD) in week 3. The video analysis revealed that vilazodone co-administration (week 2) significantly
attenuated the expression of AIMs compared to L-DOPA-only treatment (week 1), whereas WAY co-administration (week 3)
significantly inhibited this beneficial effect of vilazodone treatment. This was shown for axial, limb and orolingual
AIMs (individual animals) (B) and for total AIM scores (mean ± SEM) across 180 min after L-DOPA administration (C).
*** p < 0.001, 6/VIL/LD vs. 6/Veh/LD; + p < 0.05, ++ p < 0.01, 6/W/VIL/LD vs. 6/VIL/LD. (D) Forelimb stepping scores
(mean ± SEM) after these drug treatments. Neither vilazodone (6/VIL/LD) nor WAY (6/W/VIL/LD) had any effects on
the L-DOPA-induced motor improvements (6/Veh/LD vs. baseline), as assessed by the forelimb stepping test. ### p < 0.001,
vs. ipsilateral (INTACT) side; *** p < 0.001, vs. contralateral (LESION) baseline).

2.4. Effects of Vilazodone and 5-HTr1A Blockade on Striatal MSN Activity in Dyskinetic
DA-Depleted Animals

We used in vivo single-unit extracellular recordings to assess drug effects on cortically
evoked activity in MSNs of the sensorimotor striatum ipsilateral to the 6-OHDA lesion
(Figure 4). While the vast majority (≥95%) of striatal neurons are MSNs, we also infre-
quently encountered fast-spiking interneurons. These interneurons can be distinguished
from MSNs by their short onset latency and duration of action potential responses to
low stimulus intensities (<0.95 ms), and burst-like activity following cortical stimulation
(see [58,59]). Only cells that exhibited an action potential duration of 1 ms or higher follow-
ing cortical stimulation were included in this study. Tonically active interneurons typically
did not respond to our stimulation protocol.
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Figure 4. Vilazodone inhibits L-DOPA effects on spike onset latency after cortical stimulation in striatal MSNs, and this
inhibition is mediated by 5-HTr1A stimulation. (A) Schematic illustration of coronal sections through the frontal cortex and
middle striatum (approximately at +3.0 and +0.4 mm rostral to bregma) showing the stimulation site in the primary motor
cortex (M1), and, collapsed onto one level, the distribution of recording sites in the sensorimotor striatum (shaded) for the
different treatment groups (“challenge” units: 6/Veh/LD, red dots; 6/VIL/LD, purple dots; 6/W/VIL/LD, green dots;
pooled “baseline” units, black dots). (B) Cortically evoked responses in MSNs of 6-OHDA-lesioned rats recorded before the
final drug treatment (“baseline” responses, BL). Displayed are spike onset latency (mean ± SEM) (left) and spike probability
(right) in rats that had received a repeated pretreatment with vehicle + L-DOPA (5 mg/kg, i.p.) (6/Veh/LD; n = 11 cells
in 5 rats), vilazodone (10 mg/kg, i.p.) + L-DOPA (6/VIL/LD; n = 14 cells in 8 rats), or WAY-100635 (0.5 mg/kg, i.p.) +
vilazodone + L-DOPA (6/W/VIL/LD; n = 7 cells in 3 rats). (C) Cortically evoked responses in MSNs of 6-OHDA-lesioned
rats recorded after the final drug treatment (“challenge” responses, top). Shown are spike onset latency (left) and spike
probability (right) in rats that had received a repeated treatment with vehicle + L-DOPA (5 mg/kg, i.p.) (6/Veh/LD; n = 21
cells in 8 rats), vilazodone (10 mg/kg, i.p.) + L-DOPA (6/VIL/LD; n = 19 cells in 9 rats), or WAY-100635 (0.5 mg/kg, i.p.) +
vilazodone + L-DOPA (6/W/VIL/LD; n = 16 cells in 7 rats). Additionally displayed are these data expressed in percentage
of baseline values (% BL) (bottom). Vilazodone co-administered with L-DOPA (6/VIL/LD) prevented the L-DOPA-induced
decrease in onset latency (6/Veh/LD). WAY administration (6/W/VIL/LD) blocked vilazodone’s ability to attenuate the
L-DOPA effect on the onset latency. * p < 0.05, ** p < 0.01, *** p < 0.001, vs. 6/Veh/LD; + p < 0.05, ++ p < 0.01, +++ p < 0.001, vs.
6/VIL/LD.

Cortical stimulation with 400 µA failed to elicit consistent responses in MSNs, and the
400 µA data were thus not included in the statistical analysis. For stimulation intensities of
600, 800 and 1000 µA, in cells recorded before drug administration (“baseline”; 6/Veh/LD,
n = 11; 6/VIL/LD, n = 14; 6/W/VIL/LD, n = 7), two-factor ANOVAs showed the following
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results. Spike onset latency (Figure 4B, left) showed a tendency for a main effect of drug
treatment (F(2,87) = 2.143, p = 0.12), no main effect of stimulation intensity (F(2,87) = 0.344,
p > 0.05) and no significant interaction (F(4,87) = 0.053, p > 0.05). Analysis of spike proba-
bility (Figure 4B, right) revealed a significant main effect of drug treatment (F(2,87) = 3.976,
p < 0.05), but no significant main effect of stimulation intensity (F(2,87) = 2.036, p > 0.05)
and no significant interaction (F(4,87) = 0.132, p > 0.05). The 6/VIL/LD group showed
tendencies for a reduction in onset latency and spike probability compared to the other
groups; however, post-hoc tests did not reveal significant differences between individual
groups (Figure 4B).

In cells recorded after drug administration (“challenge”; 6/Veh/LD, n = 21; 6/VIL/LD,
n = 19; 6/W/VIL/LD, n = 16), two-factor ANOVAs of stimulation-evoked activity demon-
strated the following. Spike onset latency (Figure 4C, top left) showed a significant main
effect of treatment (F(2,159) = 15.49, p < 0.001), but no significant main effect of stimulation
intensity (F(2,159) = 1.130, p > 0.05) and no significant interaction (F(4,159) = 0.064, p > 0.05).
Analysis of spike probability (Figure 4C, top right) revealed significant main effects of
treatment (F(2,159) = 4.938, p < 0.01) and stimulation intensity (F(2,159) = 9.112, p < 0.001),
but no significant interaction (F(4,159) = 0.419, p > 0.05). Tukey post-hoc tests revealed
the following differences between treatment groups (“challenge”; Figure 4C, top). Cells in
vilazodone + L-DOPA-treated animals displayed a longer onset latency in cortically evoked
spikes than cells in vehicle + L-DOPA-treated animals (6/VIL/LD vs. 6/Veh/LD) at 600,
800 and 1000 µA stimulation intensities (all p < 0.05) (Figure 4C, top left). Blocking 5-HTr1A
with WAY (0.5 mg/kg) prevented this effect of vilazodone on the onset latency, as WAY
treatment significantly reduced the onset latency at all intensities (p < 0.05, 6/W/VIL/LD
vs. 6/VIL/LD) to levels observed with L-DOPA-only treatment (p > 0.05, 6/W/VIL/LD
vs. 6/Veh/LD). For spike probability (Figure 4C, top right), post-hoc tests did not show
significant group differences at any of the 3 current intensities (p > 0.05).

Given the effects of the drug treatments on baseline activity (see above), we also
expressed activities recorded after the drug challenge relative to baseline values (percent
of baseline; Figure 4C, bottom). Two-factor ANOVAs for these data (“challenge”, % of
baseline) revealed, for spike onset latency (Figure 4C, bottom left), a significant main effect
of drug treatment (F(2,159) = 38.77, p < 0.001), no significant main effect of stimulation
intensity (F(2,159) = 0.066, p > 0.05) and no significant interaction (F(4,159) = 0.041, p > 0.05).
For spike probability (Figure 4C, bottom right), no significant main effects of treatment
(F(2,159) = 1.949, p > 0.05), stimulation intensity (F(2,159) = 0.892, p > 0.05) or interaction
(F(4,159) = 0.307, p > 0.05) were found. Tukey post-hoc tests (Figure 4C, bottom left) revealed
that vilazodone + L-DOPA treatment produced a longer spike onset latency than vehicle
+ L-DOPA treatment (6/VIL/LD vs. 6/Veh/LD) at 600, 800 and 1000 µA stimulation
intensities (all p < 0.001), and that blocking 5-HTr1A with WAY completely prevented this
effect of vilazodone (p < 0.001, 6/W/VIL/LD vs. 6/VIL/LD; p > 0.05, 6/W/VIL/LD vs.
6/Veh/LD).

In summary, consistent with previous findings demonstrating a significant increase
in MSN activity in DA-depleted animals following L-DOPA treatment (e.g., [60–62]), our
analysis showed that L-DOPA-only treatment (6/Veh/LD) reduced the MSN spike onset
latency to 75% of baseline values. Vilazodone reversed this L-DOPA-induced facilitation of
MSN responses, and this reversal was blocked by the 5-HTr1A antagonist, WAY-100635.

3. Discussion

The present study investigated, in the 6-OHDA rat model of PD, the antidyskinetic
effects of the multimodal serotonergic drug, vilazodone, the 5-HT receptor subtypes in-
volved, and the electrophysiological correlates in the striatum of these drug actions. Our
main results can be summarized as follows. First, our findings confirm and extend previous
results by us [54] and others [53], demonstrating a powerful inhibitory effect of vilazodone
on the various subtypes of L-DOPA-induced dyskinesia (AIMs) observed in this model.
Second, importantly, in contrast to other serotonergic modulatory agents, vilazodone co-
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administration did not compromise the therapeutic efficacy of L-DOPA, as shown by our
outcomes in the forelimb stepping test. Third, also in agreement with previous findings [53],
these antidyskinetic effects of vilazodone were blocked by the selective 5-HTr1A antagonist
WAY-100635, demonstrating a critical role for 5-HTr1A in this vilazodone action. Fourth,
in line with the behavioral effects of vilazodone, our in vivo electrophysiological studies
revealed that vilazodone prevented the abnormal L-DOPA-induced facilitation of corticos-
triatal transmission (reflected by a decrease in onset latency of cortically evoked spikes in
MSNs), and that these vilazodone effects were also attenuated by blocking 5-HTr1A. These
results complement our previous findings showing that vilazodone suppresses abnormal
L-DOPA-induced gene regulation in MSNs in this model [54]. Collectively, these findings
indicate that vilazodone co-treatment is capable of “normalizing” aberrant MSN activities
and corticostriatal transmission that contribute to L-DOPA-induced dyskinesia, and that
5-HT1A serotonin receptors mediate these vilazodone effects.

3.1. Characterization of Dopamine Lesion

The degree of DA cell loss after 6-OHDA infusion was determined by stereological
quantification of the number of TH+ cells in the SNc. Our findings show that the DA-
depleted animals that were included in this study, after meeting the inclusion criterion of
three or fewer contralateral forelimb steps, had a near-total (average >93%) reduction in the
TH+ cell numbers in the SNc ipsilateral to the 6-OHDA infusion. This is consistent with
previous findings showing that rats with such a robust deficit in stepping performance had
a 90% or greater loss of DA cell bodies in the SN [55,56], or an 80–100% loss of DA tissue
content [63] or TH immunoreactivity [54,57] in the ipsilateral striatum.

3.2. Vilazodone Attenuates L-DOPA-Induced AIMs, but Does Not Block Prokinetic Effects of L-DOPA

In this study, as in previous studies (e.g., [54,57,64,65]), extensive 6-OHDA-induced
striatal DA depletion, followed by repeated daily L-DOPA treatment, produced robust
development and expression of AIMs, the rodent equivalent of L-DOPA-induced dyskinesia
observed in patients with PD. Our recent work [54,57] demonstrated that L-DOPA given at
the relatively low dose of 5 mg/kg once daily for 2–4 weeks was sufficient to induce AIMs
in this PD model. Consistent with this finding, in the present study, AIMs emerged as early
as one or two days after the first L-DOPA administration, and these AIMs stabilized during
the last three days of week 1 and did not further increase between weeks 1 and 2.

A recent study [53] first demonstrated that vilazodone (10 mg/kg), when combined
with L-DOPA, significantly reduced established AIMs in 6-OHDA-lesioned rats, an effect
we confirmed for our model [54]. In agreement with these outcomes, we here report
that vilazodone (10 mg/kg) pretreatment in week 2 almost completely abolished total
AIMs as compared to week 1. Moreover, in this study, we provide a detailed analysis
of the impact of vilazodone co-administration on the different AIM subtypes (i.e., axial,
limb, and orolingual), in addition to the time course of AIM scores across 3 h after L-
DOPA administration. Our results demonstrate that all AIM subtypes were dramatically
suppressed, with the most robust inhibition seen for axial AIMs and a somewhat lesser
effect for limb and orolingual AIMs.

Previous work that assessed SSRIs or 5-HTr1A agonists as antidyskinetic agents found
beneficial effects of those compounds, but also reported potentially problematic side
effects, including 5-HT syndrome-like effects and a reduction in L-DOPA-induced motor
improvement (e.g., [37,38,42,43,47,66]). In contrast, studies investigating vilazodone did
not observe symptoms of 5-HT syndrome, even at higher doses [49,53,67]. Moreover,
importantly, our findings demonstrate that vilazodone co-administration, at the present
intermediate dose (10 mg/kg), which largely suppressed L-DOPA-induced abnormal gene
regulation in striatal MSNs [54], did not interfere with the prokinetic efficacy of L-DOPA,
as assessed in the forelimb stepping test (present results; [54]), although higher doses may
lose some of this advantage [53].
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The loss of the prokinetic effects of L-DOPA (e.g., [38,47]) has been attributed to a
strong inhibition of 5-HT neurons innervating the striatum following a high-dose treatment
with SSRIs or 5-HTr1A full agonists, which might lead to a near-complete shutdown
in striatal DA release from 5-HT terminals [68]. It can be speculated that the unique
pharmacological profile of vilazodone as an SSRI together with its 5-HTr1A partial agonist
property, which is thought to desensitize 5-HTr1A on the serotonergic cell bodies that
regulate the firing activity of these neurons [68–70], may account for the efficacy seen with
this multimodal agent. The impact of vilazodone may be sufficient to moderate serotonergic
activity and DA release from these terminals, thus avoiding abnormal DA spikes in the
striatum and their molecular [54] and behavioral (AIMs) consequences, without completely
shutting down this DA input, and thus enabling prokinetic effects of L-DOPA.

3.3. Vilazodone Attenuates L-DOPA-Induced Facilitation of Corticostriatal Transmission in
Dyskinetic Parkinsonian Rats

Hyperexcitability of MSNs has been described as a primary neuropathophysiological
correlate of dyskinesia (e.g., [57,61,62,71,72]). In the DA-depleted striatum, DA receptors on
MSNs become supersensitive, producing increased responsiveness of MSNs to dopamin-
ergic drugs such as L-DOPA (e.g., [61,72]). This increase in MSN responsiveness after
L-DOPA administration is most pronounced in the sensorimotor striatum [54,57,73,74]. We
therefore assessed the effects of L-DOPA and vilazodone on cortical stimulation-evoked
MSN activity in the sensorimotor striatum.

Consistent with previous work, our results show that chronic L-DOPA treatment
produced an increase in MSN responsiveness to cortical stimulation, reflected by a decrease
in spike onset latency. Enhanced responsiveness to corticostriatal drive after L-DOPA
treatment has been related to aberrant hyperactivation of intracellular signaling pathways
in MSNs (e.g., [44,71,72,75,76]). Importantly, in our study, this increase in MSN respon-
siveness was prevented when vilazodone was combined with L-DOPA treatment, a drug
combination that also attenuated abnormal molecular signaling in MSNs [54]. Our findings
suggest that vilazodone’s modulatory effects on 5-HT neurons produce a tempered DA
release from striatal 5-HT terminals, resulting in an attenuation of hyperactive intracel-
lular signaling, thus allowing a “normalization” of neurophysiological (present study)
and molecular [54] activities in these neurons (see also [44]), both critical for avoiding
L-DOPA-induced motor abnormalities such as dyskinesia (see [54], for discussion). Future
work with cell type-specific experimental manipulations will be necessary to provide more
detailed insights into the specific cellular mechanisms underlying the vilazodone effects on
striatal neuronal activity.

3.4. The Effects of Vilazodone Are Mediated by 5-HTr1A

Previous work first indicated that vilazodone, a 5-HTr1A partial agonist [50,52], indeed
acts via stimulation of 5-HTr1A to inhibit L-DOPA-induced dyskinesia [53]. Our present
results confirm and extend these earlier findings by showing that a selective 5-HTr1A
antagonist (WAY-100635) strongly attenuated the antidyskinetic effects of vilazodone for
all subtypes of AIMs. Moreover, we investigated the impact of blocking 5-HTr1A on the
vilazodone effects on cortical stimulation-evoked MSN activities in dyskinetic animals. Our
results show that the ability of vilazodone to ameliorate aberrant corticostriatal signaling
was inhibited by the 5-HTr1A antagonist, underscoring the importance of 5-HTr1A for
vilazodone’s impact on cellular and behavioral effects. These findings thus provide mecha-
nistic insights into the impact of the serotonergic innervation and 5-HTr1A on corticostriatal
activation of MSNs in this dyskinetic PD rat model.

Many 5-HT receptor subtypes, including 5-HTr1A, have a fairly wide distribution
in the brain [77]. In our study, all drugs, including the 5-HTr1A antagonist, were given
systemically, thus precluding conclusions regarding their specific sites of action (receptor
location). However, in line with our reasoning, a recent study reported a near-complete
suppression in 5-HT neuron firing following administration of another 5-HTr1A agonist (±8-
OH-DPAT), an effect that was reversed by WAY-100635 [68]. These findings are consistent
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with an involvement of the 5-HT transmission to the striatum in vilazodone’s impact on the
cellular and behavioral effects of L-DOPA. Future studies using local drug administration
will be necessary to ascertain the role of 5-HTr1A on 5-HT neurons in these effects.

4. Conclusions

Our results indicate that vilazodone co-treatment has the ability to “normalize” aber-
rant corticostriatal transmission and striatal circuit activity following repeated L-DOPA
administration via modulating 5-HT activity in a 5-HTr1A-dependent manner. Vilazodone
may help temper L-DOPA-mediated DA input by enabling a more physiological-like re-
lease of DA from 5-HT terminals in the striatum. This SSRI/5-HTr1A partial agonist thus
appears to be superior to agents acting as SSRIs only or as 5-HTr1A full agonists. Future
clinical trials will be necessary to confirm vilazodone’s potential clinical efficacy.

5. Materials and Methods
5.1. Animals

Adult male Sprague-Dawley rats (225–249 g upon arrival; Harlan, Indianapolis, IN,
USA) were housed 2–3 per cage under standard laboratory conditions (12 h light/dark
cycle, lights on at 07:00 h; with ad libitum access to food and water). All procedures met
the NIH guidelines for the care and use of laboratory animals and were approved by the
Rosalind Franklin University Animal Care and Use Committee (protocol # 17-05; approved
on 19 April 2017).

5.2. 6-OHDA-Induced Dopaminergic Lesions and Stepping Test

Two weeks after arrival, rats received a unilateral 6-OHDA lesion. These lesions were
performed as described previously [55,57]. Rats were deeply anesthetized using 2–5%
isoflurane vapors (Patterson Veterinary, Greeley, CO, USA). They received an injection of
desipramine HCl (20 mg/kg, i.p.; in 0.9% saline; Sigma-Aldrich, St Louis, MO, USA) 30 min
prior to 6-OHDA administration. A single unilateral infusion of 6-OHDA HBr (Sigma-
Aldrich; 8 µg in 4 µL of 0.9% saline containing 0.1% ascorbic acid) was delivered into the
right medial forebrain bundle (coordinates, from bregma: AP −4.3 mm, ML −1.6 mm, DV
−8.3 mm; [78]) as previously described [55]. The infusion rate was 0.4 µL/min, and the
cannula remained in place for an additional 10 min before being retracted.

The 6-OHDA lesion was assessed by performing a forelimb stepping test [79] pre-
surgery and then 4 weeks post-surgery. In this test, the rat is held by an experimenter
and moved sideways, with its forelimb on the side opposite to the movement direction
touching the bench surface. Normally, the rat will perform adjusting steps during this
lateral movement, in our settings, typically 10–14 steps [54,55,57]. Following a >90% DA
depletion, the number of adjusting steps with the forelimb contralateral to the lesion
drops to three steps or fewer, two to four weeks after the 6-OHDA lesion, while stepping
with the forelimb ipsilateral to the lesion is unaffected [55,56]. Only rats that displayed
a stepping deficit of three or fewer steps with the contralateral forelimb following the
6-OHDA lesion were selected for this study. The lesion was further characterized by
measuring TH immunoreactivity (see below).

5.3. Drug Treatments

Starting after a 4-week recovery period, animals with a 6-OHDA lesion that met the
inclusion criterion of three or fewer forelimb adjusting steps received drug treatments on
five consecutive days/week (Mon–Fri), for two or three weeks. In week 1, all rats received
a daily vehicle injection (10% Cremophor EL in 0.9% saline, 2 mL/kg, i.p.; Sigma-Aldrich),
followed 30 min later by the L-DOPA (LD) injection (5 mg/kg, i.p., 2 mL/kg; Alfa Aesar,
Tewksbury, MA, USA; coadministered with 12.5 mg/kg benserazide HCl; Sigma-Aldrich).
In week 2, one cohort received the same treatment of vehicle + L-DOPA as in week 1
(6/Veh/LD; n = 8), and a second cohort received a treatment of vilazodone HCl (VIL)
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(10 mg/kg, i.p.; Cayman Chemical, Ann Arbor, MI, USA; in 10% Cremophor EL), followed
30 min later by L-DOPA (6/VIL/LD; n = 14).

To assess a potential role for 5-HTr1A in mediating the actions of vilazodone, a third co-
hort of 6-OHDA-infused rats received vehicle + L-DOPA (6/Veh/LD) in week 1, vilazodone
+ L-DOPA (6/VIL/LD) in week 2, and in week 3, they received the selective 5-HTr1A antag-
onist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-cyclo- hexanecarbox-
amide, 2Z-butenedioate (WAY-100635 (WAY); 0.5 mg/kg, i.p.; Cayman Chemical) 5 min
prior to the vilazodone treatment (6/W/VIL/LD; n = 11), in a within-subject design.

5.4. Behavioral Analysis

On the second day of each treatment week, a stepping test was performed 60 min
after L-DOPA treatment. Dyskinesias were assessed during the last three days of each
treatment week (Wed–Fri), using an established and well-characterized rat dyskinesia scale
to measure AIMs [64,65]. Briefly, rats were individually placed in clear plastic cylinders,
and AIMs were videotaped and their frequency and severity scored during a 1-min period
at 30-min intervals, 30 to 180 min after L-DOPA injection. AIMs are classified as axial, limb
(forelimb), or orolingual. Their frequency was assessed using the following scale: 0 = absent;
1 = occasional (1 to 29 s); 2 = frequent (30 to 59 s); 3 = continuous but interrupted by external
sensory stimuli; and 4 = continuous, not interrupted by strong sensory stimuli) [64].

Additionally, the AIM severity (amplitude) was assessed as follows: Axial AIMs
(1 = 30◦ angle lateral deviation of head and neck; 2 = 30◦ < angle ≤ 60◦ lateral deviation
of head and neck; 3 = 60◦ < angle ≤ 90◦ lateral deviation of head, neck, and upper trunk;
4 = > 90◦ angle torsion of head, neck, and trunk, often causing the rat to lose balance),
forelimb AIMs (1 = minor involuntary movements of the distal forelimb; 2 = low amplitude
movements causing translocation of both distal and proximal forelimb; 3 = involuntary
movements of the whole limb including shoulder muscles; 4 = strong, ballism-like limb and
shoulder movements), and orolingual AIMs (1 = involuntary movements of the orofacial
muscles with no tongue protrusion; 2 = involuntary movements of the orofacial muscles
with tongue protrusion).

Blinded scorers were allowed to give partial scores such as 0.5, 1.5, 2.5, and 3.5 in
order to increase the accuracy of AIM ratings. A severity score for each AIM subtype was
calculated by multiplying frequency and amplitude scores for each assessment period (i.e.,
30, 60, 90, 120, 150, and 180 min), and these values were added for a total AIM score for
each subtype. An overall total AIM score was calculated by adding total axial, limb, and
orolingual scores.

5.5. In Vivo Single-Unit Electrophysiological Recordings

Electrophysiological recordings were performed after the behavioral studies. All an-
imals were maintained on the same daily treatment regimen as in the last week of their
behavioral studies and received their last treatment on the day of the recordings. Thus,
MSNs were recorded in rats treated with L-DOPA following an injection of either vehi-
cle (6/Veh/LD), vilazodone (6/VIL/LD), or WAY + vilazodone (6/W/VIL/LD). In each
group, several MSNs were recorded before the last drug treatment was received to de-
termine “baseline” responses. Responses after the last drug treatment in these animals
are designated “challenge” responses; these were recorded 20–180 min after the last drug
administration.

Cortically evoked MSN activity was recorded as previously described [55,59,80,81].
Briefly, rats were deeply anesthetized with urethane (1.5 g/kg in physiological saline),
and their temperature was maintained at 37 ◦C using a heating pad. A bipolar cortical
stimulation electrode was implanted ipsilateral to the lesion (coordinates, from bregma:
AP +3.0 mm, ML –2.5 mm, DV –1.6 mm; [78]) to target the sensorimotor cortex. Cortical
local field potentials on the side contralateral to the lesion (AP +3.0 mm, ML +2.5 mm, DV
–1.6 mm) were monitored for the presence of slow, large-amplitude waves to ensure that
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animals were in a deeply anesthetized state during recordings [59]. Recordings began 1 h
after electrode implantation.

Microelectrodes for extracellular recordings were manufactured from 2.0 mm outer
diameter borosilicate glass capillary tubing (World Precision Instruments, Sarasota, FL,
USA) using a vertical micropipette puller (Narishige, Tokyo, Japan). The microelectrode
tip was broken to ~1 µm in diameter by pushing against a glass rod, and the electrode
was filled with 2 M NaCl solution. Striatal MSN activity was recorded ipsilateral to the
cortical stimulation (and lesion) at the following coordinates: AP 0.0 to +0.75 mm, ML –3.3
to –3.9 mm, DV –3.0 to –6.5 mm. These coordinates targeted the sensorimotor striatum,
where the most robust L-DOPA-induced pathophysiological changes occur [54,57,74].

MSN activity was assessed across stimulation trials (50 pulses/trial) by measuring
probability and onset latency of action potentials evoked by cortical stimulation at four
different current intensities (400 µA, 600 µA, 800 µA, and 1000 µA in separate trials) as
described previously [80,82]. The order of cortical stimulation intensity was counterbal-
anced between cells (i.e., either 400–1000 or 1000–400 µA). Cortically evoked MSN action
potentials were amplified (Neuro Data Instruments, Delaware Water Gap, PA, USA), fil-
tered, digitized via a Digidata 1440a (Molecular Devices, San Jose, CA, USA), acquired
using Axoscope software (Molecular Devices), and analyzed using Clampfit 10 software
(Molecular Devices). Upon the completion of the experiment, rats were quickly perfused
with 4% paraformaldehyde, and their brains were extracted for postmortem assessment of
DA cell loss by TH immunohistochemistry staining and DA cell counting in the SNc, using
stereological techniques (described below).

5.6. Tyrosine Hydroxylase Immunohistochemistry

Rat brains were sliced coronally into 50 µm thick sections, using a sliding microtome
(SM2010 R, Leica Microsystems, Wetzler, Germany) as previously described [83]. Sections
containing the substantia nigra (from bregma: approximately −4.8 to −6.1 mm) were
incubated in rabbit anti-TH antibody (1:500; Pel-Freez Biologicals, Rogers, AR, USA) for
24 h followed by a 2-h incubation with biotinylated goat-anti-rabbit secondary antibody
(1:200; Vector Laboratories, Burlingame, CA, USA). Sections were then incubated with
avidin/biotinylated complex (ABC; Vector Laboratories), and bound complexes were
visualized using 3,3′-diaminobenzidine and hydrogen peroxide tablets as previously de-
scribed [56]. The number of TH-positive neurons was estimated by stereological means
(Stereo Investigator, MBF Biosciences, Williston, VT, USA). Briefly, the SNc region in 6 coro-
nal sections (collected at 200 µm intervals) was carefully outlined under 4× magnification
using a rat brain atlas [78]. TH+ cells from the SNc on the ipsilateral (lesioned) and con-
tralateral (intact) sides were counted at 100×magnification. Cells were only included if
the nucleus and soma were visible and under focus. The extent of the lesion was then
calculated as the number of TH+ cells on the lesioned side relative to that on the intact side.

5.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 8.0 (GraphPad
Software, San Diego, CA, USA). The differences in AIM scores between treatments in
within-subject design experiments were assessed using Wilcoxon matched-pairs signed-
rank tests, or Friedman ANOVAs, followed by Dunn’s post-hoc tests to identify differences
between individual treatments. Stepping scores were compared with two-factor ANOVAs
with Tukey post-hoc tests. For electrophysiological recordings, the differences in spike
probability and onset latency of cortically evoked responses were assessed using two-factor
ANOVAs, followed by Tukey post-hoc tests to describe differences between individual
groups. Differences were considered significant if p < 0.05.
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