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Over the past several decades there has been an increasing interest in the role

of environmental factors in the etiology of neuropsychiatric and neurodevelopmental

disorders. Epidemiologic studies have shifted from an exclusive focus on the identification

of genetic risk alleles for such disorders to recognizing and understanding the

contribution of xenobiotic exposures, infections, and the maternal immune system during

the prenatal and early post-natal periods. In this review we discuss the growing literature

regarding the effects of maternal brain-reactive antibodies on fetal brain development

and their contribution to the development of neuropsychiatric and neurodevelopmental

disorders. Autoimmune diseases primarily affect women and are more prevalent in

mothers of children with neurodevelopmental disorders. For example, mothers of children

with Autism Spectrum Disorder (ASD) are significantly more likely to have an autoimmune

disease than women of neurotypically developing children. Moreover, they are four to

five times more likely to harbor brain-reactive antibodies than unselected women of

childbearing age. Many of these women exhibit no apparent clinical consequence of

harboring these antibodies, presumably because the antibodies never access brain

tissue. Nevertheless, these maternal brain-reactive antibodies can access the fetal brain,

and somemay be capable of altering brain development when present during pregnancy.

Several animal models have provided evidence that in utero exposure to maternal

brain-reactive antibodies can permanently alter brain anatomy and cause persistent

behavioral or cognitive phenotypes. Although this evidence supports a contribution

of maternal brain-reactive antibodies to neurodevelopmental disorders, an interplay

between antibodies, genetics, and other environmental factors is likely to determine the

specific neurodevelopmental phenotypes and their severity. Additional modulating factors

likely also include the microbiome, sex chromosomes, and gonadal hormones. These

interactions may help to explain the sex-bias observed in neurodevelopmental disorders.

Studies on this topic provide a unique opportunity to learn how to identify and protect at

risk pregnancies while also deciphering critical pathways in neurodevelopment.
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INTRODUCTION

The increasing evidence of an immune mediated pathogenesis
for neuropsychiatric and neurodevelopmental disorders has
shifted the focus of epidemiologic studies to include the
contribution of cytokines and brain-reactive antibodies. The
brain was originally thought to be an immune privileged
organ due to the presence of the blood brain barrier (BBB),
a structure composed of endothelial cells knit together by
tight junctions and supported by astrocytic endfeet (1). We
now know that even though the BBB isolates the central
nervous system (CNS) from factors in the blood, it is a
dynamic semipermeable structure. Immune molecules including
antibodies can access the CNS during both physiologic and
pathologic states. Even though antibodies cannot cross the
BBB and access brain tissue in healthy adults, these molecules
may cross the BBB during in utero development when the
BBB is immature and more permeable (2). Alternatively,
antibodies can penetrate the adult brain when there is a BBB
breach as occurs during inflammation (3–6) or at sites of
limited BBB protection such as the choroid plexus. Factors
affecting BBB integrity include: trauma, ischemia, stress, aging,
antibodies, and specific agonists of endothelial cell receptors,
such as cytokines, complement, and antibodies themselves (7–
12). Once in the CNS, antibodies can lead to pathology if they
recognize antigens expressed in the brain or spinal cord. In
this review we discuss how maternal brain-reactive antibodies
affect fetal brain development, contributing to the risk of
neuropsychiatric and neurodevelopmental disorders. We focus
on antibodies implicated in Autism Spectrum Disorder (ASD)
and propose a role for the microbiome, sex chromosomes
and gonadal hormones in determining the susceptibility to
the effects of maternal antibody and the development of
neurodevelopmental disorders.

Abbreviations: ASD, Autism Spectrum Disorder; BBB, Blood Brain Barrier;
CNS, Central Nervous System; AD, Autoimmune disease; SLE, Systemic Lupus
Erythematosus; NMO, Neuromyelitis Optica; LPS, lipopolysaccharide; NSPA,
neuronal surface P antigen; NMDAR, N-methyl-D-aspartate receptors; DNRAb,
SLE anti-DNA antibodies that cross-react with N-methyl-D-aspartate receptors;
FcRn, neonatal Fc receptor; ADHD, Attention Deficit andHyperactivity Disorders;
DSM-V, Diagnostic and Statistical Manual of Mental Disorders Fifth Edition;
ND, neurodevelopmental and neuropsychiatric disorders; NT, neurotypically
developing; PPD, Pervasive Developmental Disorders; LD, Learning disabilities;
TS, Tourette Syndrome; RA, rheumatoid arthritis; TPOAbs, Thyroid peroxidase
antibodies; Abs, antibodies; P, post-natal day; IHC, Immunohistochemistry; NB,
Nueroblastoma; WB, Western blot; LDH-A, lactate dehydrogenase A; LDH-
B, lactate dehydrogenase B;YBX1, Y-box bonding protein 1; STIP1, stress-
induced phosphoprotein 1; CRMP1, collapsing response mediator protein 1;
CRMP2, collapsing response mediator protein 2; GDA, guanine deaminase; MSEL,
Mullen Scales of Early Learning; VABS, Vineland Adaptive Behavioral Scales;
ABC, Aberrant Behavioral Checklist; SVZ, subventricular zone; USVs, ultrasonic
vocalizations; CNTNAP2, Contactin Associated Protein-Like 2; HEK, Human
embryonic kidney cells; tGFP, turbo Green fluorescent protein; KO, Knockout;
CDFE, cortical dysplasia-focal epilepsy; E, embryonic day; IV, intravenous; IP,
intraperitoneal; SGZ, subgranular zone; VZ, ventricular zone; FCG, Four Core
Genotype; Sry, testes determining gene; Y−, Y chromosome with deleted Sry;
TgSry, Sry transgene; GI, gastrointestinal; MIA,Maternal ImmuneActivation; SFB,
Segmented filamentous bacteria.

BRAIN-REACTIVE ANTIBODIES

Antibodies that recognize CNS antigens are primarily detected
in three settings: autoimmune disease (AD), paraneoplastic
syndromes, and infectious diseases (13). Individuals with AD
in which B cell tolerance is impaired can harbor brain-
reactive antibodies with the development of neurological
and neuropsychiatric disorders as seen in Systemic Lupus
Erythematosus (SLE) (5, 14–20), celiac disease (21, 22), and
Neuromyelitis Optica (NMO) (23–26). Due to the fact that
the BBB sequesters brain antigen from the immune system,
these brain-reactive antibodies may be produced against non-
CNS antigens, but cross-react with structurally similar epitopes
in the CNS. In paraneoplastic syndromes brain cross-reactive
antibodies can result from an immune response to tumor
antigens that are routinely expressed by brain cells but only by
non-brain cells under pathologic states. These antibodies can
trigger neurologic symptoms (27), a phenomenon that has been
described in breast cancer (28, 29), testicular tumors (28), small-
cell lung cancer (28, 30), ovarian teratoma (31, 32), and more
(33–36). Finally, exposure to microbial antigens can stimulate
the production of antibodies that cross-react with CNS antigens,
a process known as molecular mimicry. Infection with HTLV-1
(37, 38), Trypanosoma brucei (39–41), and group A β-hemolytic
streptococcus (42–47) has been shown to produce antibodies that
cross-react with brain antigens and cause neurologic disorders.

The potential for pathology to arise from brain-reactive
antibodies accessing the brain parenchyma depends on multiple
factors. Vulnerability to the brain-reactive antibodies requires
that the anti-brain antibody be present in the CNS at a time
when the antigen is expressed. Furthermore, when a BBB breach
is necessary for the antibody to penetrate the brain parenchyma,
the nature of the BBB insult will restrict access to specific regions
of the brain, determining whether the antibody will encounter its
cognate antigen. For instance, lipopolysaccharide (LPS) causes a
BBB breach in the hippocampus in mice (5) while epinephrine
results in a BBB breach in the amygdala (4). Additionally, genetic
variants and differences in protein expression between males
and females (48–50) may also influence brain vulnerability to
immune assault.

The symptoms and deficits observed in disorders caused
by brain-reactive antibodies are dependent on the antigen
recognized and its distribution in the brain. For example,
antibodies to ribosomal P protein (anti-P antibodies) present in
SLE patients cross-react with a brain antigen termed neuronal
surface P antigen (NSPA) (19). While these antibodies bind
to several regions of the mouse brain, when injected into the
lateral cerebral ventricles they lead to smell alterations (51)
and depression-like behavior (52), implicating the piriform
cortex, the cingulate cortex, and the hippocampus. Furthermore,
upon LPS-induced BBB breach, which enables access to the
hippocampus, these antibodies cause memory impairment in
mice (15). SLE anti-DNA antibodies that cross-react with N-
methyl-D-aspartate receptors (NMDAR) termed DNRAb cause
cognitive impairment (5) and an abnormal stress response
(4) in mice, consistent with the function of NMDARs in the
hippocampus and the amygdala, respectively. While NMDARs
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are expressed in both the hippocampus and the amygdala, the
regional selectivity of symptoms observed in the mouse models
is determined by the agent used to compromise BBB integrity;
cognitive impairment is seen only when LPS damages BBB
integrity in the hippocampus while the abnormal stress response
is seen with exposure to epinephrine and antibody penetration of
the amygdala. This example highlights the importance of antigen
distribution and the region of BBB breach.

MATERNAL BRAIN-REACTIVE
ANTIBODIES AND FETAL
BRAIN DEVELOPMENT

Brain-reactive antibodies have the potential to alter brain
development in utero (53), resulting in damage that can
be persistent (54) and lead to neurodevelopmental and
neuropsychiatric disorders in the offspring. It has been proposed
that AD-related impaired B cell tolerance in women can lead
to the production of these antibodies. Indeed, ADs are more
prevalent in mothers of children with neurodevelopmental and
neuropsychiatric disorders including ASD (Table 1). A study
by our group showed that mothers of children with ASD
who had brain-reactive antibodies were significantly more likely
to harbor anti-nuclear antibodies (53%) than those lacking
brain-reactive antibodies (anti-nuclear antibody = 13.4%)
and unselected women of child-bearing age (anti-nuclear
antibody = 15%), suggesting a maternal predisposition to
producing auto-antibodies. We also observed a significantly
greater prevalence of AD in mothers of children with ASD
who were also positive for brain-reactive antibodies [rheumatoid
arthritis (RA)= 3.86%; SLE= 2.22%] compared to those lacking
brain-reactive antibodies (RA= 1.45%; SLE= 0.16%) (67).

The BBB is immature during fetal development, presenting
a uniquely vulnerable temporal window when antibodies can
enter the CNS (2) while critical neurodevelopmental events
are taking place. The antibodies that access the fetal brain are
produced by the mother and are transported by the neonatal
Fc receptor (FcRn) across the placenta into fetal circulation
starting on week 13 of human gestation (68–70). Once maternal
brain-reactive antibodies access the fetal circulation they may
result in pathology if the timing of antigen expression also
coincides with the period when the fetal BBB is permeable to IgG.
Presence of maternal brain-reactive antibodies during pregnancy
alone is, therefore, not enough to result in pathology, perhaps
contributing to the fact that some mothers of neurotypically
developing (NT) children also have anti-brain antibodies.

When assessing the potential for maternal brain-reactive
antibodies to cause neurodevelopmental disorders we must also
be mindful that the women harboring these antibodies will
not necessarily present with neurological deficits resulting from
antibody exposure as their BBB is likely to be intact or the
impact of the antibody may be developmentally determined.
Moreover, the deficits caused by in utero antibody exposure may
be transient or long-lasting, and consequently, not all children
born to mothers with brain-reactive antibodies will present post-
natally with detectable symptoms. Transient insults may be

compensated for by plasticity mechanisms in the brain during
gestation or post-natally. Furthermore, it is possible for deficits
to be present only while the pathogenic antibody has access to the
brain parenchyma, which is limited after birth by the maturation
of the BBB (2) and the disappearance of maternal antibodies in
the circulation of newborn infants (71). Lastly, symptomatology
from the neurodevelopmental effects of maternal brain-reactive
antibodies may appear later in life or may become apparent only
if other stressors are present (72).

MATERNAL BRAIN-REACTIVE
ANTIBODIES AND ASD

ASD are a group of neurodevelopmental conditions
characterized by impaired communication and social
interactions, repetitive behaviors, and restricted interests or
activities (DSM-V) (73). They are four times more likely to be
diagnosed in males compared to females. Both prevalence and
incidence of ASD are increasing, with a current estimate of 1
in 59 children being affected (74). The etiology of ASD is not
completely understood; hundreds of genes have been associated
with ASD (75, 76) but these account for just 10–20% of the
diagnosed cases (77). Furthermore, twin studies indicate that
only 37% of the susceptibility to ASD is due to genetic heritability
(78). These data suggest that environmental factors also play
an important role in determining the susceptibility to ASD.
Maternal brain-reactive antibodies present in utero represent
a potential environmental risk factor for ASD. Several groups
have identified brain-reactive antibodies in mothers of children
with ASD which are either absent or found at lower frequency
in mothers of unaffected children (Table 2). Dalton et al. (79)
showed that, when injected into pregnant mice, brain-reactive
serum from a mother of a child with autism and a child with
severe specific language disorder led to decreased exploration,
deficient motor coordination, and altered cerebellar metabolites
in the offspring compared to the offspring of mice given sera
from mothers of NT children. In a study in which blood samples
were collected mid-pregnancy, Croen et al. (80) suggested a
direct pathogenic role for the antibodies. A significantly higher
prevalence of reactivity to proteins from brain lysates of 39
and 73 kDa was detected in mothers of children with ASD
compared to the general population control group. Moreover,
this pattern of reactivity was seen in mothers of children with
early onset ASD.

Some of these maternal brain-reactive antibodies have been
found to have antigenic specificity for proteins with potential
neurodevelopmental roles including: lactate dehydrogenase A
and B (LDH-A, LDH-B) (37 kDa band), Y-box bonding protein
1 (YBX1) (39 kDa band), stress-induced phosphoprotein 1
(STIP1) (upper 73 kDa band), collapsing response mediator
protein 1 and 2 (CRMP1, CRMP2) (lower 70 kDa band), and
guanine deaminase (GDA) (44 kDa band) (83, 84). Maternal
reactivity to LDH alone or in combination with reactivity to
CRMP1/CRMP2/STIP1 has been associated with a greater risk of
ASD. Reactivity to LDH, STIP1, and CRMP1 together (the 37 and
73 kDa combined bands) was the most specific pattern for ASD
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TABLE 1 | Family history of autoimmune diseases and increased risk of neurodevelopmental/neuropsychiatric disorders.

Associations with autoimmune

disease (AD)

Prevalence/incidence of

Neurodevelopmental/neuropsychiatric

disorders (ND)

Family history of AD ND sex bias

linked to AD

References

AD offspring Control offspring ND NT

Developmental

problems

Maternal SLE Hyperactivity = 13.1%

Attention

problems = 15.7%

Reading difficulties

= 21.6%

Hyperactivity = 1.3%

Attention

problems = 6%

Reading difficulties

= 9.3%

Male bias (55)

Learning

Disabilities (LD)

Increased risk of LD and maternal

anti-Ro/La Abs [OR = 5.74 (95%

CI, 1.39–23.74)] and SLE disease

flares [OR = 9.43 (95% CI,

1.32–67.24)] during pregnancy

26% 7% Male bias (56)

Maternal SLE and increased risk

of impairments in learning and

memory [OR = 3.45, 95% CI of

OR (1.25, 9.09), P = 0.02]

54.9% 30.4% (57)

Tourette Syndrome

(TS)

Maternal AD and increased

incidence of TS [IRR = 1.22 (95%

CI, 1.01–1.48)]

2.25 per 10,000 person

years

1.86 per 10,000 person

years

Male bias (58)

PDD 1st degree relative with a history

of AD

Family history of

Hashimoto’s thyroiditis and

rheumatic fever

30.7% 11.9% (59)

ADHD Elevated maternal TPOAbs during

pregnancy and increased risk of

ADHD [OR = 1.77 (95% CI,

1.15–2.72)

(60)

ASD Maternal RA and increased

incidence of ASD [IRR = 1.70

(95% CI, 1.07–2.54)]

Maternal celiac disease and

increased incidence of ASD

[IRR = 2.97 (95% CI, 1.27–5.75]

Family history of type 1 diabetes

and increased incidence of ASD

[IRR = 1.78 (95% CI, 1.16–2.61)]

(61)

AD in 1st degree relative and

increased risk of ASD [OR 6.0]

Maternal AD and increased risk of

ASD [OR = 8.8]

1st degree

relative

AD = 21%

Maternal

AD = 16%

RA = 46%

1st degree

relative

AD = 4%

Maternal

AD = 2%

RA = 26%

(62)

Maternal psoriasis and increased

risk of ASD [OR = 2.7 (95%

confidence interval, 1.3–5.8)]

Psoriasis

= 2.7%

Psoriasis= 1.0% (63)

Family history of AD and

increased risk of ASD [OR = 6,

95% CI, 2.5–14.1)]

AD = 40% AD = 10% (64)

Family history

AD = 45%

Family history

AD = 10%

(65)

Maternal SLE and increased risk

of ASD [OR = 2.19 (95% CI

1.09–4.39)]

1.4% 0.6% (66)

AD, autoimmune disease; ND, Neurodevelopmental/neuropsychiatric disorders; NT, Neurotypical development; SLE, Systemic lupus erythematosus; LD, learning disabilities; Abs,

antibodies; TS, Tourette Syndrome; PDD, Pervasive Developmental Disorders; ADHD, Attention deficit/hyperactivity disorder; TPOAbs, thyroid peroxidase antibodies; ASD, Autism

Spectrum Disorder; RA, Rheumatoid arthritis.
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TABLE 2 | Maternal brain-reactive antibodies linked to ASD.

Target Reactivity Phenotypic associations in humans References

Cerebellar Purkinje cells and

brainstem neurons

Adult rat and P1 mouse brains by IHC

Binding to NB-1 cells (cells derived from a

human neuroblastoma)

Serum obtained from a mother of a child with ASD and a

child with a language disorder

(79)

LDH-A, LDH-B 37 kDa band on WB using human and rhesus

macaque fetal brain proteins

ASD with behavioral regression

Within individuals with ASD,

1. Abnormal sleep/wake cycle

2. Deficits in verbal and non-verbal language acquisition

3. Increased stereotypical behaviors on the ABC

(81–86)

STIP1 (target for upper band

CRMP1, CRMP2 (target for

lower band)

73 kDa band on WB using human and rhesus

macaque fetal brain proteins Within individuals with ASD,

1. Verbal language deficits

2. Delayed onset of social smile

(82–86)

LDH reactivity in combination

with STIP1 or STIP1/CRMP1

37/73 kDa band combination on WB using

human and rhesus macaque fetal brain proteins

1. Pattern only observed in mothers of children with ASD

2. ASD with behavioral regression

3. Greater total cerebral volume

Within individuals with ASD,

4. Lower score for expressive language measured by

MSEL

5. Increased stereotypical behaviors on the ABC

(81–83, 85–87)

YBX1 39 kDa band on WB using human and rhesus

macaque fetal brain proteins

Early onset ASD (80, 82–86)

YBX1 reactivity in combination

with STIP1 or STIP1/CRMP1

39 kDa/73 kDa band combination on WB using

human and rhesus macaque fetal brain proteins

1. Early onset ASD

2. Decreased motor skills scores measured with VABS

3. Increased irritability on the ABC compared to children

with ASD born to mothers without these reactivities

(80, 82, 83, 85, 86)

Cypin or GDA 44 kDa band on WB using rhesus macaque

fetal brain proteins

(83, 84)

Not identified 36 kDa/39 kDa band combination on WB with

human fetal and rat embryonic brain proteins

ASD with developmental regression. (88)

Not identified Low molecular weight bands (∼20–25 kDa)

High molecular weight band (larger than 250

kDa) on WB using fetal rat brain proteins

(89)

Yo Immunoblot with recombinant protein (90)

Amphiphysin Immunoblot with recombinant protein (90)

Caspr2 Isolation and cloning of single human memory

antigen-specific B cells

Live cell-based assay using HEK-293 cells

expressing tGFP-Caspr2

Binding to adult wild type but not to adult

CNTNAP2 KO mouse brain by IHC

(91)

P, ponstnatal day; IHC, Immunohistochemistry; NB, neuroblastoma; ASD, AutismSpectrumDisorder;WB,Western blot; LDH-A, lactate dehydrogenase A; LDH-B, lactate dehydrogenase

B; STIP1, stress-induced phosphoprotein 1; CRMP1, CRMP2, collapsing response mediator protein 1 and 2; MSEL, Mullen Scales of Early Learning; NT, Neurotypical development;

YBX1, Y-box bonding protein 1; VABS, Vineland Adaptive Behavioral Scales; ABC, Aberrant Behavioral Checklist; GDA, Guanine deaminase; HEK, Human Embryonic Kidney cells; tGFP,

Turbo green fluorescent protein; Caspr2, Contactin-associated protein-like 2; CNTNAP2, Contactin-associated protein-like 2 gene; KO, Knockout.

as it was detected in mothers of children with ASD but not in
mothers of NT children (81, 83). Furthermore, presence of this
antibody combination was associated with an increased risk of
behavioral regression in ASD (81) and impairments in expressive
language (82).

Animal studies have shown that exposure to maternal
brain-reactive antibodies in utero can permanently alter the
brain during development and cause sustained behavioral and
cognitive deficits akin to those observed in ASD (Table 3).
Martínez-Cerdeño et al. (96) and Ariza et al. (97) used a single
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TABLE 3 | Animal studies demonstrating that in utero exposure to maternal brain-reactive antibodies can permanently alter the brain, leading to behavioral and cognitive

deficits.

Target Animal model Characteristics References

Cerebellar Purkinje cells

and brainstem neurons

Passive transfer: daily maternal serum injections into

pregnant mice from E10 to E17

Decreased exploration

Altered motor coordination

Cerebellar metabolite abnormalities.

(79)

Unknown Passive transfer: IV injections of pooled maternal IgG to

pregnant rhesus macaque on gestation days 27, 41 and

55

Hyperactivity

Increased stereotypies

(92)

LDH/STIP1/CRMP1

(antigens of molecular

weights 37 and 73 kDa)

Passive transfer: single IV injection of purified maternal

IgG into pregnant mice on E12

Delayed pre-weaning motor and sensory development.

Increased number of USVs on P8

Males had a longer total USV duration on P8

Increased anxiety-like behaviors in males

Slightly shorter social interaction in males

(93)

Passive transfer: IV maternal IgG injection into rhesus

macaque throughout pregnancy

Aberrant social behaviors

Enlarged brain volume due to increases in white matter in

male offspring.

(94)

Single intraventricular maternal IgG injection into E14

mouse embryos

Increased repetitive behaviors measured as digging in the marble

test and grooming

Impaired social interactions

(95)

Single intraventricular maternal IgG injection into E14 or

E16 mouse embryos

Greater number of proliferating stem cells in the SVZ of the

neocortex and ganglionic eminence

Increased adult brain size and weight

Increased adult cortical neuron some volume

(96)

Single intraventricular maternal IgG injection into E14

mouse embryos

Decreased basal dendritic arborization in layer V pyramidal

neurons of the frontal cortex

Reduced the dendritic spine number and density in several

brain regions

(97)

Endogenous production: female mice were immunized

prior to pregnancy with antigenic peptides recognized

by anti- LDH/STIP1/CRMP1 antibodies.

Impaired social interactions

Impaired social communication measured by USVs neonatally and

as adults.

Increased repetitive behaviors measured as grooming

(98)

Unknown Passive transfer: daily IP injections of pooled maternal

IgG to pregnant mice from E13 to E18.

Hyperactivity

Increased anxiety

Impaired social interactions

Increased IL-12 levels on E16 and microglia activation on E18

fetal brains.

(99)

Passive transfer: daily IP injections of pooled maternal

IgG to pregnant mice from E13 to E18.

Greater cell proliferation in the SVZ and SGZ post-natally.

Decreased cortical cell survival post-natally.

(100)

Caspr2 Passive transfer: single IV injection of anti-Caspr2 IgG to

pregnant mice on E13.5

Male fetuses:

1. Thinner cortical plate

2. Fewer proliferating cells in the VZ

3. Reduced number of neurons in the entorhinal cortex

Adult males:

1. Decreased number of GABAergic neurons in the hippocampus

2. Decreased dendritic arborization and spine density in CA1

pyramidal neurons

3. Increased stereotypic behaviors: increased digging measured

as digging in the marble test

4. Impaired flexible learning

5. Impaired social interactions

(91)

DNA and NMDAR Endogenous production: female mice were immunized

prior to pregnancy with a peptide mimetope of DNA.

Passive transfer: single IV injection of NMDAR reactive

IgG on E14 to pregnant mice

Fetuses:

1. Increased cortical cell death and proliferation

2. Thinner cortical plate

Adults:

1. Decreased cortical neuron size

2. Decreased cortical volume

3. Cognitive impairments in males

(101)

Endogenous production: female mice were immunized

prior to pregnancy with a peptide mimetope of DNA.

Increased female fetal death rate (102)

E, Embryonic day; IV, intravenous; LDH, lactate dehydrogenase; STIP1, stress-induced phosphoprotein 1; CRMP, collapsing response mediator protein 1; SVZ, subventricular

zone; USVs, ultrasonic vocalizations; P, ponstnatal day; IP, intraperitoneal; SGZ, subgranular zone; Caspr2, Contactin-associated protein-like 2; VZ, ventricular zone; NMDAR,

N-Methyl-D-aspartate receptor.
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intraventricular embryonic injection model to assess the effects
of brain-reactive antibodies recognizing LDH/STIP1/CRMP1
(antigens of molecular weights 37 and 73 kDa) on fetal brain
development. These antibodies stimulated the proliferation of
stem cells in the subventricular zone (SVZ) of the neocortex
and ganglionic eminence, increased adult brain size and
weight, and enlarged adult cortical neuron volume (96).
Additionally, anti-LDH/STIP1/CRMP1 antibodies decreased
basal dendritic arborization in layer V neurons of the
frontal cortex and reduced the dendritic spine number and
density in several brain regions (97). Complementing these
studies, mice exposed in utero to maternal brain-reactive
antibodies recognizing LDH/STIP1/CRMP1 showed ASD-like
characteristics including increased anxiety-like behaviors (93),
impaired social interactions (95), longer bouts of spontaneous
grooming (95), increased digging (95), and delayed motor and
sensory development (93).

A limitation of these animal studies is the timing of exposure
to the maternal brain-reactive antibodies. Maternal brain-
reactive antibodies associated with ASD in humans are likely
to be present throughout the pregnancy. These studies did
not simulate these conditions; they used a single injection into
the pregnant mice at mid-gestation or a single intraventricular
injection into the embryos. To address this, Jones et al. (98)
completed a study in which female mice were immunized
prior to pregnancy with antigenic peptides recognized by anti-
LDH/STIP1/CRMP1 antibodies. The offspring mice exposed
to endogenous maternal anti-LDH/STIP1/CRMP1 antibodies
displayed fewer social interactions as juveniles and adults,
increased repetitive behaviors/stereotypies assessed through the
number and length of grooming bouts, and impaired social
communication measured by ultrasonic vocalizations (USVs)
neonatally and as adults.

In other studies identifying pathologic maternal brain-
reactive antibodies, Singer et al. (88) found that, compared
to mothers of NT children, mothers of children with ASD
have a significantly higher prevalence of antibodies reactive
to a 36 kDa protein present in rat embryonic and human
fetal brain. They also noted a trend for a higher prevalence
of antibodies recognizing human fetal proteins at 39 kDa in
mothers of children with ASD compared to mothers of NT
children. Presence of either of these reactivities was significantly
associated with behavioral regression in children with ASD.
Intraperitoneal administration of the purified maternal ASD-
IgG to pregnant mice led to hyperactivity, increased anxiety,
and shorter social interactions in the adult offspring relative
to the offspring of pregnant mice given IgG from mothers
of NT children or saline (99). Preliminary fetal brain studies
suggested a role for microglia and IL-12 in the pathological
mechanism of the ASD-IgG induced behavioral irregularities
(99). Further assessment of the pathological mechanism of
these antibodies showed greater cell proliferation in the
subventricular and subgranular zones and decreased post-
natal day (P)1-born cell density, suggesting reduced survival,
in layers 2–4 of the frontal and parietal cortex (100). Due
to the similarity in antigen size and the association with
behavioral regression, it is possible that the samples from
the Braunschweig and Singer studies contain antibodies that

recognize the same proteins at 36–39 and 73 kDa, and that these
antibodies represent contributors to ASD risk in the general
population. Determining the antigenicity of the antibodies
identified by Singer et al. (88) will be necessary to resolve
this question.

Animal studies of the pathogenic role of ASD-IgG have
generally used IgG that was pooled from several mothers of
children with ASD or endogenous polyclonal antibody following
an immunization protocol. Thus, it has not been possible to
identify the antibodies that are pathogenic from those that
are not. Furthermore, specific ASD-like characteristics in the
animal studies may result from exposure to distinct monoclonal
antibodies. There is also likely to be a different proportion of
potentially pathogenic antibodies in the pooled sample compared
to the composition present in each of the mothers. As a result, the
effects of antibodies at low concentration might be obscured by
those at high concentration or theymay not be detectable because
the threshold concentration of antibody necessary to produce
pathology may not have been reached. Moreover, the studies
discussed above do not definitively identify the targeted antigen
as it remains possible that the critical antibodies bind not only to
the identified antigens (most of which are intracellular) but also
cross-react with a neuronal membrane antigen. We addressed
this concern by developing a protocol to generate monoclonal
brain-reactive antibodies frommothers of children with ASD and
a brain-reactive serology.

One of the monoclonal antibodies that we generated
recognizes the extracellular domain of Caspr2, a protein encoded
by the gene Contactin Associated Protein-Like 2 (CNTNAP2).
Caspr2 is a cell-adhesion molecule expressed in the spines,
dendrites, axons, and soma of neurons (103, 104). Both rare
and common variants of CNTNAP2 have been linked to an
increased risk of ASD or ASD-related endophenotypes including
language delay and developmental language disorders (105–
115). Furthermore, CNTNAP2 deficient mice exhibit ASD-
like phenotypes including increased repetitive behaviors, and
impaired communication and social interactions (116). The
CNTNAP2 deficient mice also suffer from seizures, show
neuronal migration abnormalities and have ectopic neurons in
the corpus callosum (116), similar to cortical dysplasia-focal
epilepsy (CDFE) syndrome, a syndromic form of ASD associated
with mutant CNTNAP2 (114).

Given the link between mutations in CNTNAP2 and ASD
in human pedigrees and the presence of ASD-like phenotypes
in CNTNAP2 deficient mice, we asked whether exposure to
monoclonal anti-Caspr2 antibody (C6) in utero leads to ASD-
like characteristics in mice (91). Indeed, in utero C6 exposure
led to a thinner cortical plate and fewer proliferating cells
in the ventricular zone, and to a reduction in the number
of neurons in the entorhinal cortex and in the number of
GABAergic neurons in the hippocampus of adults. We also
observed decreased dendritic arborization and a reduced spine
density in CA1 pyramidal neurons in adult mice exposed
to C6 in utero when compared to the controls. Finally,
these mice showed ASD-like behavioral abnormalities such as
stereotypic behaviors, impaired flexible learning, and impaired
social interactions. Interestingly, effects of C6 were only detected
in male mice.
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MATERNAL BRAIN-REACTIVE
ANTIBODIES AND SEX-BIAS

Neuropsychiatric conditions often display a bias for one sex over
the other. Neuropsychiatric conditions diagnosed earlier in life
are more frequently diagnosed in males while those manifesting
during puberty or later in life show a female preponderance.
For example, there is a male bias in ASD, ADHD, dyslexia,
Tourette Syndrome, and learning disabilities [reviewed by (117)].
Conversely, anorexia nervosa and internalizing disorders such as
depression (118) and anxiety are more prevalent in females (119).
Neuropsychiatric conditions that are diagnosed earlier in life
have been proposed to have a neurodevelopmental origin (119).
Given the unique conditions during pregnancy that allow for the
in utero environment includingmaternal antibodies and cytokine
levels to influence development, it is reasonable that early-onset
neuropsychiatric disorders are more frequent in children of
mothers with AD (Table 1).

A sex-bias has indeed been described in multiple studies of
the effects of maternal brain-reactive antibodies on development
and behavior. For example, we observed a significant male bias
for all the fetal brain developmental and adult behavioral effects
of the C6 anti-Caspr2 antibody (91). Females exposed to C6 in
utero were not affected while males developed disrupted brain
anatomy and ASD-relevant behaviors. The animal studies of
maternal anti-LDH/STIP1/CRMP antibodies have also noted a
male-bias in ASD-like traits including impaired communication
and social interactions (93, 98). Lastly,Wang et al. (102) observed
a significantly higher rate of fetal death after embryonic day
(E) 15 in female offspring exposed to SLE DNRAb compared
to males. While females had a greater fetal death risk, males
in this model were born with cognitive impairment (101). This
difference between the sexes suggests that sex-dependent factors
play a role in determining not only the impairments resulting
from maternal brain-reactive antibody exposure but also the
severity of the outcomes.

Sex chromosomes and gonadal hormones may influence
the susceptibility to maternal brain-reactive antibodies. Sex
chromosome genes contribute to sexual dimorphisms, including
sex-specific patterns of brain development and function,
independently from gonadal hormone influences (50, 120). For
example, sex chromosomes have been implicated in the density
of vasopressin fibers (121), the number of tyrosine hydroxylase
expressing neurons (120, 122), social interactions (123, 124),
aggression (125–127), and anxiety (128). Genes found in “sex
specific” regions in the X and the Y chromosomes may account
for some of these sexual dimorphisms. These genes are highly
expressed in the brain (48, 50) and show expression, spatial,
and temporal differences between sexes (50). Furthermore, sex
differences may be in part explained by gene dosage as some
genes on the X chromosome escape inactivation (129–131),
and X chromosome imprinting can affect gene expression in
the brain (132, 133). Indeed, X chromosome imprinting has
been associated with social impairment in Turner syndrome
(134). Higher expression of these sex chromosome genes may
be protective if they encode the antigens recognized by the
maternal brain-reactive antibodies when binding of the antibody
leads to protein internalization and partial loss of function but

is only pathogenic if protein expression falls below a certain
threshold. Conversely, if antibody interaction with its cognate
antigen induces cell signaling cascade activation or apoptosis,
then the sex with higher expression would be at an increased risk
for developing the antibody-induced phenotypes. Furthermore,
temporal differences in gene expression between sexes may
be important as antibody exposure must coincide with this
period in order to cause pathology. Moreover, the effects of
sex chromosome genes on the susceptibility to maternal brain-
reactive antibodies may be indirect if the proteins encoded
modulate the expression or activity of the proteins recognized
by the antibodies. For instance, the DNRAb mediated female
fetal loss may be in part due to sex chromosome genes acting
as regulating factors and contributing to the higher expression of
the NMDAR subunit NR2A in the female brainstem by E17 (102).

Sex hormones also influence brain development, aiding
normal maturation of the fetal brain or altering normal
development. Estrogen has neurotrophic and neuroprotective
functions including modulation of neuronal apoptosis,
migration, and spinogenesis and neurite growth (135–140).
Estrogen administration during fetal development leads to
masculinization of mouse neural pathways and behaviors
(141, 142). Human fetal testosterone has been linked to narrow
interests (143) and greater impairments in social skills and
empathy in offspring (143–145). Additionally, treatment with
estrogen reversed or mitigated some of the ASD-relevant
behavioral phenotypes in animal models of ASD, importantly,
CNTNAP2 mutant zebrafish (146) and Reeler heterozygous
mice (147). As estrogen treatment showed a decrease in
phenotypic behavior, these data suggest that estrogen may have a
protective role in ASD and could therefore account for the lower
prevalence in females. Overall, gonadal hormones modulate
processes in brain development and maturation that could lead
to compensation for or exacerbation of the pathologic effects
of maternal brain-reactive antibodies. The specific effects of
individual gonadal hormones are likely to depend on the neural
pathways affected by the antibodies.

Given the sex-bias of neurodevelopmental and
neuropsychiatric disorders in humans, understanding what
causes maternal brain-reactive antibodies to affect preferentially
one sex over the other will aid in our understanding of
the pathological mechanisms of these conditions while also
providing information that could lead to the discovery of new
treatments. Of note, exposure to gonadal hormones in utero
in litter-bearing animals differs from that in humans due to
the “intrauterine position phenomenon.” Fetuses between two
males will be exposed to higher levels of testosterone while
fetuses between two females will be exposed to higher levels
of estrogen [reviewed by (148)]. Consequently, post-natal
sexually dimorphic characteristics including brain anatomy
and behavior are influenced by fetal position [reviewed by
(148)]. Nonetheless, the importance of gonadal hormones
can be addressed in studies in which these are administered
to neonates. Alternatively, treatment with gonadal hormone
receptor agonists or antagonists, and the use of gonadal
hormone receptor knockout mice can not only help us to
identify which hormones play a role in the sex-bias that is
observed but can also lead to the identification of the specific
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molecular mechanisms involved. The “Four Core Genotypes”
(FCG) mouse model offers the unique opportunity to isolate
sex chromosome from gonadal hormone contributions to
sex-bias. This mouse strain combines two mutations that
allow for gonadal determination to be independent from sex
chromosome complements. Specifically, the testes determining
gene (Sry) was deleted from the Y chromosome (Y−) and a Sry
transgene (TgSry) was inserted into autosomal chromosome
3, resulting in four genotypes: gonadal females with XX or
XY−, and gonadal males with XY− TgSry or with XX TgSry
(121, 149). This model has been informative in understanding
the sex bias in autoimmune diseases such as SLE and multiple
sclerosis (150).

ASD AND THE MICROBIOME

The gut microbiome is another environmental factor proposed
to exert significant modulating effects on ASD susceptibility.
Gastrointestinal (GI) disturbances, including increased intestinal
permeability (151, 152) and inflammatory bowel disease
(153), represent a common comorbidity in individuals with
ASD (154, 155). Furthermore, there is a strong correlation
between GI complaints and ASD symptom severity (156,
157). Given the effect of the gut microbiota on behavior
[(158–164); reviewed by (165)], brain development [(3);
reviewed by (165)] and brain gene expression in mice (158,
162–164, 166, 167), alterations of the gut microbiota may
not only lead to an increase in the prevalence of GI
disturbances in ASD but also promote ASD susceptibility.
Indeed, individuals with ASD can have an altered gut microbiota
composition (156, 168–173).

The gut microbiota may act in concert with maternal brain-
reactive antibodies, genetic variants and sex-specific factors to
modulate ASD susceptibility pre- and post-natally. In the model
of maternal immune activation (MIA), specific maternal gut
microbiota are necessary for the development of MIA-associated

behavioral phenotypes and neurodevelopmental abnormalities.
Segmented filamentous bacteria (SFB) -specific TH17 cells are
stimulated by dendritic cells primed by poly (I:C) to produce high
levels of IL-17a (174), a key cytokine for ASD-like phenotype
induction in the MIA model (175, 176). Furthermore, during
fetal development, metabolites produced by the maternal gut
microbiota can alter BBB tight junction protein expression
thus modifying BBB permeability. Offspring of germ-free mice
have a decreased expression of occludin and claudin-5 which
contributes to the increased BBB permeability observed from the
fetal stage until adulthood (3). This increased BBB permeability
makes the offspring more susceptible to the neurological effects
of immune molecules including antibodies as these are then
more likely to access the brain parenchyma (3). Finally, shifts
in offspring microbiota composition can be induced by factors
in the in utero environment and contribute to the development
of ASD-like behavioral deficits. For example, the offspring of
poly (I:C) treated mice have an altered gut microbiota diversity
which leads to altered serum metabolites and increased IL-6
and gut permeability (177). Hsiao et al. (177) propose that the
increased IL-6 expression alters tight junction protein expression,
leading to increased gut permeability, and leaking of harmful
metabolites into systemic circulation. Post-natal treatment of
the offspring with Bacteroides fragilis reversed some of the
ASD-like behavioral phenotypes and improved gut barrier
permeability, possibly by restoring IL-6 expression, which in
turn leads to a partial correction of tight junction protein
expression (177).

CONCLUSIONS

The association between maternal brain-reactive antibodies and
the pathogenesis of neurodevelopmental disorders has been
well-established by both epidemiologic and animal studies.
Maternal autoimmune disease and brain-reactive antibodies
have been shown to increase the risk of neurodevelopmental

FIGURE 1 | Genetic and environmental factors that influence brain development and contribute to the etiology of neurodevelopmental disorders. The icon images

included in this Figure were obtained from openclipart.org, and are images in the Public Domain.
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disorders. Moreover, animal studies have shown that in utero
exposure to maternal brain-reactive antibodies is sufficient
to permanently alter brain anatomy and cause aberrant
cognition or behavior mimicking certain neurodevelopmental
syndromes. Specific neurodevelopmental disorders and the
severity of symptomatology are likely determined by an interplay
between genetics and environmental risk factors including
maternal brain-reactive antibody, maternal cytokines, gonadal
hormones, and the microbiome (Figure 1). As the prevalence of
neurodevelopmental disorders has been significantly increasing
(178), research on the in utero environment, including maternal
brain-reactive antibodies, is of great biomedical importance.
Identifying potentially pathogenic antibodies and understanding

their mechanisms of fetal brain injury provide an opportunity to
detect and protect fetuses at risk.
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