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Abstract

Background: Antimicrobial peptides (AMPs) are considered promising candidates for the development of novel
anti-infective agents. In arthropods such as ticks, AMPs form the first line of defense against pathogens in the
innate immune response. Persulcatusin (IP) was found in the Ixodes persulcatus midgut, and its amino acid
sequence was reported. However, the complete structure of IP has not been identified. We evaluated the
relation between structural features and antimicrobial activity of IP, and its potential as a new anti-methicillin-
resistant Staphylococcus aureus (MRSA) agent.

Methods: The structure of IP was predicted using homology modeling and molecular dynamics. IP and other
tick AMPs were synthesized using a solid-phase method and purified by high-performance liquid chromatography.
Methicillin-susceptible S. aureus (MSSA) and MRSA were used for the minimum inhibitory concentration (MIC) test and
short-time killing assay of IP and other tick peptides. The influence of IP on mammalian fibroblasts and colon epithelial
cells and each cell DNA and its hemolytic activity towards human erythrocytes were also examined.

Results: In the predicted IP structure, the structure with an S-S bond was more stable than that without an S-S bond.
The MIC after 24 h of incubation with IP was 0.156-1.25 pg/mL for MSSA and 0.625-2.5 ug/mL for MRSA. Compared
with the mammalian antimicrobial peptide and other tick peptides, IP was highly effective against MRSA. Moreover, IP
showed a dose-dependent bactericidal effect on both MSSA and MRSA after 1 h of incubation. IP had no observable
effect on mammalian cell growth or morphology, on each cell DNA and on human erythrocytes.

Conclusions: We predicted the three-dimensional structure of IP and found that the structural integrity was maintained
by three S-S bonds, which were energetically important for the stability and for forming a helix and (3 sheet. IP has
cationic and amphipathic properties, which might be related to its antimicrobial activity. Furthermore, the antimicrobial
activity of IP against MRSA was stronger than that of other antimicrobial peptides without apparent damage
to mammalian and human cells, demonstrating its possible application as a new anti-MRSA medicine.
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Background

Multidrug-resistant bacteria are a severe threat to public
health. Conventional antibiotics are becoming increas-
ingly ineffective because of such resistance, and it is im-
perative to find new antibacterial strategies [1].
Antimicrobial peptides (AMPs) are an integral part of
the innate immune system of all living organisms and
are considered promising candidates for the develop-
ment of novel anti-infective agents [2]. These molecules
have a broad antimicrobial activity spectrum, various
modes of action, and decreased incidence of resistance
development [3, 4]. A major AMP family is the defensin
family found in various organisms including plants, ver-
tebrates, and invertebrates [5]. AMPs of arthropods,
who have a powerful innate immune response, are in-
cluded in this family [6].

Ticks are external hematophagous parasites that live
on the blood of mammals, birds, and, occasionally, rep-
tiles and amphibians. A handful of ticks are vectors of
many diseases that affect both humans and other ani-
mals [7]. Ixodes persulcatus is a predominant tick species
that spreads a wide array of serious human and animal
pathogens, including Borrelia garinii, which causes Lyme
disease. In Japan, Lyme disease in humans is due to in-
fection with B. garinii or B. afzelii, which are specifically
transmitted by L persulcatus [8]. Despite the ability of
ticks to harbor and transmit pathogens, their immune
system offers effective mechanisms against pathogenic
microorganisms in the event of their permeation into
the tick body [9].

In ticks, AMPs form the first line of defense against
pathogens in the innate immune response [10]. Tick
AMPs have been detected in several tissues, such as the
midgut and salivary glands, and can be inoculated into
host bodies during blood meals [11, 12]. Persulcatusin
(IP), a tick AMP in the L persulcatus, was found in the
tick midgut and its amino acid sequence was reported
[13]. Furthermore, this AMP has antimicrobial activity
against gram-positive bacteria such as Staphylococcus
aureus [13]. Most AMPs from insects and arthropods
conserve a characteristic motif of six cysteines, which
form three disulfide bonds [14, 15]. Tick AMPs are well
known and the most widely characterized among anti-
microbial molecules [9, 11, 12, 16, 17]. Similar to other
tick AMPs, IP contains six cysteine residues that may
form S-S bonds, but the structure of IP has not been
identified. Our research group previously investigated
the relation between the antimicrobial activity of IP and
its three-dimensional and primary structure, and found
that IP with a three-dimensional structure was more ef-
fective to gram-positive bacteria compared to that with a
primary structure [18]. Therefore, to prove the import-
ance of the three-dimensional structure of tick, it is im-
portant to perform prediction of IP structure.
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Hundreds of AMPs have been isolated and character-
ized to understand their mode of action, but many
AMPs have limited use as therapeutics, owing to their
cytotoxicity against mammalian cells [19-21]. IP may
have the same problem. However, the first symptom of
Lyme disease is reported to be an erythema migrans, a
type of inflammation of the skin [22], which is affected
by molecules present in tick saliva [23]. The candidate
molecules that cause this inflammation include the tick
AMP because AMPs have an immunomodulation ability
[24]. To examine these effects, the ability of IP to affect
mammalian cells and its hemolytic activity against hu-
man erythrocytes was tested.

L persulcatus have feeding activities. Our study group
found that S. aureus cannot be isolated from 1. persulcatus
during feeding [16]. This is thought to be caused by the
antimicrobial activity of IP [13, 18]. S. aureus is potentially
pathogenic and can adapt rapidly to the selective pressure
of antibiotics [25]. In particular, methicillin-resistant S.
aureus (MRSA) infections have become major public
health concern. Since the late 1990s, community-
associated MRSA has emerged as a principal cause of skin
and soft-tissue epidemics worldwide [26, 27]. As the
Journal of the American Medical Association reported
in 2007, there were an estimated 94,360 cases of
MRSA infections in the United States in 2005 [28].

In this study, we predicted the three-dimensional
structure of IP by homology modeling and synthesized
IP and other tick AMPs to evaluate their antimicrobial
activity against MRSA. In addition, we examined the
toxicity of IP toward mammalian cells. Throughout this
study, we evaluated the relation between structural fea-
ture and antimicrobial activity of IP, and the potential of
IP as a new anti-MRSA agent.

Methods

Homology modeling

The amino acid sequence of tick AMP IP was GFG
CPFNQGACHRHCRSIGRRGGYCAGLFKQTCTCYSR
(AB469201). The template structure was selected by
searching PubMed for structures including >1 «a
helix and >1 P sheet. We superposed the structures
and classified clusters for the template-structure
candidates by using three-dimensional structure
multiple alignments. We assumed each cluster to be
a template. Sequences were aligned by manual cor-
rection using the results of three-dimensional struc-
ture multiple alignments. We produced five
structures by the Build Homology Model protocol
of Discovery Studio® 2.5 (Dassault Systemes BIO-
VIA, San Diego) and selected one homology model
from each template structure by applying the fol-
lowing standards sequentially;
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(1)Probability density function (PDF) Total Energy,
PDF Physical Energy, and Discrete optimized protein
energy (DOPE) Score was superior to that of other
structures

(2) There were fewer residues outside the domain
compared to other structures in the Ramachandran
Plot.

(3)High rank of the Verify Score provided in Verify
Protein (Profile-3D)

From these homology models, we built each structure
with or without an SS combination and optimized hydro-
gen atoms by using the Chemistry at HARvard Macro-
molecular Mechanics (CHARMm) force field. We used
the Minimization protocol for structure optimization.

Molecular dynamics

For each initial structure obtained by homology model-
ing, we performed a fixed temperature simulation of the
Generalized Born with a simple SWitching (GBSW) Im-
plicit Solvent Model in 10 nsec at 300 K by using the
Standard Dynamics Cascade and sampled the structure
every 1 psec. The representative structure among the
sampled structure was selected using the following
protocol:

(1)Sort sampling structures by using a Root mean
square deviation (RMSD) score from the initial
structure, distribute it into 1000 parts, and build 10
structure ensembles

(2)Calculate the intersection RMSD in each group and
carry out segmented hierarchical clustering by using
the distance matrix

(3)Select the representative structure by using a
threshold based on a dendrogram of the clustering

(4)Optimize by energy minimization

In addition, we selected the structure with the lowest
potential energy in each cluster, minimized its energy,
and estimated the final structure. All these calculations
were performed using Discovery Studio 2.5°.

Peptide synthesis and purification

Tick and mammalian peptides were synthesized by the
solid-phase method, as previously described [16]. The
peptides were purified by reverse-phase high-performance
liquid chromatography (Model LC-8A; Shimadzu Corpor-
ation, Kyoto, Japan) on a YMC-A 302 column. The final
products were confirmed by electrospray ionization mass
spectrometry and were supplied as trifluoroacetates. This
trifluoroacetate form of the peptides was conserved
by suspending in Hanks’ Balanced Salt Solution
(HBSS; GIBCO, Grand Island, NY, USA) at pH 7.4
and stored at -20 °C. IR, HAE, and OMBAC were
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the tick AMPs, and for mammalian AMP, a bovine
myeloid antimicrobial peptide (BMAP28) was used.
Their sequences have been reported [11, 29-31].

Bacterial strain and culture conditions

In the growth inhibition test, we used 9 clinical strains
of methicillin-susceptible S. aureus (MSSA) and 9 clin-
ical strains of MRSA from patients in Jichi Medical Uni-
versity Hospital, using these strains in past report [31].
The bacteria were grown in Trypto Soya (TS; Nissui,
Tokyo, Japan) broth for 18-19 h at 37 °C.

Growth inhibition test

The optical density at 660 nm (ODggo) of pre-cultured
bacteria was measured using an Ubest-35 (JASCO Cor-
poration, Tokyo, Japan). The adjustment for an ODggg of
0.5 was conducted by adding TS broth. The bacteria
were diluted to a final concentration of 1-5 x 10* colony
forming units (CFUs) /mL with TS broth, after which
50 pL of bacterial suspension and 50 pL of peptide solu-
tion were mixed together in a 96-well plate. The peptide
solution was prepared by two-fold dilution in TS broth,
while the IP solution was prepared to final peptide con-
centrations of 40, 20, 10, 5, 2.5, 1.25, 0.625, 0.313, 0.157,
and 0.079 pg/mL. Each mixture of bacteria and peptide
solution was incubated at 37 °C. The ODggo of the cell
suspension was measured after 20-24 h incubation by

Table 1 Selected 20 structures from Protein Data Bank (PDB)

Accession numbers  Species Category  Method
TAY]J Raphanus sativus Var. niger ~ Plant NMR
1BK8 Aesculus hippocastanum Plant NMR
1JKZ Pisum sativum Plant NMR
TMR4 Nicotiana tabacum Plant NMR
TN4N Petunia x hybrida Plant NMR
1TI5 Vigna radiata Plant NMR
TUGL Brassica rapa Plant NMR
2GL1 Vigna radiata Plant NMR
1L4v Sarcophaga peregrina Insect NMR
TMMO Pseudacanthotermes spiniger  Insect NMR
1027 Archaeoprepona demophon  Insect NMR
2E3E Anopheles gambiae Insect NMR
2E3F Anopheles gambiae Insect NMR
2E3G Anopheles gambiae Insect NMR
2NY8 Anopheles gambiae Insect NMR
2NY9 Anopheles gambiae Insect NMR
2NZ3 Anopheles gambiae Insect NMR
TFJN Mediterranean mussel Bivalve NMR
2B68 Crassostrea gigas Bivalve NMR
3E7R Pseudoplectania nigrella Fungi X-ray
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Fig. 1 Sequence alignment of each cluster. By superposing the 20 structures with three-dimensional structure alignment and classifying cluster
with the similarity, the 5 clusters were made by 16 structures. The clusters are cluster 1 (a), cluster 2 (b), cluster 3 (c), cluster 4 (d), and cluster 5
(e). Other 4 structures are Orphan. AB469201 was the amino acid sequence of IP and other accession numbers are described in Table 1
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Fig. 2 Potential energy, RMSD plot, RMSD histogram and output structure of MD simulation results. We performed Molecular dynamics with 10
structures obtained by Homology modeling. Each figure shows total potential energy (a, €), root mean square deviation (RMSD) (b, f), RMSD histogram
(c, g) and output structure (d, h). In simulation with S-S bond, we select the result of Cluster-4 for stable structure group (d) because it is considered that
the result of Cluster-4 has been lowest potential energy transition (a) and most stable condition. As a result of simulation without S-S bond, it is shown
that RMSD score (f) has been remarkably high and structure (h) have greatly changed in the simulation process compared to simulation with S-S bond
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using a Synergy™ HT (BioTek, Winooski, VT, USA). A
control was prepared by mixing 50 pL of bacterial sus-
pension, 40 pL of TS broth, and 10 pL of HBSS. The
minimal inhibitory concentration (MIC) of the peptides
was defined as the lowest concentration of peptide that
reduced growth by >90 %.

Short-time killing assay

We selected 3 strains each of MSSA and MRSA used in
the growth inhibition test. Unlike the growth inhibition
test described above, an additional growth inhibition test
was conducted using small test tubes. Each mixture of
bacteria and peptide solution was incubated for 1 h at
37 °C. After the incubation, 100 pL aliquots were removed
from the tubes and inoculated on TS agar plates. The
plates were incubated overnight at 37 °C, after which col-
onies were counted. The same control was prepared as in

the growth inhibition test described above. The data were
then converted and expressed as a percentage (sample per
control).

Effect on mammalian cell growth and morphology

In this study, we used bovine fetal fibroblasts (BFFs-
NCC1) and bovine fetal colon epithelial cells (BFCEs-
K4DT), which were maintained in the Laboratory of
Animal Breeding and Genetics, Tohoku University
Graduate School of Agricultural Science [32, 33]. The
BFFs-NCC1 and BFCEs-K4DT were cultured in a cell
culture dish and wrapped 12-well plates. The nutrient
medium of each cell was Dulbecco’s modified Eagle’s
medium (DMEM; Nacalai Tesque, Kyoto, Japan or Med-
iatech, Inc, Manassas, VA, USA) containing 10 % fetal
bovine serum (Invitrogen, Carlsbad, CA, USA) and a
1 % antibiotic-antimycotic mixed stock solution (Nacalai

Turn 1 80O

horizontally

Fig. 3 Tertiary structure and the property of IP. In the structure with S-S bond, it is confirmed that one endpoint had been hydrophilic (red), and other
endpoint had been hydrophobic (blue) as a whole. Arg residues are concentrated in red domain and Phe and Leu are concentrated in blue domain
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Table 2 Amino acid sequences and properties of tick AMPs, mammal AMP

Tick species Product name Amino acid sequence Similarity to IP (%) Net charge Hydrophobic (%)
Ixodes persulcatus 1P [13] GFGCPFNQGACHRHCRSIGRRGGYCAGLFKQTCTCYSR — +6 3947
Ixodes ricinus IR [29] GGYYCPFFQDKCHRHCRSFGRKAGYCGGFLKKTCICY 71 +5 45.95
Haemaphysalis longicornis HAE [30] GCPLNQGACHNHCRSIGRRGGYCAGIIKQTCTCYRK 88 +6 38.89
Ornithodoros moubata OMBAC [11] GFGCPFNQYECHAHCSGVPGYKGGYCKGLFKQTCNCY 75 +2 43.24
Ornithodoros moubata (No use) [17] GYGCPFNQYQCHSHCSGIRGYKGGYCKGTFKQTCKCY 72 +5 37.84
(Mammal AMP) BMAP28 [31] GGLRSLGKKILRAWKKYGPIIVPIIRI +7 48.15
Amino acid sequence was cited in each reference [11, 13, 17, 29-31]. Net charge: calculated value by charged amino acid (Lys + Arg-Asp-Glu). Hydrophobic(%):

hydrophobic proportion in amino acid sequence composition by Protein/Peptide Property Calculator (http://lifetein.com/peptide-analysis-tool.html)

Tesque). Then each cell was seeded into 12-well plates
at 1x 10* cell/well and 1 x 10° cell/well. After overnight
incubation, the nutrient mediums were changed to
DMEM with IP (0, 5, 10, 50 pg/mL), and cells were
incubated for 24 h or 48 h (BFCEs-K4DT only 48 h) at
37 °C. Then, these were collected and measured using a
trypan blue staining method, with an EVE™ Automatic
cell counter (NanoEnTeK, Seoul, Korea). For BFCEs-
K4DT, the morphology of untreated control (IP 0 pg/mL)
and treated cell (IP 50 pg/mL) was observed.

Neutral comet assay

We prepared BFFs-NCC1 and BFCEs-K4DT treated or
untreated with IP 50 pg/mL for 48 h as above experi-
ment. These cells were harvested by centrifugation
(800 g, 3 min) and washed with sterile Dulbecco’s Phos-
phate Buffered Saline (DPBS; GIBCO). To generate posi-
tive control for comet tails, a part of each cell is
untreated with IP treated 25 pM KMnQO,, and all sam-
ples placed for 20 min at 4 °C. The comet assay was per-
formed under neutral conditions following the Trevigen
protocol. Each cell at 1 x 10° cell/mL was combined with
molten low-melting agarose at a ratio of 1 : 10 (vol /vol)
and immediately pipetted 50 pL onto Comet slides.
Slides were stored in the dark for 30 min at 4 °C before
immersing in lysis solution overnight. The slides were
immersed in freshly prepared neutral electrophoresis

Table 3 MIC of IP against MSSA and MRSA

Bacteria strain MIC Bacteria strain MIC
(MSSA) (ng/mL) (MRSA) (ug/mL)
MS-1 1.25 MR-1 1.25
MS-2 1.25 MR-2 25
MS-3 0.156 MR-3 25
MS-4 0313 MR-4 0.625
MS-5 0313 MR-5 1.25
MS-6 0.625 MR-6 25
MS-7 0313 MR-7 1.25
MS-8 0.625 MR-8 2.5
MS-9 0313 MR-9 0.625

MS-1-9: Clinical isolates of MSSA. MR-1-9: Clinical isolates of MRSA

buffer (dissolved Tris base and sodium acetate in dis-
tilled water, pH 9.0) for 30 min at 4 °C. Gel electrophor-
esis was performed at 1 volt per cm (measured electrode
to electrode) for 45 min in neutral electrophoresis buf-
fer. The comet slides were immersed in DNA precipita-
tion solution (7.5 M ammonium acetate containing 95 %
ethanol) for 30 min at room temperature and then in
70 % ethanol for 30 min at room temperature. After dry-
ing for 10 min at 37 °C, a 100 pL of diluted Hoechst so-
lution (Invitrogen) was placed onto each dried agarose
circle. The slides were observed by fluorescence micros-
copy FSX100 (Olympus, Tokyo, Japan).

Hemolytic assay

The hemolytic activity of tick peptides was determined
using human erythrocytes. Erythrocytes were harvested
by centrifugation (400 g, 10 min) and washed three
times with sterile DPBS. A suspension of erythrocytes
(2 %; vol/vol) was used for the assay. A stock solution of
tick peptides was diluted in DPBS and co-incubated with
erythrocytes for 2 h at 37 °C at a final volume of 100 pL
and final concentrations of 0—200 pg/mL. After incuba-
tion, the suspension was centrifuged (400 g, 10 min);
100 pL of supernatant was removed, and the absorbance
of samples was measured at 405 nm (An). The hemolytic
activity was calculated in relation to negative and posi-
tive controls (% hemolysis = (An — Ag/A190 — Ap) x 100;
Ao =0 % hemolysis in DPBS; Ajgo = 100 % hemolysis ob-
tained by incubation with 0.2 % solution of Triton X-100
in DPBS).

Results

Structural analysis of IP with homology modeling

After obtaining 84 structures related to the keyword
“Defensin” by a PubMed search, 20 structures were
found to correspond because of selection of structures
with only >1 « helix and >1 p sheet (Table 1). By super-
posing these 20 structures by three-dimensional struc-
ture alignment and classifying similar structures into
clusters, 5 clusters were obtained from 16 structures.
Based on a template-structure cluster and adjusted
alignment (Fig. 1), we built 5 homology models for each
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Table 4 Comparison of MICs against MRSA

Bacteria MIC (ug/mL)

strain

(MRSA) P IR HAE OMBAC BMAP28
MR-1 1.25 20 >40 10 10

MR-2 2.5 40 >40 10 20

MR-3 25 10 >40 5 20

The results were confirmed by three independent experiments

template-structure cluster by using the Build Homology
Model protocol. Moreover, as an initial structure for mo-
lecular dynamics, we built 2 structural patterns with and
without 3 sets of disulfide combinations for all homology
models. For each structure, we optimized the position of
hydrogen atoms by energy minimization and built 10
initial structures for simulation.

We performed molecular dynamics analysis on the 10
structures obtained by homology modeling. Because of
sampling the structures by using the Standard Dynamics
Cascade, we obtained 10,000 structures for every simula-
tion. Then from the simulation results, we obtained the
changes in RMSD for the initial structure, potential en-
ergy, and number of the samples of the initial structures
with and without the S-S bond (Fig. 2). In simulations
with the S-S bond, we selected Cluster-4 as a stable struc-
ture group because it had the lowest potential energy tran-
sition and most stable condition (Fig. 2a). We selected a
representative structure from this cluster as described
above. In contrast, in simulations without the S-S bond,
the RMSD score was remarkably high and the structure
changed greatly in the simulation process than in the
simulation with the S-S bond (Fig. 2f). Furthermore, we
found that the RMSD changes greatly in a short time after
simulation start and the initial structural motif was not
energetically stable in simulations without S-S bond.

In the structure with S-S bond, among amino acid res-
idues, Arg residues were concentrated from the end of
the helix to the seat structure, forming a domain with
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very high hydrophilicity (Fig. 3). At the opposite end to
this hydrophilicity domain, hydrophobic residues such as
Phe2, Leu28, and Phe29 were concentrated, and a do-
main with high hydrophobicity was formed. Therefore, it
was confirmed that one endpoint was hydrophilic and
the other endpoint was hydrophobic (Fig. 3). On the
other hand, in the structure without the S-S bond, the
contrast in hydrophobic and hydrophilic domains, as
seen above, was not observed, and it was not confirmed
whether hydrophilic and hydrophobic residues are al-
ways concentrated in the neighborhood.

Antimicrobial activity assay

The amino acid sequences in this study are presented in
Table 2, including properties of each specific peptide. Re-
sults of the growth inhibition test showed that IP inhibited
the growth of MSSA and MRSA, corresponding to MIC
of 0.156-1.25 pug/mL and 0.625-2.5 pg/mL, respectively
(Table 3).

The antibacterial activity of synthetic tick AMPs was
compared with that of other cationic antibacterial pep-
tides (Table 4). Anti-MRSA activity of IP was stronger
than that of other AMPs.

Short-time killing assay

A short-time killing assay was employed to determine
bactericidal activity of IP against MSSA and MRSA in
1 h, results of which are shown in Fig. 4. For MSSA,
MS-3 was susceptible to IP and the others such as MS-1
and MS-2 were relatively resistant to IP. In contrast, all
MRSA strains (MR-1, 2, 3) were susceptible to IP. Taken
together, IP showed dose-dependent bactericidal activity
against MSSA and MRSA within 1 h.

Effect on mammalian cells, neutral comet assay and
hemolytic assay

Bovine fibroblasts were used as tick feeding targets.
Bovine colon epithelial cells were used as an example of
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the cell which can be affected by IP when it was adminis-
tered in mammalian body as antimicrobial agent. After
treatment with a high concentration of IP (50 pg/mL), no
significant differences were found in the number of bovine
fibroblasts and colon epithelial cells (Fig. 5a and b). Fur-
thermore, there is no morphological change of bovine
colon epithelial cells (Fig. 5¢).

The comet assay is a simple and sensitive method for
studying DNA damage. In this neutral comet assay, each
untreated control cell showed no comet tails (Fig. 6a and
d), while positive control cells treated with KMnO4 showed
some comet tails (Fig. 6b and e). Each cell treated with IP

showed no comet tails similar to untreated control cells
(Fig. 6¢c and f).

On the other hand, human erythrocytes were barely
hemolyzed under the influence of IP: no significant
hemolytic activity (<5 %) was observed after treatment
of human erythrocytes with 200 pg/mL IP (Fig. 7). Simi-
lar patterns were found for other tick AMPs (IR, HAE,
and OMBAC) as well (data not shown).

Discussion
Arthropods such as ticks protect themselves by innate
immunity, which involves antimicrobial peptides [34].

C
BFF-NCCI1
f
BFCE-K4DT

Control

Fig. 6 Neutral comet assay images of BFFs-NCC1 and BFCEs-K4DT cells after treatment with IP. a, d Untreated control cells show no damage to
DNA. b, e Positive control cells treated with 25 pM KMnO4 show clear comet tails (arrows). ¢, f Each cell treated with IP (50 pg/ml) shows no
damage to DNA as untreated control cells. Each inset has magnified views. Scale bars =400 um

KMnO* IP 50 ug/mL
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standard deviations of triplicate determinations are presented
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Ticks encounter diverse pathogens and therefore pro-
duce numerous antimicrobial factors [35]. With the in-
creasing number of pathogens becoming resistant to
conventional antibiotics, tick AMPs may serve as tem-
plates for the development of novel anti-infective agents.
Yet, there have been several reports about antimicrobial
activity of the tick AMPs [9, 11-13, 16]. IP from I per-
sulcatus is a potential candidate for a novel anti-
infective agent because of its antimicrobial activity
against gram-positive bacteria [13, 18].

IP belongs to the defensin family and contains six
disulfide-paired cysteines. The structure of IP was found
to be more stable with an S-S bond than that without an
S-S bond by homology modeling and molecular dynamics.
Therefore, we used an IP structure with an S-S bond in
other experiments. Several groups have shown that ana-
logues of invertebrate and vertebrate AMPs belong to the
defensin family that lacked the S-S bond retained their
broad-spectrum activity [36-38]. However, IP with a
three-dimensional structure was more effective against
gram-positive bacteria compared to that with a primary
structure [18]. Therefore, the three-dimensional structure
of IP with an S-S bond may be important for I persulcatus
to protect itself from infective bacteria. The structure of
IP with an S-S bond is a distinctive arthropod structure
containing one o helix and two  sheets, and has cationic
property because of the positive charge caused by Arg and
Lys residues. Almost all AMPs are cationic and amphi-
pathic [34], because this characteristic of AMPs is related
to their antimicrobial activity. Many AMPs approach mi-
crobes with their cationic parts, because microbial mem-
branes are rich in anionic phospholipids, and cause pore
formation with their amphipathic structure [39]. It is
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believed to be very difficult for bacteria to develop resist-
ance to AMPs because most AMPs kill bacterial cells
quickly by their actions on the entire bacterial cytoplasmic
membrane or through other complex mechanisms [40, 41].
IP is also cationic and amphipathic (Fig. 3), so its mechan-
ism of action may be similar to that of other AMPs,
suggesting that it may be difficult for bacteria to develop re-
sistance to IP. It has been reported that the antibacterial
mechanism of tick AMP can disrupt the bacterial mem-
brane [17].

We found that IP inhibited the growth of all 9 clinical
isolates of MSSA and MRSA at MIC of 1.25 pg/mL and
2.5 pg/mL, respectively (Table 3). Between MSSA and
MRSA, MIC of IP was not different. BMAP28, which be-
longs to the cathelicidin family of AMP, was more effect-
ive against MSSA than against MRSA [31, 42]. BMAP28
and tick AMPs both cause physical membrane disruption,
but do not belong to the same family. BMAP28 has a dif-
ferent structure compared to that of IP, for example: it
does not have an S-S bond or 3 sheet. These structural dif-
ferences may underlie the differences in antimicrobial
activity against normal and drug-resistant bacteria. Com-
paring the antimicrobial activity of each tick AMP against
MRSA, we observed a large difference in MICs among
tick AMPs. This result suggests that although tick AMPs
have similar characteristics, such as large number of cyste-
ines and S-S bond, antimicrobial activity was affected by
changes in amino acid sequences and properties. Exclud-
ing HAE, antimicrobial activity of tick AMPs against
MRSA may be related to the hydrophobicity of amino acid
sequence. In the short time killing assay, IP was more ef-
fective against MRSA than against MSSA (Fig. 4). More-
over, IP showed dose-dependent bactericidal activity
against both MSSA and MRSA. This anti-staphylococcal
activity of IP was related so that S. aureus was not isolated
from L persulcatus during feeding [16].

Host cytotoxicity of AMPs is a major limitation in
their application as antimicrobial drugs [43]. Therefore,
we investigated the effect of AMPs on bovine cell
growth, morphology, and DNA damage and hemolytic
activity against human erythrocytes. In the cell growth
experiment, IP did not affect bovine fibroblasts and
colon epithelial cells growth, and morphology (Fig. 5).
Not only that, but DNA damage was not detected in
each cell treated with IP in neutral comet assay (Fig. 6).
This result suggests that IP did not impair cell function.
Moreover, in the hemolytic assay, we observed minimal
hemolysis (<6 %) with IP, even at high concentrations
(Fig. 7). AMPs, such as the honeybee AMP melittin,
which is a linear cationic peptide without cysteines and
has antimicrobial activity against MRSA, show hemolytic
activity [44, 45]. Therefore, IP was an AMP without
hemolytic activity. Taken together, IP cannot be toxic to-
wards fibroblasts, colon epithelial cells and erythrocytes,
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which could overcome a challenge in their development
as pharmaceutical drugs.

Treating MRSA infection is challenging owing to the re-
markable ability of S. aureus to develop resistance to mul-
tiple antibiotics, thus limiting the number of viable
therapeutic options [46, 47]. New anti-MRSA drugs called
DAP were developed recently, but DAP-resistant bacteria
have already been reported [48]. Therefore, there is an ur-
gent need to develop novel antimicrobials with unique
mechanisms of action to combat MRSA, one of which is
AMP [4]. It has been reported that tick AMP derived from
Ornithodoros moubata, with an amino acid sequence simi-
lar to that of OMBAC (91 %) (Table 2), had a low MIC
against MRSA [17]. In this study, compared to other tick
AMPs and mammalian AMP, IP had strongest antimicro-
bial activity against MRSA (Table 4). Furthermore, IP is
non-toxic to human cells. Hence, IP may be a better candi-
date for a new anti-MRSA therapy.

Conclusions

In this study, we predicted the structure of persulcatusin
(IP), which is an AMP derived from the tick that causes
Lyme disease. The structural integrity of IP is maintained
by the S-S bond, unlike AMPs from the cathelicidin family
such as BMAP28. IP is both cationic and amphipathic, and
this characteristic and structural feature might be related
to its antimicrobial activity. Moreover, IP showed anti-
microbial activity against S. aureus but not toxic against
mammalian and human cells such as fibroblasts, colon epi-
thelial cells and erythrocytes. In particular, we found that
IP has strong antimicrobial activity against MRSA.
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