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ABSTRACT
Background: Obesity susceptibility genes are highly expressed in
the brain suggesting that they might exert their influence on body
weight through eating-related behaviors.
Objectives: To examine whether the genetic susceptibility to obesity
is mediated by eating behavior patterns.
Methods: Participants were 3977 twins (33% monozygotic, 56%
females), aged 31–37 y, from wave 5 of the FinnTwin16 study. They
self-reported their height and weight, eating behaviors (15 items),
diet quality, and self-measured their waist circumference (WC). For
1055 twins with genome-wide data, we constructed a polygenic risk
score for BMI (PRSBMI) using almost 1 million single nucleotide
polymorphisms. We used principal component analyses to identify
eating behavior patterns, twin modeling to decompose correlations
into genetic and environmental components, and structural equation
modeling to test mediation models between the PRSBMI, eating
behavior patterns, and obesity measures.
Results: We identified 4 moderately heritable (h2 = 36–48%) eating
behavior patterns labeled “snacking,” “infrequent and unhealthy
eating,” “avoidant eating,” and “emotional and external eating.” The
highest phenotypic correlation with obesity measures was found for
the snacking behavior pattern (r = 0.35 for BMI and r = 0.32
for WC; P < 0.001 for both), largely due to genetic factors in
common (bivariate h2 > 70%). The snacking behavior pattern
partially mediated the association between the PRSBMI and obesity
measures (β indirect = 0.06; 95% CI: 0.02, 0.09; P = 0.002 for BMI;
and β indirect = 0.05; 95% CI: 0.02, 0.08; P = 0.003 for WC).
Conclusions: Eating behavior patterns share a common genetic
liability with obesity measures and are moderately heritable. Genetic
susceptibility to obesity can be partly mediated by an eating pattern
characterized by frequent snacking. Obesity prevention efforts
might therefore benefit from focusing on eating behavior change,
particularly in genetically susceptible individuals. Am J Clin Nutr
2020;112:956–966.
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Introduction
Obesity is influenced by a wide range of genetic and

environmental factors (1, 2). Substantial evidence suggests that
the overconsumption of energy-dense foods and drinks is an
important etiological factor for weight gain and obesity (3). In
addition, eating behaviors and diet quality have been associated
with overweight and weight gain in several studies (4–9), hence
they might represent potential key pathways that could help to
explain the genetic susceptibility to obesity. Twin studies have
not only shown that ∼57–90% of the variance in adult BMI (2,
10–12) and 40–60% of the variance in eating behavioral traits
(including dietary intake) is attributable to genetic factors (13–
15), but have also suggested that the associations between eating
behavior traits, such as cognitive restraint, uncontrolled eating,
and emotional eating, and BMI are partly mediated by genetic
factors common to both (16).

Recent advances in genetic studies have increased our
knowledge of common susceptibility genetic loci associated with
obesity. The meta-analysis of genome-wide association studies
(GWASs) of BMI from Locke et al. (17) identified 97 BMI-
associated loci [single nucleotide polymorphisms (SNPs)], but
explained <4% of the BMI variance. A more recent meta-
analysis of GWASs by Yengo et al. (18) extended the number
of BMI-associated SNPs to 751, explaining 6% of the variance
in BMI. Whole-sequence genome data increase the fraction
of variance of BMI accounted for by genetic variants, both
common and rare, to 40% (). The pathways through which
obesity-associated genetic variants predispose certain individuals
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to develop obesity are not well understood, but because obesity
susceptibility genes are highly expressed in the central nervous
system (19), they are likely to influence appetitive and satiety
traits, which therefore represent a plausible behavioral pathway
for weight gain (16, 20, 21).

A few earlier studies have focused on the associations between
eating behaviors and genetic susceptibility to obesity. Two studies
performed in adults have reported that uncontrolled eating and
emotional eating mediate the association between a polygenic
risk score (PRS) comprising 90 BMI-associated loci and obesity
measures (21, 22). A more recent study that used a 97-loci PRS
indicated that the genetic susceptibility to obesity is partially
mediated by disinhibition and susceptibility to hunger (23). These
previous studies have defined genetic susceptibility to obesity
based on <100 SNPs that reached genome-wide significance.
Khera et al. (24) recently suggested the use of a PRS by incor-
porating all available information from ≤2.1 million common
genetic variants irrespective of genome-wide significance, hence
providing a more powerful approach for capturing genetic risk
(18). Research has not yet determined the associations between
such a whole-genome–based PRS for obesity, eating behavior
patterns, and obesity measures. Thus, the aims of this study were
to examine whether eating behavior patterns are related to obesity
measures, to study whether genetic susceptibility to obesity is
mediated by eating behavior patterns in a nationwide setting
in Finland using the latest PRS for obesity, and to test these
associations using a genetically informative twin design.
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Methods

Participants

The data for this study were derived from the longitudinal
FinnTwin16 (FT16) cohort including Finnish twins born in
1975–1979 and identified from the population register (n =
∼5600 twin individuals) (25). The FT16 study was targeted
to investigate determinants of health-related behaviors, disease
risk factors, and chronic diseases in adolescents and young
adults. Data from the latest survey in 2010–2012 (wave 5), when
the participants were on average 34 y old, were used in the
present study. The questionnaire was administered as an internet
survey. The invitation was sent to all twins belonging to the
original target population, regardless of earlier participation (total
n = 4407 twin individuals, response rate 72%, and n = 1055
twin individuals had genome-wide data available). We excluded
participants with unknown zygosity, eating styles, diet quality,
and BMI. In mediation analyses we excluded twin individuals
with missing genome-wide data. In quantitative twin genetic
analyses, we excluded those without a co-twin and without infor-
mation on zygosity, eating styles, and diet quality. The final data
(Figure 1) included 3977 twin individuals [527 monozygotic
(MZ), 470 same-sex dizygotic (SS-DZ), and 503 opposite sex-
dizygotic (OS-DZ) twin pairs] (Supplemental Table 1A) and
949 twin individuals for mediation analyses (Supplemental
Table 1B). Zygosity was derived from questionnaires, based on
physical similarity and confusing by others, a method that has
shown high reliability in this cohort (26). The data collection was
approved by the Ethics Committee of the Central Finland Health
Care District (April 20, 2010, Dnro 4/2010).

Measurements

Eating styles and diet quality.

Eating styles were assessed with a 16-item questionnaire
modified from Keski-Rahkonen et al.(27). The questionnaire was
cross-validated with various established assessment tools—the
Three-Factor Eating Questionnaire (28, 29), the Binge Eating
Scale (30), and the Eating Disorder Inventory (31)—in a small
subsample (n = 42) of FinnTwin16 participants. Subscales of
those instruments were significantly correlated with our eating
style items except for those describing health-conscious/avoidant
eating and 1 item regarding snacking. However, in the study
from Keski-Rahkonen et al. (27), health-conscious eating and
snacking items had moderate internal consistency (Cronbach
α = 0.70 and 0.61, respectively). The participants were asked
to select the option that best described their overall eating style
(2 items for assessing meal frequency and 2 items for regular
eating styles). Another 3 items inquired about health-conscious
eating, 1 item about night eating, 1 item about external eating, 2
items about emotional eating, and 5 items about snacking styles
with 4 different alternatives: “usually,” “often,” “sometimes,” or
“seldom” (32). The item about night eating style was excluded
due to a lack of variability in participants’ responses. Dietary
intake was assessed by a short FFQ, from which a diet quality
score (DQS) was calculated, as previously described (32). The
DQS had been previously validated and is associated with obesity
measures and eating styles in this cohort (32). The DQS ranges
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FinnTwin16 Study (wave 5) 
n = 4407

Twin individuals with data on 
zygosity 
n = 4160

Twin individuals for analyses
n = 3977

Missing data on diet quality, 
eating styles or BMI

n = 183 

Complete twin pairs with data on 
zygosity

n = 1576 pairs

Complete twin pairs for analyses
n = 1500 pairs

Missing genome-wide data
n = 3028

Twin individuals for mediation 
analyses
n = 949

Missing data on diet quality or 
eating styles 
n = 76 pairs

FIGURE 1 Flowchart diagram of participants’ selection.

from 0 to 12 points, with a higher score indicating a better diet
quality.

Obesity measures.

Height and weight were self-reported, from which BMI
(kg/m2) was calculated. Waist circumference (WC) was self-
measured midway between the lowest rib and the iliac crest with
a tape. The participants received a tape and instructions by mail
on how to self-measure WC. The validity of self-reported height,
weight, and WC was previously demonstrated in a subsample of
FT16 participants (33).

Genotyping and weighted PRS.

Genotyping was performed in the United States, United
Kingdom, and Finland (see Supplemental Methods for more
details). Genotyping quality control batches were applied for
SNPs [minor allele frequency (MAF)]. First, we removed every
genetic variant with a call rate <0.975 (batches 1 and 3)
or <0.95 (batch 2). Second, we removed every sample with a
call rate <0.98 (batch 1) or <0.95 (batches 2 and 3). Finally,
variants were filtered by their MAF <0.01 with Hardy–Weinberg
equilibrium P value <1e-06. Samples from all batches with
heterozygosity test method-of-moments F coefficient estimate
values <-0.03 or >0.05 (batches 1 and 2) or ±4 SD from
the mean (batch 3) were removed, along with the samples that
failed the sex check or were among the multidimensional scaling
principal component analysis outliers. Genotyped autosomal
variants after quality control were 475,526 (batch 1), 239,894
(batch 2), and 388,673 (batch 3), with the following number of
samples remaining for imputation: 2617 (batch 1), 5328 (batch
2), and 8218 (batch 3).

Prephasing of the data was done with Eagle v2.3 (34)
and imputation with Minimac3 v2.0.1 using the University of
Michigan Imputation Server (35). Genotypes from all the batches
were imputed to the Haplotype Reference Consortium release 1.1
reference panel (36).

Polygenic scoring.

Genetic susceptibility was assessed by calculating PRSs using
the Bayesian approach accounting for linkage disequilibrium
(LD) between each genetic variant (37). We did not use any
pruning and thresholding method to select genetic variants. The
infinitesimal model for polygenic scoring was adjusted by an
LD reference panel consisting of the Finnish FINRISK study
(n = 27,284) (38). GWAS summary statistics and the FT16
study sample were restricted to the European HapMap3 variants
(39) with an MAF >5%. The major histocompatibility complex
gene cluster of human chromosome 6 (GRCh37: 6p22.1–21.3)
was excluded due to strong LD block. We derived 2 PRSs, 1
for BMI (PRSBMI) and 1 for waist-to-hip ratio (WHR) adjusted
for BMI (PRSWHR). The total numbers of genetic variants used
for the PRS calculations were 996,919 for BMI and 1,148,565
for WHR adjusted for BMI, with the reweighted effect sizes
available from 692,578 and 484,563 samples, respectively (see
Supplemental Methods for more details of the different PRSs).
The PRSBMI explained 8.3% of the variance in BMI in this study
sample.

Statistical methods

General characteristics of the study sample are presented as
means and 95% CIs for continuous variables and as numbers
and percentages for categorical variables. Differences between
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men and women were determined using the adjusted Wald test
for continuous variables and Pearson χ2 test for categorical
variables.

Principal component analyses.

Eating behavior patterns were derived by principal component
analyses (PCAs) using 15 eating styles and 1 indicator of
diet quality (DQS). Based on eigenvalues >1.0 and scree
plot analyses, we retained 4 components. We calculated factor
loadings after a varimax rotation to simplify and facilitate their
interpretability. Factor loadings (≥0.30) were considered to
contribute to the eating behavior pattern and were used to label
the 4 components.

Quantitative genetic analyses.

We used quantitative genetic twin modeling, based on linear
structural equations, to estimate the heritability of eating behavior
patterns and obesity measures (40). Classical twin modeling
is based on the assumption that MZ twins share virtually the
same gene sequence, whereas dizygotic (DZ) twins share, on
average, 50% of their genetic variance, like other siblings. Based
on these assumptions, genetic variation can be decomposed
into additive genetic variation (A), which is the sum of the
allelic effects on the phenotype over all relevant loci, and
dominance genetic variation (D), including nonadditive genetic
effects. Environmental variation can be decomposed into shared
environmental variation (C), which includes all environmental
factors that make co-twins similar, and nonshared environmental
variation (E), which includes all environmental factors that make
co-twins dissimilar (as well as measurement error). The expected
correlations for additive and dominance genetic effects are both
1 for MZ twins and 0.5 and 0.25 for DZ twins, respectively. By
definition, the expected correlations for shared and nonshared
environmental effects are 1 and 0, respectively, for both MZ
and DZ twins. Before model fitting, we calculated intraclass
correlations (ICCs) for MZ, SS-DZ, and OS-DZ twin pairs
to estimate the level of within-pair similarity and to provide
evidence for the presence of genetic effects (40).

We started the analyses by computing univariate models
(41). Because we had information only on twin pairs reared
together, we were unable to estimate dominance genetic and
shared environmental effects simultaneously. Thus, we first tested
whether shared environmental factors and dominant genetic
factors were present to explain the variation in eating behavior
patterns and obesity measures by comparing the ACE and
ADE models with the AE model. No evidence of C or D was
found; hence, a more parsimonious additive genetic/nonshared
environment (AE) model was used in all further genetic twin
modeling.

After the univariate models, we calculated correlations be-
tween eating behavior patterns and obesity using Pearson partial
correlations. Then we used the bivariate Cholesky decomposition
to examine the extent to which genetic and nonshared envi-
ronmental effects underlie the observed correlation between the
2 traits. In addition, this bivariate design allowed us to derive
additive genetic (ra) and shared environmental (rc) correlations
(40). All analyses were adjusted for age and sex.

Structural equation modeling.

Structural equation modeling (SEM) analyses were conducted
to identify potential mediation models between the PRSs
(PRSBMI and PRSWHR) and obesity measures through eating
behavior patterns (42). To control for age, sex, and population
stratification, we regressed all of the variables on age, sex, and
genetic principal components and then used the residuals in
the SEM analyses. Genetic principal components came from
the merged raw phenotype data of all samples, to detect any
population stratification due to systematic ancestry differences
(43). Analyses with PRSWHR were only controlled for age and
sex. Total effects (c + ab), direct effects (c), and indirect or
mediation effects (ab) were calculated to show how much of
the association between the PRS and the obesity measure was
mediated by the different eating behavior patterns. Bias corrected
estimates and 95% CIs were calculated using the bootstrapping
approach with 1000 draws. All of the models were estimated
for every eating behavior pattern and for both obesity measures
using both PRSs, and the results are presented as total, direct,
and indirect effects. We added interaction terms to test whether
the mediation models were similar in men and women. Because
some of the interaction terms were significant (P < 0.05), we
present the mediation models separately by sex in Supplemental
Table 3.

When analyzing twins as individuals, the effect of the twin
pair clustering was taken into account in SEs yielded by cluster
variance estimators, which were robust to nonindependent ob-
servations within families (44). The descriptive statistics, PCAs,
ICCs, Pearson partial correlations, and SEM were conducted
by using Stata statistical software (release 14.1; StataCorp).
Quantitative genetic analyses were carried out with the OpenMx
package (version 2.14.11) of R statistical software (R Project for
Statistical Computing) (45). A P value <0.05 was considered as
the level of significance.

Results

General characteristics of the study sample

Table 1 shows the descriptive characteristics of the study
sample. Approximately 56% of the study sample were women
and 33% were MZ twins. The participants had, on average, a BMI
of 24.8 and a WC of 86.1 cm. The mean DQS was 7 points from
a maximum of 12 points. Women had a lower BMI and WC, but
they were abdominally obese more often than men. Women had a
higher diet quality than men (mean DQS: 7.4 for women and 6.4
for men; P < 0.001). There were no differences between men and
women with respect to standardized PRSs. Supplemental Table
1A shows the descriptive statistics by zygosity, and Supplemental
Table 1B shows the descriptive statistics for the subsample used
in the mediation analyses.

Eating behavior patterns

Results of the PCAs of eating behavior patterns, which
included 15 questions on eating styles and the DQS, are
shown in Table 2. The resultant eating behavior patterns
were labeled “snacking,” “infrequent and unhealthy eating,”
“avoidant eating,” and “emotional and external eating.” These 4
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TABLE 1 General characteristics of the study sample1

Characteristics Overall (n = 3977) Men (n = 1732) Women (n = 2245) P value

Monozygotic twins, n (%) 1298 (32.6) 505 (29.2) 793 (35.3) 0.001
Same-sex dizygotic twins, n (%) 1272 (32.0) 603 (34.8) 669 (29.8)
Opposite-sex dizygotic twins, n (%) 1407 (35.4) 624 (36.0) 783 (34.9)
Age, y, mean (95% CI) 34.1 (34.1, 34.1) 34.1 (34.1, 34.2) 34.1 (34.0, 34.1) 0.4
BMI, kg/m2, mean (95% CI) 24.8 (24.6, 24.9) 25.7 (25.5, 25.9) 24.0 (23.8, 24.2) <0.001
Obesity (BMI >30 kg/m2), n (%) 415 (10.4) 186 (10.7) 229 (10.2) 0.6
WC,2 cm, mean (95% CI) 86.1 (85.6, 86.5) 92.1 (91.6, 92.7) 81.2 (80.7, 81.8) <0.001
Abdominal obesity (women >88 cm; men >102 cm),2 n (%) 771 (20.1) 268 (15.8) 503 (23.6) <0.001
Diet quality score, mean (95% CI) 7.0 (6.9, 7.0) 6.4 (6.3, 6.5) 7.4 (7.3, 7.5) <0.001
Standardized PRSBMI,2 mean (95% CI) 6.6e − 10 (−0.1, 0.1) 0.0 (−0.1, 0.2) 0.0 (−0.1, 0.1) 0.4
Standardized PRSWHR,2 mean (95% CI) 1.2e − 09 (−0.1, 0.1) 0.0 (−0.1, 0.2) 0.0 (−0.1, 0.1) 0.4

1Differences between men and women, P values, were determined by the adjusted Wald test for continuous variables and Pearson χ2 test for categorical
variables and corrected for the clustering of twin pairs by survey methods. PRS, polygenic risk score; WC, waist circumference; WHR, waist-to-hip ratio.

2Sample size smaller due to missing genotypes. Overall sample size for WC and abdominal obesity n = 3832; overall sample size for standardized
PRSBMI and standardized PRSWHR n = 949.

components together explained ∼56% of the variance in eating
styles and diet quality.

ICCs and heritability estimates

ICCs were higher in MZ twins than DZ twins, indicating the
presence of genetic influences (Supplemental Table 2). Heritabil-
ity estimates of eating behavior patterns and obesity measures
are shown in Figure 2. The variation in eating behavior patterns
and obesity measures was due to both additive genetic and non-
shared environmental factors. Eating behavior patterns showed
moderate heritability estimates, ranging from 36% to 48%. As
expected, the heritability estimates for BMI and WC were high
(76% and 62%, respectively). When stratifying the analyses
by sex, heritability estimates were slightly higher in women
than in men, although CIs were overlapping (Supplemental
Figure 1).

Associations between eating behavior patterns and obesity
measures

All of the 4 eating behavior patterns were positively correlated
with obesity measures, except for the avoidant eating behavior
pattern, which was not correlated with BMI, and the infrequent
and unhealthy eating behavior pattern, which was not correlated
with WC adjusted for BMI (Table 3). For both BMI and WC, the
highest phenotypic correlations were observed for the snacking
behavior pattern (rp = 0.35 and 0.32, respectively) and the
emotional and external eating behavior pattern (rp = 0.26 and
0.23, respectively). Thus, we decomposed these 4 correlations
into genetic and environmental components (Figure 3A, B).
Higher scores on the snacking and avoidant eating behavior
patterns were associated with a higher WC adjusted for BMI, but
these associations were very weak (Table 3). Therefore, we did
not decompose these correlations into genetic and environmental
components.

TABLE 2 Eating behavior patterns and factor loadings in varimax-rotated principal components

Snacking
Infrequent and

unhealthy eating
Avoidant

eating
Emotional and
external eating

Eigenvalue 4.00 2.43 1.38 1.09
Percentage variance explained 16.6 13.6 12.8 12.7
Variables Response coding

Diet quality score From healthy to unhealthy 0.00 0.33 0.24 0.04
How often do you eat breakfast? From usually to seldom 0.07 0.50 − 0.03 − 0.04
How often in a day do you usually eat? From usually to seldom -0.18 0.58 − 0.06 0.01
Regularity of your eating habits From regular to irregular 0.28 0.36 − 0.02 − 0.09
Alternating restriction and overeating style From seldom to usually 0.33 0.02 − 0.20 0.07
During meals I eat sufficiently—I don’t need to snack From usually to seldom 0.52 − 0.19 0.05 − 0.07
I replace my meals with snacks From seldom to usually 0.45 0.05 − 0.07 − 0.11
I eat most in the evenings From seldom to usually 0.28 0.19 − 0.01 0.14
I usually munch constantly in the evenings From seldom to usually 0.38 − 0.06 0.06 0.14
I tend to eat healthily From usually to seldom 0.19 0.14 0.36 − 0.05
I avoid greasy meals From usually to seldom 0.02 0.01 0.60 0.04
I avoid calories From usually to seldom − 0.04 − 0.08 0.63 − 0.02
While I am eating, I watch TV From seldom to usually − 0.02 0.22 − 0.05 0.40
I am tempted to eat according to advertisements From seldom to usually − 0.08 0.04 0.04 0.55
I reward myself with good food From seldom to usually − 0.02 − 0.08 − 0.01 0.56
I console myself by eating or drinking From seldom to usually 0.17 0.13 − 0.01 0.40

Sample size n = 3977.
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FIGURE 2 Proportion of variation of the eating behavior patterns and obesity measures explained by additive genes (A) and nonshared environmental
factors (E). The numbers within the bars are means and 95% CIs; n = 3000. WC, waist circumference.

Figure 3A shows the path diagram of the bivariate Cholesky
model decomposing the correlations between the snacking
behavior pattern and obesity measures (BMI and WC), and
Figure 3B shows the corresponding results for the emotional
and external eating behavior pattern and obesity measures (BMI
and WC). For the snacking and emotional and external eating

TABLE 3 Association between eating behavior patterns and obesity
measures

Obesity
measures

Pearson partial
correlation

Eating behavior patterns r P value

Body mass
index

Snacking 0.35 <0.001

Infrequent and unhealthy eating 0.12 <0.001
Avoidant eating 0.01 0.8
Emotional and external eating 0.26 <0.001

Waist circum-
ference

Snacking 0.32 <0.001

Infrequent and unhealthy eating 0.11 <0.001
Avoidant eating 0.04 0.02
Emotional and external eating 0.23 <0.001

Waist circum-
ference
adjusted for
BMI

Snacking 0.06 0.001

Infrequent and unhealthy eating 0.02 0.2
Avoidant eating 0.07 <0.001
Emotional and external eating 0.03 0.09

behavior patterns, the additive genetic correlations with both
obesity measures were higher than the nonshared environmental
correlations. The proportion of the covariance explained by genes
was 75% (95% CI: 61, 88%) and 71% (95% CI: 58, 93%) for
the snacking behavior pattern and BMI and WC, respectively;
and 75% (95% CI: 55, 87%) and 64% (95% CI: 44, 85%) for the
emotional and external eating behavior pattern and BMI and WC,
respectively.

Eating behavior patterns as mediators of genetic
susceptibility to obesity

As expected, the PRSBMI was positively associated with BMI
and WC. Among the 4 eating behavior patterns, only the snacking
and the infrequent and unhealthy eating behavior patterns
significantly mediated the association between the PRSBMI and
both obesity measures (BMI and WC) (Table 4). However, the
infrequent and unhealthy eating behavior pattern mediated this
association to a much weaker extent (see Supplemental Figure
2 for more details). The emotional and external eating behavior
pattern only mediated the association between the PRSBMI and
BMI.

A more detailed description of the pathways of the mediation
model for the snacking behavior pattern is shown in Figure 4.
The PRSBMI was positively associated with the snacking behavior
pattern, indicating that individuals with a higher PRSBMI are more
susceptible to snacking (a: β = 0.15 for BMI and β = 0.14 for
WC), and a higher loading on the snacking behavior pattern was
associated with a higher BMI and WC (b: β = 0.38 and 0.32,
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A1 A2

E2E1

BMI/WC Snacking behavior 
pattern

BMI: rg= 0.49 (0.41, 0.57)
WC: rg= 0.45 (0.35, 0.55)

A1 A2

E2E1

BMI/WC Emotional and external 
eating behavior pattern

(A) (B)

BMI: re= 0.21 (0.14, 0.29)
WC: re= 0.17 (0.10, 0.24)

BMI: rg= 0.38 (0.29, 0.47)
WC: rg= 0.32 (0.22, 0.43)

BMI: re= 0.16 (0.08, 0.23)
WC: re= 0.15 (0.08, 0.22)

FIGURE 3 (A) Path diagram of a bivariate Cholesky model for 1 member of a twin pair. Additive genetic (ra) and nonshared environmental (re) correlations
between BMI/WC and the snacking behavior pattern and 95% CIs. The covariance of the traits was decomposed into additive genetic (A) and nonshared
environmental (E) effects. All models were adjusted for age and sex; n = 527 monozygotic, 470 same-sex dizygotic, and 503 opposite-sex dizygotic pairs. (B)
Path diagram of a bivariate Cholesky model for 1 member of a twin pair. Additive genetic (ra) and nonshared environmental (re) correlations between BMI/WC
and the emotional and external eating behavior pattern and 95% CIs. The covariance of the traits was decomposed into additive genetic (A) and nonshared
environmental (E) effects. All models were adjusted for age and sex; n = 527 monozygotic, 470 same-sex dizygotic, and 503 opposite-sex dizygotic pairs.
WC, waist circumference.

respectively). These 2 pathways together represent the indirect
effect, which was β = 0.06 for BMI and β = 0.05 for WC
(Table 4).

When the analysis was limited to the mediation model through
the DQS, there was no mediation in the association between the
PRSBMI and obesity measures (data not shown).

When analyzing men and women separately (Supplemental
Table 3), we observed that the mediation model through the
snacking behavior pattern was similar in men and women,
although results were not statistically significant in men when
we analyzed the mediation model of the association between
the PRSBMI and BMI. The infrequent and unhealthy eating
behavior pattern significantly mediated the association between
the PRSBMI and BMI and WC in men but not in women, with
higher mediation percentages (6.1% for BMI and 10.0% for WC)
in men compared with the percentages in the overall sample
(3.4% for BMI and 4.2% for WC). The mediation through the
emotional and external eating behavior pattern was statistically
significant in women for BMI. Despite these differences, when
analyzing the models through the snacking, the infrequent
and unhealthy, and the emotional and external eating behavior
patterns, the 95% CIs were overlapping in both men and women.

The PRSBMI was not associated with WC adjusted for BMI
(data not shown). The associations between the PRSWHR and WC
adjusted for BMI are shown in Supplemental Table 4. Despite
an overall association between the 4 eating behavior patterns and
WC adjusted for BMI, eating behavior patterns did not mediate
any of these pathways.

Discussion
In this cross-sectional study of healthy young adults, we

showed that the association between the most recent PRSBMI and
obesity measures was partly mediated by the snacking behavior
pattern in men and women and to a lesser extent by the infrequent
and unhealthy eating behavior pattern in men. The association
between the PRSBMI and BMI was also partly mediated by the
emotional and external eating pattern. In the twin modeling,
the associations between the snacking and the emotional and
external eating behavior patterns and BMI and WC were largely
explained by genetic factors, supporting the inference that the
snacking and the emotional and external eating behavior patterns
and obesity share a common underlying genetic architecture.
Another important finding was that eating behavior patterns were
moderately heritable, with the remaining variance accounted for
by nonshared environmental factors.

Our results are novel because, to the best of our knowledge,
research to date has not yet employed polygenetic risk and
classical twin modeling simultaneously to study the genetic
architecture underlying eating behavior patterns and obesity.
Because the mediation by snacking has not been reported
previously, it is difficult to compare our results with the previous
literature. A recent review from Vainik et al. (46) supported
that uncontrolled eating might involve other eating behavior
constructs, which include the overeating behavior. Our snacking
behavior pattern had a high loading on alternating restriction and
overeating style, somewhat similar to these previous constructs
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TABLE 4 Structural equation modeling of the PRSBMI and obesity measures1

BMI (n = 949) WC (n = 874)

β (95% CI) P value β (95% CI) P value

Mediation model through snacking
Total effect of PRSBMI 0.29 (0.20, 0.38) <0.001 0.24 (0.15, 0.32) <0.001
Direct effect of PRSBMI 0.23 (0.16, 0.31) <0.001 0.19 (0.12, 0.26) <0.001
Indirect effect (via snacking) of PRSBMI on obesity measures 0.06 (0.02, 0.09) 0.002 0.05 (0.02, 0.08) 0.003
Percentage mediation 20.7 20.8

Mediation model through infrequent and unhealthy eating
Total effect of PRSBMI 0.29 (0.20, 0.38) <0.001 0.24 (0.15, 0.32) <0.001
Direct effect of PRSBMI 0.28 (0.20, 0.36) <0.001 0.23 (0.15, 0.31) <0.001
Indirect effect (via infrequent and unhealthy eating) of PRSBMI on obesity measures 0.01 (0.00, 0.02) 0.04 0.01 (0.00, 0.02) 0.04
Percentage mediation 3.4 4.2

Mediation model through avoidant eating
Total effect of PRSBMI 0.29 (0.20, 0.38) <0.001 0.24 (0.15, 0.32) <0.001
Direct effect of PRSBMI 0.29 (0.21, 0.38) <0.001 0.24 (0.16, 0.32) <0.001
Indirect effect (via avoidant eating) of PRSBMI on obesity measures 0.00 (−0.01, 0.00) 0.2 0.00 (−0.01, 0.00) 0.2
Percentage mediation — —

Mediation model through emotional and external eating
Total effect of PRSBMI 0.29 (0.20, 0.38) <0.001 0.24 (0.15, 0.32) <0.001
Direct effect of PRSBMI 0.26 (0.19, 0.34) <0.001 0.22 (0.15, 0.29) <0.001
Indirect effect (via emotional and external eating) of PRSBMI on obesity measures 0.03 (0.00, 0.05) 0.03 0.02 (0.00, 0.04) 0.1
Percentage mediation 10.3 —

1Standardized regression coefficients (β) and 95% CIs. All models were adjusted for age, sex, and genetic principal components, and clustering was
taken into account in all analyses. PRSBMI, polygenic risk score for BMI; WC, waist circumference.

(46). Our results are largely consistent with other studies using
a PRSBMI based on <100 SNPs, that have previously reported
mediation by undesirable eating behavior traits (21–23). In
line with our findings, 2 previous studies have shown that
the association between a 90-loci PRS for obesity and obesity
measures was partially mediated by uncontrolled eating and
emotional eating (21, 22). A more recent study reported similar

results for disinhibition and susceptibility to hunger, a behavior
similar to uncontrolled eating, as a mediator of the genetic
susceptibility to obesity (23). Emotional eating was identified as
a mediator of the association between a 90-loci PRS for obesity
and BMI and WC in the study by Konttinen et al. (21). In
that study, the indirect association had a β coefficient of 0.02,
and the total effect was β = 0.14 and 0.17 for BMI and WC,

PRSBMI
Snacking behavior 

pattern BMI/WC

BMI: β= 0.23 (0.16, 0.31)
p <0.001

WC: β= 0.19 (0.12, 0.26)
p <0.001

BMI: β= 0.15 (0.08, 0.22)
p <0.001

WC: β= 0.14 (0.07, 0.21)
p <0.001

BMI: β= 0.38 (0.29, 0.48)
p <0.001

WC: β= 0.32 (0.23, 0.41)
p <0.001

c

ba

FIGURE 4 Results from the mediation model of the association between PRSBMI and obesity measures. Standardized regression coefficients (95% CIs)
from the mediation model of the snacking behavior pattern. All models were adjusted for age, sex, and genetic principal components, and twin pair clustering
was taken into account in all analyses. The indirect effect (or mediation effect) is represented by ab, and c represents the direct effect; total effect = c + ab.
Ellipses represent latent factors and rectangles represent observed variables. n = 949 for BMI and n = 874 for WC. PRSBMI, polygenic risk score for BMI;
WC, waist circumference.
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respectively, which are similar in the present study, although our
results were not significant for WC. Previous studies, including
that by Konttinen et al., mainly assessed eating behaviors with
different versions of the Three-Factor Eating Questionnaire (28,
29), whereas we used a questionnaire that was specifically
developed for the FT16 study (27, 32). Another feature specific
to our study is that, in addition to eating behaviors, we also
included information about diet quality, which was assessed by
a previously validated questionnaire (32). Furthermore, all of
the previous studies used a PRSBMI with <100 loci to capture
genetic susceptibility to obesity, whereas we used the latest
PRS by incorporating all available information regardless of the
significance level (24).

Both WHR and WC adjusted for BMI have been suggested as
indirect measures of abdominal obesity (47). Previous research
has shown that a PRSWHR is not associated with obesity measures
(48), most likely because genetic variants associated with WHR
are highly expressed in the adipose tissue (49) instead of the
brain (19), making mediation by appetitive traits less plausible.
In line, in the present study, the PRSBMI was not associated with
WC adjusted for BMI. Further, eating behavior patterns did not
mediate the associations between the PRSWHR and any of the
obesity measures.

In the present study, we found that most of the eating
behavior patterns were significantly associated with obesity
measures, similarly to previous studies (13, 50, 51). The strongest
associations were seen with the snacking behavior pattern and
the emotional and external eating behavior pattern, and genetic
factors were largely underlying these associations. These findings
accord with other studies on other eating behavior traits, such as
that by Keskitalo et al. (13), who showed that the associations
between uncontrolled eating and BMI as well as emotional eating
and BMI are mostly explained by genetic factors. Similarly, twin
studies investigating the intake of unhealthy foods and beverages,
such as fast food (52) and soda (53), have shown associations with
BMI—which are largely explained by genetic factors common
to both. Therefore, together with previous research, our results
suggest that eating behavior patterns share a common genetic
liability with obesity measures.

Eating behavior patterns were moderately heritable, suggest-
ing that they are influenced by both genetic and environmental
factors. In general, our heritability estimates of eating behavior
patterns appeared to be somewhat lower than those measured with
the Three-Factor Eating Questionnaire (13, 51). In the present
study, we found that the emotional and external eating behavior
pattern was moderately heritable, similar to the female Finnish
sample from Keskitalo et al. (13) (h2 = 31%). Another study
showed heritability estimates of ∼43% for restrained eating (50),
somewhat similar to avoidant eating in our study, which included
avoiding greasy meals and avoiding calories eating style. Our
heritability estimates for BMI are consistent with a large-scale
meta-analysis and pooled analyses on BMI (10–12).

Previous research suggests that genetic factors from heritabil-
ity estimates provide more evidence for the genetic contribution
to obesity susceptibility than genetic variants from GWASs, due
to the large difference in the percentage of variance explained
between them (54). Twin studies have demonstrated that a large
proportion of the variance in BMI as well as appetitive traits is
explained by genetic factors in childhood and adulthood (2, 10,
11, 55). GWASs have recently increased the knowledge base of

common genetic variants associated with obesity (17), and the
PRS used in this study explained 3 times as much of the variance
(8.3%) than the PRS reported in previous studies (3%) (21–23).
In summary, based on the most recent and comprehensive PRS
to date, our results strongly suggest that obesity susceptibility
genes influence eating behavior patterns and obesity traits
consequently.

Our study has several potential limitations. The main limitation
is its cross-sectional design; we therefore cannot confirm the
causal directions of the relations between eating behavior patterns
and obesity measures. However, a previous longitudinal study
tested the reciprocity between restrained eating and BMI and
WC to determine their potential relations, and they indicated that
restrained eating was a marker for previous weight gain instead
of a trigger of future weight gain (56). Future research is needed
to carefully test the direction of these relations in a longitudinal
design. Despite this, the key question of this study was to examine
the genetic architecture underlying obesity measures and eating
behavior patterns. We focused on the role of genes rather than
the causal associations between obesity measures and eating
behavior patterns. Furthermore, the eating styles questionnaire
used in this study is a short tool, specifically developed for
the FT16 cohort, and therefore is less detailed than other well-
established long questionnaires. In this study, we were interested
in the overall eating style of the study participants rather than
the cognitive aspects of eating and eating behaviors that are
assessed by the Three-Factor Eating Questionnaire (28, 29), used
in previous similar studies (21–23). Moreover, previous studies
that have used this questionnaire in the same cohort have shown
associations between these eating styles with obesity (27) as well
as diet quality (32). As in all studies with self-reported data, a
further limitation of this study is that eating styles, diet quality,
and obesity measures were self-reported by the participants,
therefore misreporting might have occurred, especially in women
and obese people, because they tend to underreport nutrient
intakes and behaviors considered unhealthy (57, 58). Finally, the
generalizability of these results is subject to certain limitations
because we used a Finnish cohort of young adults with European
ancestry. Further studies are needed to test the generalizability of
these results in other non-Westernized populations.

Our study has some important strengths. To our knowledge,
this is the first study in adults that tested whether the genetic
susceptibility to obesity is mediated by eating behaviors by using
a PRS that included almost 1 million SNPs representing the
whole genome. We included a combination of twin modeling
with GWASs analyses based on very different underlying
assumptions. The robustness of our results based on these
different methods provides further evidence on the common
genetic background of eating behaviors and obesity measures.
Finally, the inclusion of diet quality in addition to eating behavior
patterns allowed us to assess an additional aspect of diet.

In conclusion, our findings support that eating behavior
patterns are moderately heritable. Snacking, and to a lesser extent
infrequent and unhealthy and emotional and external eating
behavior patterns, share a common genetic liability with obesity
measures. Obesity prevention efforts might benefit from focusing
on eating behavior change, particularly in genetically susceptible
individuals. Future longitudinal and intervention studies will be
beneficial to understand how eating behavior patterns and genetic
susceptibility to obesity impact life-long weight outcomes.
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