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Non-neutralizing antibodies elicited by
recombinant Lassa–Rabies vaccine are critical for
protection against Lassa fever
Tiago Abreu-Mota 1,2,3, Katie R. Hagen4, Kurt Cooper4, Peter B. Jahrling4,5, Gene Tan6,7, Christoph Wirblich1,

Reed F. Johnson5 & Matthias J. Schnell1,8

Lassa fever (LF), caused by Lassa virus (LASV), is a viral hemorrhagic fever for which no

approved vaccine or potent antiviral treatment is available. LF is a WHO priority disease and,

together with rabies, a major health burden in West Africa. Here we present the development

and characterization of an inactivated recombinant LASV and rabies vaccine candidate

(LASSARAB) that expresses a codon-optimized LASV glycoprotein (coGPC) and is adju-

vanted by a TLR-4 agonist (GLA-SE). LASSARAB elicits lasting humoral response against

LASV and RABV in both mouse and guinea pig models, and it protects both guinea pigs and

mice against LF. We also demonstrate a previously unexplored role for non-neutralizing LASV

GPC-specific antibodies as a major mechanism of protection by LASSARAB against LF

through antibody-dependent cellular functions. Overall, these findings demonstrate an

effective inactivated LF vaccine and elucidate a novel humoral correlate of protection for LF.
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Lassa fever (LF) is a viral hemorrhagic fever (VHF) whose
etiologic agent is Lassa virus (LASV), a bio-safety level 4
(BSL-4) pathogen. Similar to other VHFs caused by other

viruses, such as Ebola virus (EBOV) and Marburg virus (MARV),
LF can be highly fatal and no vaccine is currently available1. The
need to develop vaccines against emerging viral pathogens
became starkly apparent during the 2014–2016 West Africa Ebola
epidemic2–4. Indeed, reaffirming the urgency and importance of
preventive measures, an unprecedented major LF surge, with
25.4% high case fatality rate, is currently unfolding in Nigeria5.
Unlike most other BSL-4 agents which cause temporally and
geographically confined epidemics, LF is believed to be wide-
spread throughout most of West Africa, with an estimated
100,000–300,000 humans infected annually6,7. As many as 80% of
LF exposures are mildly symptomatic and thus go unreported6,
however, the case fatality rate of LF has been reported to reach as
high as 50%8. Such discrepancy can be dependent on both the
contributing strain and the population afflicted (e.g., pregnant
women are especially susceptible)9,10. Even among survivors, LF
can cause severe neurosensory sequela; it is a leading cause of
viral-induced neurosensory deafness in West Africa8.

A logistical hurdle for an effective LASV treatment is the often
poorly equipped health infrastructure in developing nations such
as Guinea or Sierra Leone11. While the off-label use of ribavirin
seems effective in treating LF, the drug is often accompanied by
severe side effects. Coupled with the presence of conflict-stricken
regions, the relative remoteness of some human settlements and
the widespread presence of LASV’s natural reservoir, Mastomys
natalensis (common African rat), both diagnosis and treatment of
LF is a challenging task12. With climate change and increasing
globalization, the likelihood of LF becoming a global threat
increases, thus making development of a vaccine for LASV a high
priority.

Unfortunately, undefined correlates of protection for LF have
impeded LASV vaccine development. Studies with experimental
live vaccines, such as ML29 (a Mopeia–Lassa virus reassortment-
based vaccine) and recombinant vaccina virus expressing LASV
glycoproteins, have shown that cellular immunity occurs in the
absence of humoral response and successfully protects treated
animal model13,14. Additionally, these findings, together with
findings on another promising LASV vaccine platform, VSV-
LASV, have indicated that either no correlation, or even a
negative correlation, exists between LASV humoral response and
vaccine efficacy15,16. Nevertheless, it has also been shown in some
animal models that cellular immunity may be the source of
immunopathology seen in LF17–19. Meanwhile, studies have
reported that passive sera transfer therapy from LF survivors
protects against disease and death in animal models of LF, sup-
porting the role of humoral response against disease
development20,21.

LASV's genome, as a member of the Arenaviridae family,
encodes four proteins, including an envelope glycoprotein that is
responsible for viral entry22. LASV’s glycoprotein is expressed as
a polyprotein and is cleaved into SSP, GP1, and GP2 to form a
mature trimeric glycoprotein complex (GPC) on the surface of
host cells and virions22. GPC is an appealing immunogen because
of the surface exposure of GPC in LASV virions and its crucial
function for viral entry16,23–26. Indeed, human monoclonal
antibodies that target GPC and neutralize LASV in vitro were
recently shown to protect guinea pigs and non-human primates
(NHPs) exposed to LASV from disease25,27. However, the efficacy
of GPC-specific non-neutralizing mAbs was not investigated and
neutralizing potency in vitro did not necessarily correlate with
protection25,26. Furthermore, the occurrence of neutralizing
antibodies (NAbs) against LASV is uncommon in survivors and
has been poorly elicited by previous LASV vaccine strategies28.

Besides direct viral neutralization, antibodies can also lead to
effector cell activation and clearance of the viral antigen-
expressing cells through antibody-dependent cellular cytotoxi-
city (ADCC) or phagocytosis (ADCP)29. Through this mechan-
ism, antibodies bound to antigen interact with Fcγ-receptor-
bearing immune effector cells, such as macrophages or NK cells,
through Fc region cross-linking29 that triggers clearance of the
antigen-expressing cell. As such, ADCC/ADCP are among several
mechanisms that bridge the adaptive and innate immune
responses. ADCC/ADCP has been shown to be highly relevant
for protecting against and clearing several different viruses,
including HIV, influenza virus, and EBOV30–34. However, the
role of ADCC, ADCP, and other antibody-mediated effector
functions in LASV infection and disease outcome has not been
investigated.

Here we report the use of a rabies virus (RABV)-based vaccine
vector as an inactivated dual vaccine for LASV and RABV. This
vaccine, named LASSARAB, expresses a codon-optimized version
of LASV GPC (coGPC) in addition to RABV G. LASSARAB
elicits lasting humoral response against LASV and RABV in both
mouse and guinea pig models, and it protects both against LF. In
developing LASSARAB, we also sought to uncover its mechanism
of protection, which our results suggest is dependent on a pre-
viously uncharacterized antibody-mediated protection of LASV
through effector cell functions of GPC-targeted non-neutralizing
antibodies (Non-NAbs).

Results
Generation of rhabdoviral-based vectors expressing LASV
GPC. To generate a recombinant RABV-expressing LASV GPC,
we used the previously described vector BNSP33335. BNSP333 is
a modified RABV vaccine strain (SAD B19) with an arginine-to-
glutamate change at position 333 of RABV G that further reduces
neurotropism and improves its safety profile35. A codon-
optimized LASV-GPC was cloned into BNSP333 using two
unique restriction sites (BsiWI and NheI) that flank a RABV
transcription start/stop signal between the RABV N and P genes,
and it was designated as LASSARAB (Fig. 1). Utilizing LAS-
SARAB, we also constructed LASSARAB-ΔG by deleting the
RABV G. For a control vector, we constructed a recombinant
vesicular stomatitis virus (VSV) expressing the same GPC as the
RABV vector (rVSV-GPC); similar to LASSARAB-ΔG, it lacks its
native glycoprotein (G). In several prior NHP studies, similar
rVSV-GPC vectors have been used as live-attenuated (replication-
competent) vaccine candidates for LASV with promising
results15,16. As an additional control, we used BNSP333-
expressing Ebola GP (FILORAB1), a vaccine extensively char-
acterized by our group36–38.

GPC is transported to the cell surface and incorporated into
virions. Successful utilization of LASSARAB and LASSARAB-ΔG
as vaccines depends on LASV GPC expression at the cell surface
membrane. VERO cells were infected at a multiplicity of infection
(MOI) of 0.1 or 1, and cell surface expression of LASV GPC and
RABV G was evaluated by immunofluorescence and flow cyto-
metry at 48 h post-infection (Figs 2a, b). Immunostaining with
antibodies directed against either LASV GPC or RABV G
detected both LASV GPC and RABV G cells on the cellular
surface of VERO cells infected with LASSARAB (Figs 2a, b panel
LASSARAB). In cells infected with FILORAB1, only RABV G was
detected on the cell surface as expected (Figs 2a, b, panel
FILORAB1) whereas for the LASSARAB-ΔG and rVSV-GPC-
infected cells, LASV GPC but not RABV G was detected on the
cell surface (Fig. 2b panel LASSARAB-ΔG/rVSV-GPC).
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To analyze whether LASV GPC affects RABV growth kinetics,
we performed a multi-step growth curve analysis of LASSARAB,
LASSARAB-ΔG, and FILORAB1 (Fig. 2c). LASSARAB and
FILORAB1 grew similarly and reached titers of 108 after 72 h.
LASSARAB-ΔG grew to a higher titer than the RABV G-
containing construct LASSARAB, indicating that LASV GPC is
being functionally expressed. The higher titer achieved by
LASSARAB-ΔG might be explained by its shorter genome or its
expression of two glycoproteins, or both.

LASSARAB's potential as an inactivated vaccine depends on
LASV GPC incorporation in LASSARAB-inactivated virions. As
such, sucrose-purified virions from infected VERO cells were
analyzed by SDS-PAGE gel, western blotting, and ELISA (Figs 2d,
e, and Supplementary Fig. 1). SDS-PAGE protein stain of purified
FILORAB1 (control) and LASSARAB virions showed protein
migration in the expected size for the RABV proteins, as can be
seen by the FILORAB1 control, as well as proteins consistent with
the molecular weight of LASV GP2 (40–38 kDa). LASV GP1
(47–42 kDa) is comigration with RABV P and therefore difficult
to detect. However, LASV GP1/GP2 incorporation in LASSARAB
was confirmed by western blot analysis which demonstrated
both GP1 (48–42 kDa) and GP2 (40–38 kDa) consistent
with their respective molecular sizes (Fig. 2e and Supplementary
Fig. 1)39–41. Glycosylation patterns in both GP1 and GP2 similar
to previous studies were demonstrated by mobility shift assay
using LASSARAB virions treated with either Endo H or PNGase
F in comparison with untreated virions (Supplementary Fig. 1e
and f)39–41. Finally, to confirm that LASV GPC on inactivated
LASSARAB particles was conformationally resent in its pre-
fusion state, particles were analyzed by the GPC conformational
sensitive mAb 37.7H26,42 (Supplementary Fig. 1g).

LASSARAB is avirulent in mice. Expression and incorporation
of LASV GPC in the highly attenuated BNSP333 live vaccine
vector might change its tropism and thus increase its patho-
genicity. To determine whether this is the case, Swiss Webster
mice were inoculated both intranasally (IN) and intraperitoneally
(IP) with 106 foci-forming units (ffu) of LASSARAB, LASSARAB-
ΔG, FILORAB1, or 106 plaque-forming units (pfu) rVSV-GPC, or
PBS. Animals were monitored for disease (e.g., hunched back,
ruffled fur) and changes in weight for 28 days (Fig. 3a). IN
exposure with BNSP (RABV group), which has been shown to be

pathogenic after IN exposure, was used as a positive control,
while FILORAB1 and PBS were used as negative controls because
previous studies had demonstrated that they are not virulent43,44.
On day 8, RABV-infected animals started to exhibit clinical signs
of rabies, particularly weight loss. (Fig. 3a, RABV group). Mice
inoculated with LASSARAB or FILORAB1 showed no clinical
signs of disease. For the LASSARAB-ΔG IN inoculated group,
one mouse died at day 14 without displaying previous clinical
signs or weight loss (Fig. 3a, LASSARAB-ΔG group, m2). How-
ever, three mice from the rVSV-GPC group displayed signs of
neurological deficits (Fig. 3a, rVSV-GPC group, m2/4/5); two
succumbed and one survived, indicating pathogenicity after IN
inoculation of this vaccine. None of the animals inoculated
through the IP route displayed clinical signs of disease.

We further characterized the safety profile of the infectious
LASSARAB vaccine by intracranial inoculation (IC) in both adult
BALB/c and adult severe combined immunodeficiency (SCID)
mice (3b). Increased pathogenicity was not observed following
infections with LASSARAB compared with BNSP333 in either
Balb/C or SCID mice (Fig. 3b). Finally, to confirm absent or
decreased pathogenicity in a more sensitive model44, Swiss
Webster suckling mice were IC-exposed with LASSARAB or
BNSP333 (Fig. 3c). Independent of the virus dose used,
LASSARAB or BNSP333 suckling mice started to succumb to
the infection by day 7.

Live LASSARAB does not induce LASV-specific GPC IgGs. We
first evaluated immunization with replication competent vaccines.
All live-attenuated (replication-competent) RABV based vaccines
will be referred from now on with an rc- suffix (e.g., rc-LAS-
SARAB). rVSV-GPC is always used as replication competent
vaccine. C57BL/6 mice were intramuscularly immunized on day 0
with 106 ffu rc-LASSARAB, rc-LASSARAB-ΔG, rc-FILORAB1, or
106 pfu of rVSV-GPC. Humoral immune responses were ana-
lyzed by a newly developed LASV GPC-specific ELISA bi-weekly
until day 42 post-immunization (Supplementary Fig. 1 and 2). By
day 14, both rc-FILORAB1- and rc-LASSARAB-immunized mice
had high titers of RABV-G-specific total IgG, and by day 28,
maximum titers were achieved and were maintained until day 42,
as seen previously (Supplementary Fig. 2)36. rc-LASSARAB-ΔG
and rVSV-GPC immunized mice did not seroconvert to RABV-
G. In contrast, LASV GPC-specific titers were detected in
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Fig. 1 Diagram of vaccine constructs and controls. BNSP333 is the parental vector and FILORAB1, the control used, is based on BNSP333 with a codon-
optimized Zaire Ebola Virus Glycoprotein (EBOV GP) inserted between N and P through the BsiWI and NheI restriction digest sites. LASSARAB was
generated in a similar manner as FILORAB1, from BNSP333 by cloning a codon-optimized version of Lassa virus glycoprotein (LASV GPC) in the BsiWI and
NheI restriction digest sites. LASSARAB-ΔG was further generated from LASSARAB by removing the native rabies glycoprotein (G) by using the restriction
digest sites SmaI and PacI. rVSV-GPC was generated by replacing the native VSV glycoprotein (G) by LASV GPC at the same sites. rVSV-GPC was created
to be used as a control vector and as a scaffold to produce a native LASV GPC antigen for ELISAs (see Methods section)
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rc-LASSARAB-ΔG immunized mice only, and only at low
titers on days 28 and 42 (Supplementary Fig. 2). rVSV-GPC had
a significant LASV GPC-specific immune response (Fig. 4c,
purple line).

Inactivated-LASSARAB virions induce humoral response in
mice. We also explored the humoral immunogenicity of inacti-
vated LASSARAB virions. Inactivated LASSARAB or FILORAB1
virions will simply be referred as LASSARAB or FILORAB1. We
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intramuscularly administered 10 μg of β-propiolactone (BPL)-
inactivated LASSARAB or FILORAB1 particles to C57BL/6 mice
following the standard three-inoculation RABV vaccination
schedule (Fig. 4a). Both vaccines were further tested in two dif-
ferent formulations: either in PBS only (LASSARAB/FILORAB1
groups), or adjuvanted with TLR4 receptor agonist (Glucopyr-
anosil Lipid A) in a stable emulsion (LASSARAB+GLA-SE
group)45. GLA-SE is a clinical-trial stage adjuvant that has been
shown to enhance the breadth and quality of humoral immune
responses for FILORAB1 and influenza virus37,38,46. Blood was
collected and the humoral immune response was analyzed peri-
odically until day 42 (Fig. 4 and Supplementary Fig. 2). Analysis
of total IgG against LASV GPC by ELISA indicated seroconver-
sion at day 14 by both LASSARAB and LASSARAB+GLA-SE
groups; by day 28 both achieved statistical significance in com-
parison to control groups (Fig. 4b). Since endpoint titers of both
inactivated LASSARAB and LASSARAB+GLA-SE had achieved
appreciable total IgG responses against LASV GPC, we examined
the quality of this humoral response by IgG2c and IgG1 sub-
isotype-specific LASV GPC ELISA. IgG1/IgG2c ratios lower than
1.0 indicated an increasing Th1-bias response, which is desirable
for antiviral responses. LASSARAB+GLA-SE not only achieved a
significantly higher IgG2c response than LASSARAB, but also
achieved consistently lower and uniform IgG1/IgG2c ratios (F-
test, p < 0.01), thus decreasing the variability of the immune
response between mice (Figs 4d, e).

LASSARAB does not induce neutralizing antibodies. The
development of NAbs was investigated for LASSARAB using a
pseudotyped VSV in vitro assay. This assay utilizes a single round
ΔG-rVSV pseudovirus (ppVSV) which expresses both NanoLuc
and eGFP as reporter genes38,47. When pVSV pseudotyped with
RABV G was used, the sera of either replication-competent or
inactivated LASSARAB achieved high NAbs against RABV G (>
10,000) compared to negative controls (Fig. 5, RABV). Since
RABV G NAbs are a correlate of protection against RABV, these
results indicated that LASSARAB is a suitable vaccine against
RABV. Protection by RABV NAbs was further confirmed by
using the WHO standard (Figs 5a, c) in which values > 0.5 IU/ml
are considered protective against RABV; every group achieved
IU/ml values much higher than 0.5 IU/ml, indicating that the
addition of LASV GPC in the RABV backbone did not com-
promise its ability to generate RABV NAbs. Conversely, when
ppVSV was pseudotyped with LASV GPC, we were not able to
detect GPC-specific NAbs both in the presence or absence of
complement (Supplementary Fig. 3), whereas the control human
mAbs (12.1F, 25.10C and 37.7H) exhibited neutralizing activity at
similar concentrations as described26, indicating that our assay
was functional (Figs. 5a, b).

LASSARAB+GLA-SE is efficacious in guinea pigs. We eval-
uated LASSARAB vaccine efficacy using outbred Hartley guinea
pigs and the guinea pig-adapted LASV48. Six groups of ten
Hartley guinea pigs were used (Fig. 6a): three groups were

immunized with inactivated LASSARAB+GLA-SE particles once
(1), twice (2), or three times (3); two groups were immunized
with replication competent LASSARAB (rc-LASSARAB) or
rVSV-GPC; and one group received RabAvert. All groups were
challenged 58 days after the primary immunization with 104 pfu
of the guinea pig-adapted LASV Josiah strain. The animals
were monitored for viremia and clinical signs were recorded daily
up to day 47 post-challenge (Figs 6b, c). Significant protection
was observed for animals immunized three times with LAS-
SARAB+GLA-SE (p= 0.0019) or replication competent rVSV-
GPC (p= 0.0008) (Fig. 6b, red and purple lines). Guinea pigs
inoculated with rc-LASSARAB or immunized once or twice with
LASSARAB+GLA-SE showed no significant protection but a
trend toward it. Interestingly, remarkably different clinical signs
were observed in the two groups that were protected against
LASV exposure (Fig. 6c, rVSV-GPC&LASSARAB+GLA-SE
(−58, −51, −30) groups). While all animals in rVSV-GPC vac-
cinated group had an onset of clinical signs by day 12, all but two
of the LASSARAB+GLA-SE immunized animals were free of
clinical signs of disease. Curiously, in endpoint qPCR LASV RNA
viremia analysis (Fig. 6d, survivors group), ~ 20% of surviving
animals across all groups (except rc-LASSARAB and RabAvert)
had an average of 105 LASV RNA copies per ml, indicating that
despite being protected, some viremia was still present (Fig. 6d).

Next, we analyzed endpoint NAbs titers by LASV GPC
pseudotyped ppVSV (Fig. 6e). The NAb response was highly
variable across groups, being present in both survivors and
succumbed animals with no significant difference between them
(p= 0.18). These data indicated that either NAbs play a minor
role in survival or, in the case of the succumbed animals, develop
too late in the infection to play a significant role.

The absence of NAbs against LASV across survivors led us to
investigate correlates of protection in surviving guinea pigs by
analyzing total IgG levels against LASV GPC in both pre-
challenge and post-challenge serum (Figs 6f, g). As shown in
Fig. 6f, the groups that were protected against challenge, rVSV-
GPC and LASSARAB+GLA-SE (3), had significantly higher titers
of LASV GPC specific IgG (p= 0.0001 and p < 0.0001, respec-
tively) in the pre-challenge sera when compared to RabAvert
group. When post-challenge terminal sera were assayed (Fig. 6g),
concentrations of LASV GPC-specific IgG were significantly
higher in survivors compared to animals that succumbed (p <
0.0001). Overall, our data suggest that, in both prior and post-
exposure to LASV, higher levels of non-neutralizing LASV GPC-
specific IgGs correlate with protection.

LASSARAB induced non-neutralizing antibodies stimulate
ADCC. Once we found that a high LASV GPC-specific IgG titer
with low or no NAbs correlated with protection in the LAS-
SARAB+GLA-SE group, we determined whether non-NAb can
mediate protection through cell-mediated mechanisms, such as
ADCC or ADCP. For this purpose, we used sera from mice
immunized twice (on day 0 and day 28) with LASSARAB+GLA-
SE (LASSARAB sera) or FILORAB1+GLA-SE (control)

Fig. 3 Evaluation of LASSARAB, LASSARAB-ΔG, and rVSV-GPC pathogenicity. a Weight curves of 6- to 8-week-old female Swiss Webster mice that were
inoculated intranasally with 105 ffu of either LASSARAB, LASSARAB-ΔG, or rVSV-GPC. As controls, mice were inoculated with the same dosage of either
BSNP parent vector (Rabies) without the 333 mutation in the Rabies G, FILORAB1, rVSV-EGFP, or Mock (PBS). Weight is standardized as percentage of
weight loss or gain in comparison with first day of exposure. Rabies virus-infected animals developed clinical signs on day 8 with further weight loss until
day 11 when endpoint criteria were reached. In LASSARAB-ΔG one mouse died at day 14 without displaying any signs or weight loss. In rVSV-GPC, three
mice displayed signs of neurological deficit with two succumbing and one surviving. All other mice showed no signs of pathology. b Survival curves of
BALB/c or SCID mice that were subjected to intracranially (IC) exposure with either LASSARAB or BNSP333. No signs of disease nor death were observed
post- exposure. c IC exposure of Swiss Webster suckling mice with either LASSARAB or BNSP333. Suckling mice started succumbing to infection by day 7
in BNSP333 group and survived as long as day 12 in LASSARAB group with none surviving by the end of the study
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(Supplementary Fig. 3). First, we analyzed NK cell-mediated
ADCC activity using an in vitro assay modified from a previously
described rapid and fluorometric antibody-dependent cellular
cytotoxicity (RFADCC)49. Briefly, we developed a stable 3T3 cell
line expressing LASV GPC (3T3-LASV) and used it as target cells,
and purified murine C57BL/6 NK cells as effectors, as described
in Methods and Supplementary Fig. 3. 3T3-LASV cells were
incubated with either LASSARAB sera or control, and different
ratios of effector cells to target cells (E:T) were used (Fig. 7a and
Supplementary Fig. 3). In the presence of LASSARAB sera,
murine NK cells mediated significantly more killing (p < 0.01) at
any E:T compared to controls (Fig. 7a). This effect was reduced to
background levels when another 3T3-based cell line expressing an
irrelevant viral glycoprotein (3T3-MARV) was used as a target
cell (Supplementary Fig. 3).

To determine which antibody isotype is important for ADCC-
mediated killing of 3T3-LASV, we isolated IgG from the sera and
conducted the assay with 40 µg/ml of either purified IgG or IgG-
depleted sera (Fig. 7b and Supplementary Fig. 3). Again, killing of
3T3-LASV was significantly higher in the presence of LASV-
specific purified IgG than in the control; in contrast, target cell

cytotoxicity was reduced to background levels when IgG-depleted
sera were used. Together these findings indicate that ADCC is
mediated by the LASV GPC-specific IgG.

Macrophages mediate ADCP after immunization with LAS-
SARAB. To examine whether other antibody-dependent cell-
mediated mechanisms are involved in the clearance of LASV, we
modified our ADCC assay to test if macrophages are involved in
ADCP. As seen for the NK cells, peritoneal C57BL/6 macro-
phages (IC-21) induced 3T3-LASV cell killing compared to
control sera when incubated with LASSARAB sera (Fig.7d and
Supplementary Fig. 3). Moreover, we observed that peritoneal
BALB/c macrophages (J774A.1) internalized 3T3-LASV cells in
the presence of LASSARAB sera, likely through ADCP (Figs 7c,
e). Target cell internalization was confirmed to be dependent
upon Fcγ-R activation as macrophages incubated with anti-Fcγ-
RIII mAb (but not anti-Fcγ-RI or anti-Fcγ-RIV) abolished 3T3-
LASV internalization to background levels (Fig. 7c).

Fcγ-receptor function is critical for protection in mice. We also
investigated the relevance of antibody cellular effector function
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Fig. 4 Analysis of the humoral response towards Lassa virus glycoprotein. C57BL/6 mice were immunized IM in the gastrocnemius muscle with either
10 μg of β-propiolactone inactivated viral particles in PBS or adjuvanted with 5 μg of GLA, a TLR-4 agonist formulated in 2% of stable emulsion (SE);
LASSARAB+GLA-SE, LASSARAB, FILORAB1 groups) and boosted two times with the same amount on day 7 and 28 (a). Immunizations with replication-
competent viruses were executed with a single time inoculation of 106 ffu or pfu virus IM in the gastrocnemius (rc-LASSARAB; rc-FILORAB1 groups and
rVSV-GPC). b The EC50 values (obtained from the 4PL regression ELISA curve) of the total IgG titers against LASV GPC are plotted since day 0 until day
42. Error bars are representative of the standard error mean (SEM) and is calculated from 15 mice per group. Statistical significance was calculated by
using 2-way ANOVA–post-hoc Tukey’s Honest Significant Difference Test. c ELISA of total IgG against LASV GPC of all day 42 groups are shown for all
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triplicates). d Day 35 EC50 antibody titer of IgG sub-isotype (IgG2c and IgG1) against LASV GPC of sera from LASSARAB+GLA-SE and LASSARAB group
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(ADCC and ADCP) in vivo. Because non-NAb effector function
in mice is dependent upon Fcγ receptor engagement, we used Fcγ
chain KO mice (Fcγ−/−)50 to test whether non-NAb against
LASV GPC are as relevant in protection against LF as our pre-
vious results suggest. To that end, we developed a surrogate LASV
murine model utilizing rVSV-GPC (Supplementary Fig. 4), since
LASV is a BSL-4 agent with no established LASV murine model.
Because rVSV-GPC expresses LASV GPC as its sole glycoprotein,
it should have a similar tropism to LASV, and such approach has
been a strategy used elsewhere for other VHF viruses51–53. Mice
were made more susceptible to rVSV-GPC by blocking the
interferon-α/β receptor (IFNAR) with anti-IFNAR mAb followed
by an IP exposure of rVSV-GPC 24 h later54.

BALB/c (WT) and BALB/c Fcγ−/− mice were immunized
twice with either LASSARAB+GLA-SE or FILORAB1+GLA-SE
(controls) in a total of four groups (Fig. 8a). On day 42 post-
primary immunization, mice were exposed IP with 104 pfu of
rVSV-GPC and clinical signs and weight were monitored (Fig. 8b
and Supplementary Fig. 4). WT LASSARAB immunized mice
mostly resisted infection, with 8/10 mice having only transient
weight loss (Fig. 8b and Supplementary Fig. 4, continuous orange
line). Meanwhile, all (10/10) of the Fcγ−/− LASSARAB mice
quickly lost weight and succumbed to infection by day 5, with
some showing signs of hemorrhage (Fig. 8b and Supplementary

Fig. 4 dashed orange lines) indicating that Fcγ is essential to
control viral infection in LASSARAB immunize mice. In
FILORAB1 immunized mice (control), both WT and Fcγ−/−

groups had a similar outcome, with 2/5 mice of each group
surviving infection until study endpoint (Fig. 8b and Supple-
mentary Fig. 4, gray lines), demonstrating that both WT and
Fcγ–/– are equally susceptible to surrogate LASV exposure.

Upon pre-exposure analysis of GPC-specific IgG titers, both
WT and Fcγ−/− mice immunized with LASSARAB had
significantly higher titers in comparison with FILORAB1 control
mice (Fig. 8c and Supplementary Fig. 4c), but no LASV NAbs
were detected in neutralization assays (Supplementary Fig. 4b). In
post-exposure analysis of LASV NAbs, surviving LASSARAB
immunized mice developed little to no neutralizing antibody
(Fig. 8d, orange symbols), while one WT FILORAB1 vaccinated
mouse developed modest levels of LASV NAbs (Fig. 8d). Overall
this data shows that previous LASSARAB immunization is
heavily dependent on non-NAb effector function activity in vivo
for protection against LASV.

Discussion
The WHO R&D Blueprint for Action to Prevent Epidemics55

defines LF as a priority agent for vaccine development.
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Accordingly, preferred vaccine requirements include: (1) a highly
favorable risk-benefit profile suitable for all age groups, (2)
practicality for non-emergency/preventive scenarios, (3) at least
90% efficacy in preventing disease, (4) high thermostability, and
(5) the possibility of co-administration with other vaccines.
LASSARAB appears to be the first inactivated LF vaccine to fulfill

most of these requirements as demonstrated in our study and
based on previous work done with the same platform for other
VHFs37. Another advantage to LASSARAB, as an inactivated LF
vaccine, is that it could potentially be used in pregnant women
and immunosuppressed patients, both of which are major risk
groups for LF. In addition to LF, LASSARAB also confers
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protection to rabies (Fig. 5b), which is a major health burden in
Africa56.

Most LASV vaccine studies have characterized the role of
humoral response against LASV as either a secondary mechanism
of protection or even detrimental to survival11. Such correlations
were drawn based on results measuring antibody responses
against LASV nucleoprotein (NP) or nonspecific LASV anti-
gens11,16,57. Although NP is highly immunogenic, it is neither
expressed on the surface of cells nor virions. As such, antibodies
directed against LASV NP should only have diagnostic value.
Meanwhile, GPC has been shown to be the most effective LASV
immunogen but, to our knowledge, no attempts were made to
correlate GPC-specific humoral response with LASV protec-
tion16,58–60. Thus, as part of LASSARAB characterization, we
were compelled to develop a GPC-specific antigen that is
expressed in its native conformation (Supplementary Fig. 1).
Throughout the development of LASSARAB, we observed that
replication-competent LASSARAB and replication-competent
LASSARABΔG were poor inducers of GPC-specific antibodies,
despite being able to induce RABV protective response (Figs. 4c,
5, and Supplementary Fig. 2). In contrast, when inactivated
LASSARAB immunizations were combined with a late boost (day
28 post-prime), high levels of LASV GPC-specific antibodies were
induced at later time points, especially when administrated with a
TLR-4 agonist (GLA-SE). This contrast might be attributed to the
fact that LASV GPC is a poor immunogen28,61 and, as such,
induction of antibodies against GPC might be dependent on
replication-competent vectors that achieve high or persistent viral
loads post immunization. Given that inactivated LASSARAB
incorporates LASV GPC, it can safely be administrated in higher
dosages in a prime/boost regimen and, as such, more antigen
might be available to prime follicular B helper T cells and B
cell response. The high effectivity of a TLR-4 agonist in inducing
higher levels of anti-LASV GPC antibodies with higher
quality (IgG2c bias) further corroborates recent findings
by Galan-Navarro et al.61 indicating that inactivated LASV vac-
cines might benefit of TLR-4 agonists. Nonetheless, no NAbs
against LASV pseudotypes were detected in either replication
competent or inactivated approaches (Figs 4, 5 and Supplemen-
tary Fig. 3 and 4).

Because it has been the case with vaccines for some other
viruses44,62,63, it might be expected that an effective LF vaccine
protects through NAbs. Sommerstein et al. have elegantly
demonstrated that LASV exposure or immunization in mice does
not induce LASV NAbs due to the LASV GPC’s glycan shield28.
Additionally, as recently shown by the important works of
Robinson JE et al. and Hastie et al., most potent LASV NAbs
(such as 37.7H) require very specific quaternary epitopes bridging

LASV GP1 and GP2, making it challenging to elicit through
immunization. Interestingly, these NAbs, instead of blocking
GPC receptor binding, achieve neutralization by stabilizing LASV
GPC in its pre-fusion conformation25,26,42. The lack of NAbs
induced with the several vaccine candidates, either replication
competent or inactivated, in our study (Fig. 5a) and in previous
published vaccine candidates, further corroborates this expecta-
tion11,23. Even after LASV exposure, only a small fraction of
human and animal survivors produce NAbs, findings that our
study further confirmed (Figs 6, 8)11,26,28. Additionally, we
showed that guinea pigs that succumbed to disease also had
NAbs, suggesting either that NAbs by themselves play a minor
role in protection or that they develop too late during infection to
impact outcome. Studies by Mire et al. have recently shown that
some LASV NAbs can mediate protection in NHPs and guinea
pigs when administrated prophylactically25,26. Although provid-
ing evidence that GPC specific mAbs can mediate protection
against Lassa Fever, the role of antibody-dependent effector cel-
lular functions was not evaluated and GPC-specific non-NAbs
were not used. Furthermore, LASV neutralizing potency in vitro
did not necessarily correlate with protection27. Together with the
findings in our study (Fig. 6), this raises the question whether
GPC-specific non-NAb play a role in protection through other
mechanisms, such as ADCC, since guinea pig survival post-LASV
exposure was correlated with high levels of GPC-specific non-
NAb independent of NAb titer.

In several other viruses (e.g., Influenza, LCMV), antibody Fc-
FcγR interactions leading to ADCC and ADCP are important for
protection, playing a critical role both in viral clearance and in
preventing chronic infection regardless of neutralizing abil-
ity29,30,32,34,64. Through our in vitro studies, we showed that sera
from LASSARAB-immunized mice with high GPC-specific anti-
bodies (Supplementary Fig. 4) did not neutralize LASV but eli-
cited significant ADCC and ADCP of 3T3 cells expressing LASV
GPC (Figs 5, 7). Interestingly, the Fcγ-RIV blockade did not
reduce ADCP activity by macrophages (Fig. 7e), despite having a
high affinity for IgG2 subclass-dependent ADCP. This suggests
that GPC-specific IgG1 might be mediating ADCP65; never-
theless, in contrast with IgG2 subclass, GPC-specific IgG1 titers
were almost non-existent in the purified IgG used (S3c).

To corroborate the relevance of Fcγ-R effector functions in
LASSARAB-induced protection in vivo, we used an Fcγ-KO
mouse model challenged with surrogate LASV exposure (Fig. 8)
50. This approach permitted us to dissect the role that LASSARAB
induced non-NAb play in protection against surrogate LASV
exposure in the context of a similar immunogenic response.
Despite similar levels of antibody titers and isotype to both RABV
G and LASV GPC as detected by ELISA (Fig. 8c and

Fig. 6 LASV challenge of outbred Hartley guinea pigs immunized with several vaccine candidates and control. a Guinea pigs were immunized with either
two replication competent vaccines: rVSV-GPC (positive control for survival) and LASSARAB replication-competent at 106 ffu by intraperitoneal injection
(IP); or inactivated LASSARAB+GLA-SE with different immunization schedules: day −58 (LASSARAB+GLA-SE (1)), day −58, day −51 (LASSARAB+GLA-
SE (2)) and day −58, day −51, and day −30 (LASSARAB+GLA-SE (3)). RabAvert was used as mock immunization (negative control). b Survival curves
post IP exposure with 104 pfu guinea pig-adapted LASV Josiah strain. Statistical significance is compared against Rabvert group using log-rank
(Mantel–Cox) test. c Heat plot representing the clinical score information. X-axis represents days' post-challenge and Y-axis represents the individual
animal number. d Terminal viremia was plotted using LASV RNA copies/ml in Y-axis. Statistical significance was calculated using Kruskal–Wallis one-way
ANOVA (not significant). e LASV neutralizing antibody titers is reported as the IC50 (half maximal inhibitory concentration) of serum dilution. The human
mAbs 25.10C, 12.1F, and 37.7H25,26 were used as positive LASV neutralization controls. f Pre-challenge titers of LASV GPC specific IgG were performed on
sera collected on day −15 prior to challenge by ELISA with LASV GPC antigen and the EC50 (50% effective concentration) of serum dilution was plotted in
the Y-axis. Statistical significance (compared to the RabAvert group) was calculated by using one-way ANOVA (post-hoc test Tukey Honest Significant
Difference Test). g Post-challenge titers of LASV GPC-specific IgG was performed on sera collected on terminal bleeding of both succumbed animals and
survivors (day 50 post challenge) and the EC50 of serum dilution is plotted on the Y-axis. Statistical significance reported between survivors and
succumbed in e, g was determined by using two-way ANOVA. All error bars represented are the standard error mean (SEM) of 10 animals per group (in
triplicates). (****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05)
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Supplementary Fig. 5a and b), LASSARAB immunized Fcγ-KO
mice quickly succumbed to surrogate LASV exposure, in contrast
to the WT mice. However, some differences exist between human
and mouse Fcγ-Rs, and future studies using humanized knock-in
models would be of interest66. Curiously, besides the critical role
that Fcγ-R effector functions played in protection against LASV,
our results from Fig. 8 indicated (but not significantly) that Fcγ
−/− mice immunized with LASSARAB seemed more susceptible

to surrogate LASV infection than control mice (Fig. 8 and Sup-
plementary Fig. 5). Although based on a contrived model, this
makes us question whether, beyond viral clearance, pre-existing
GPC-directed non-NAbs might also work as immune regulators
in LASV infection.

By the end of our guinea pig exposure study (Fig. 6d), we
observed that ~ 20% to ~ 40% of survivors had low (below the
LOQ) but detectable levels of LASV RNA in the blood 50 days’
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post-exposure in all groups, except LASSARAB and RabAvert.
This has been reported in the literature for LASV in NHPs23,25.
This result suggests a chronic asymptomatic infection that, after
reactivation, may explain some of the late deaths and clinical
signs observed in both the LASSARAB+GLA-SE and rVSV-GPC
groups. As such, future studies should consider possible LASV
chronicity and reactivation.

As a major LF surge unfolds in Nigeria at the time of manu-
script preparation, the necessity to fully understand the immu-
nomechanisms of protection of LASV becomes an increasingly

important and crucial task for LF vaccine development. Ideally, a
LF vaccine should be protective, safe, and confer a long-lasting
humoral immunity that can be easily measured and identified as a
correlate of protection. As our results demonstrate, LASSARAB
induces high LASV GPC-specific IgG titers that correlate with
protection prior to LASV exposure, in the absence of LASV
NAbs. This could potentially become a LF correlate of protection
that would provide easy screening for vaccine efficacy post
immunization. Additionally, the finding that GPC-specific non-
NAbs play a crucial role in protecting mice against a LASV
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Fig. 8 Evaluation of in vivo relevance of non-NAbs LASV GPC specific antibodies induced by LASSARAB+GLA-SE vaccination. a 8- to 10-week-old Balb/c
(WT) or Balb/c with Fcγ chain KO (Fcγ−/−) female mice were immunized with 10 µg of inactivated particles of either LASSARAB or FILORAB1 (mock
control) on day 0 and boosted on day 28. All four groups in total were adjuvanted with 5 µg of GLA in a 2% SE with each vaccination. One day before
exposure (day 41) animals were injected with 1.25 mg of anti-Ifnar mAb (MAR1-5A3, Leinco technologies) through intra-peritoneal injection (IP). On day
42, mice were exposed to 104 rVSV-GPC virus IP and general health (weights and clinical observation) was recorded until endpoint criteria were reached
or end of study (supplemental). b Survival curves post-exposure of rVSV-GPC. Significance is compared between the WT LASSARAB vaccinated and the
Fcγ−/− vaccinated using the log-rank (Mantel–Cox) test. c Pre-exposure total IgG titers anti LASV GPC were measured by ELISA on day 35 post-prime and
ELISA curves were plotted according to OD490 reading value (Y-axis) and serum dilution (X-axis). On the right, EC50 (half maximal effective
concentration) of serum dilution of both LASSARAB groups (WT and Fcγ−/−) is plotted on Y-axis on a log scale; statistical significance was calculated
using one-way ANOVA. d Virus neutralization assay using pseudotyped VSV-GFP-NanoLuc with LASV GPC. On the right, percentage of cells infected is
plotted against the serum dilution (survivors on day 14 post-exposure) of each respective group. On the right, the IC50 (half maximal inhibitory
concentration) of serum dilution is plotted individually and significance was calculated using one-way ANOVA. Error bars represent Standard Error Mean
(SEM) and include all mice (n= 10 per group [WT and KO] in LASSARAB and n= 5 per group [WT and KO] in FILORAB1 control) in pre-challenge and
survivor mice in post-challenge. (****P < 0.0001; ***P < 0.001; **P < 0.01; *P < 0.05)
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surrogate exposure suggests that non-NAb cellular effector
functions should be further investigated as a correlate of pro-
tection in both LF vaccine development and mAb antibody
therapy.

Methods
Generation and recovery of Rhabdovirus vaccine vectors. To generate the
vaccine vectors LASSARAB, LASSARABΔG, and rVSV-GPC, the ORF of LASV
GPC Josiah strain was codon-optimized for mammalian codon-usage and syn-
thetized by GenScript (Genbank, Accession Number MH778559). LASV GPC was
cloned between BsiWI and NheI restriction digest sites of BNSP333, generating
LASSARAB. LASSARABΔG was generated by removing the RABV glycoprotein
(G) from the LASSARAB cDNA using the PacI and SmaI restriction digest sites
and subsequent re-ligation after treatment with Klenow Fragment (Promega).

rVSV-GPC was generated by replacing the native VSV G, through MluI and
NheI restriction digestion site, with a codon-optimized LASV GPC (above)
amplified by the PCR primers RLP3 and RLP4 containing the MluI or NheI
restriction sites and cloned in cVSV-XN vector62. The correct sequence of all the
three plasmids were confirmed by sequencing using RP951, RP952, VP5, and VP6
primers.

Recombinant RABV and VSV vaccines were recovered as described
previously67,68. Briefly, X-tremeGENE 9 (Sigma-Aldrich®) in Opti-MEM (Gibco®)
was used to co-transfect the respective full-length viral cDNA clones along with the
plasmids encoding RABV N, P, G, L or VSV N, P, L proteins, and pCAGGs
plasmids expressing T7 RNA polymerase in Vero cells in 6-well plates (RABV), or
293T cells in T25 flasks (VSV). The supernatants of RABV transfected cells were
harvested after 7 days and after 3 days for VSV. Presence of infectious virus was
detected by immunostaining for RABV N with 1:200 dilution of FITC anti-rabies
monoclonal globulin (Fujirebio®, product # 800-092) or for virus-induced
cytopathic effect (CPE) in the case of VSV.

Request for material. Upon reasonable request all utilized antibodies, plasmids,
and viruses are available from the authors pending on an executed MTA as well as
biosafety approval of the requesting institution(s).

Cell culture. Vero (ATCC® CCL81™), 293T (ATCC® CRL-3216™), and BSR
(available from our laboratory) cells were cultured using DMEM (Corning®) with
5% FBS (Atlanta-Biologicals®) and 1% P/S (Gibco®)36. J774.A1 (ATCC® TIB-67™)
macrophages, NIH/3T3 (ATCC® CRL-1658™), and their stable cell line derivatives
were cultured using DMEM with 10% FBS and 1% P/S. IC-21 (ATCC® TIB-186™)
macrophages were cultured using RPMI (Corning®) with 10% FBS and 1% P/S.

Antibodies. Mouse monoclonal antibodies (mAb) anti-LASV GPC (4C8, 9E9, and
5A3) were produced and provided by Dr. Gene Tan (J. Craig Venter Institute, La
Jolla, CA). The human mAbs anti-LASV GPC (3.3B, 22.5D, 37.7H, 25.10C, and
12.1F) were a generous gift from Dr. Robert Garry (Tulane University)26. Rabbit
polyclonal antibody (pAb) anti-LASV GPC was generous gift from Dr. Stephan
Guenther (Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany).
4C12 human anti-RABV G mAb was a generous gift from Dr. Scott Dessain
(Lankenau Institute for Medical Research, Wynnewood, PA)37,62,63.

Viral production and tittering. LASSARAB, LASSARAB-ΔG, FILORAB1, rVSV-
GPC, and SPBN viruses were grown and titered on Vero cells. For virus produc-
tion, Vero cells were cultured with Opti-Pro serum-free media supplemented with
1% P/S and 4 mM L-Glutamine (Gibco®) and inoculated with a multiplicity of
infection (MOI) of 0.01 of each respective virus. Viruses were harvested up to a
total of six times with media replacement (Opti-Pro) or until 80% cytopathic effect
was detected. Tittering was performed by limiting dilution focus-forming assay
using RABV N with 1:200 dilution of FITC anti-rabies monoclonal globulin
(Fujirebio®; catalogue number: 800-092). rVSV-GPC titers were determined by
plaque forming assay using 2% methyl cellulose overlay.

Purification and virus inactivation. To produce inactivated LASSARAB and
FILORAB138 (kind gift of Drishya Kurup, Thomas Jefferson University) vaccines,
viral supernatant were sucrose purified and inactivated37. Briefly, viral supernatants
were concentrated at least 10x by Amicon® stirred cell concentrator using a 500
kDa exclusion PES membrane (Millipore®) and centrifuged at 110,000 × g through
a 20% sucrose cushion. Virion pellets were resuspended in 1 × DPBS (Corning®)
containing 2% sucrose and betapropiolactone (BPL) (Sigma-Aldrich®) was added
at a 1:2000 dilution for inactivation. Samples were left at 4 °C O/N shaking and
next day BPL was hydrolized at 37 °C for 30 min.

Adjuvant formulations. The Toll-like receptor 4 agonist glucopyranosyl lipid
adjuvant-stable emulsion adjuvant (GLA-SE) was produced by IDRI38,69. For-
mulation with inactivated vaccines was conducted prior to injection with a total 5
μg of GLA for mice or 7.5 μg of GLA for guinea pigs in a final v/v 2% SE
concentration.

Immunofluorescence. Vero cells were seeded on glass coverslips and infected at an
MOI of 0.1 with the respective viruses. 48 h later (24 for VSV constructs), cells were
fixed with 2% paraformaldehyde (PFA) and probed with 10 μg/ml anti-RABV G
mAb (4C12) and mouse 50 μg/ml of anti-LASV GP2 mAb (9E9). Secondary goat
polyclonal antibody (Jackson ImmunoResearch® catalogue numbers: 109-225-088;
115-165-146) anti-human IgG and anti-mouse IgG conjugated with Cy2 and Cy3
dyes, respectively, were used at 4 μg/ml. Slides were mounted with DAPI con-
taining mounting media (VECTASHIELD®) and images were taken with a Zeiss
AxioSkop 40 microscope and color channels were compiled using ImageJ software
(OSS NIH).

Viruses and ELISA antigen characterization. Virus particles and purified LASV
GPC were denatured with Urea Sample Buffer (125 mM Tris-HCl [pH 6.8], 8 M
urea, 4% sodium dodecyl sulfate, 50 mM dithiothreitol, 0.02% bromophenol blue)
at 95 °C for 5 min. 2 μg of protein was resolved on a 10% SDS–polyacrylamide gel
and stained O/N with SYPRO Ruby (Thermofisher) for total protein analysis. For
western blot analysis SDS-PAGE gel was transferred onto a nitrocellulose mem-
brane in Towbin buffer (192 mM glycine, 25 mm Tris, 20% methanol) then blocked
in 5% milk dissolved in PBS-T (0.05% Tween 20) at room temperature for 1 h.
Next, the membrane was incubated O/N with either rabbit pAb anti-LASV GPC or
9E9 mAb anti-LASV GP2 at a dilution of 1:1000 in 5% bovine serum albumin
(BSA). Rabies G and P proteins were confirmed with a rabbit anti-G and P
polyclonal antibody used at 1:100062. After washing, the blot was incubated for 1 h
with horseradish peroxidase (HRP)-conjugated anti-rabbit or mouse IgG diluted
(Jackson ImmunoResearch® catalogue numbers: 115-035-146; 111-035-144) at
1:50,000 in 1% milk PBS-T. Proteins were detected with SuperSignal West Dura
Chemiluminescent substrate (Pierce®).

Animals ethics statement. Mice and guinea pigs used in this study were handled
in adherence to both the recommendations described in the Guide for the Care and
Use of Laboratory Animals, and the guidelines of the National Institutes of Health
and the Office of Animal Welfare. Animal work was approved by the Institutional
Animal Care and Use Committee (IACUC) of Thomas Jefferson University (TJU)
or the National Institutes of Health, National Institute of Allergy and Infectious
Diseases, Division of Clinical Research Animal Care and Use Committee for
experiments performed at each respective facility. Animal procedures at TJU were
conducted under 3% isoflurane/O2 gas anesthesia. Mice were housed with up to
five individuals per cage, under controlled conditions of humidity, temperature,
and light (12-h light/12-h dark cycles). Food and water were available ad libitum.

Viral pathogenicity evaluation. Five groups of five 6- to 8-week-old female Swiss
Webster mice were either intranasally (IN) or intraperitoneally (IP) infected with
105 PFU/FFU of each of the respective viruses diluted in 20 μl phosphate-buffered
saline (PBS). Mice were weighed daily and monitored for signs of disease until day
28 post-infection. Mice that lost more than 20% weight or showed severe neuro-
logical symptoms were humanely euthanized. Intracranial challenge (IC) was
performed in 48, 6- to 8-week-old Balb/c mice were anesthetized using isoflurane
to effect, followed by IC injection of 10 fold increasing dose of virus from 102 to 105

FFU of infectious virus. Mice were monitored daily for up to 21 days post-
exposure. Mice were euthanized when signs of neurological disease, including
tremors, seizure, prostration, and paralysis, were observed using a pre-determined
scale of severity. Forty-eight, 3- to 4-day-old Swiss Webster mice were anesthetized
by hypothermia followed by IC injection of 10-fold increasing dose of virus from
102 to 105 ffu of infectious virus. Mice were monitored daily for signs of neuro-
logical disease and euthanized when signs developed or at 10 days post-exposure.

Humoral immunogenicity evaluation in mouse model. Five groups of five 6- to
8-week-old female C57BL/6 mice were immunized intramuscularly (IM) with 106

PFU/FFU of live virus diluted in PBS or with 10 μg BPL-inactivated virus (3 doses
at 0, 7, and 28 days) formulated in either PBS or GLA-SE adjuvant (see Fig. 4 and
adjuvant formulation below). All IM immunizations were performed by admin-
istering 50 μl of live or BPL-inactivated virus into each hind leg muscle. For serum
collection, retro-orbital bleeds were performed under isoflurane anesthesia on days
0, 7, 14, 21, 28, and 35, with the final bleed on day 42 or 63.

LASV challenge on outbred Hartley guinea pigs. Six groups of ten Hartley
guinea pigs with PinPorts for blood withdrawal (Charles River Laboratory) were
vaccinated as follows: Group 1: Mock (PBS), Group 2 rVSV-GPC 107 FFU, Group
3 RABV-LASV-GPC 107 FFU, Group 4 RABV-LASV-GPC (30 μg)+GLA-SE (7.5
μg) on day −58 of virus exposure, Group 5 RABV-LASV-GPC (30 μg)+GLA-SE
(7.5 μg) on days −58 and −51 of virus exposure, Group 6 RABV-LASV-GPC (30
μg)+GLA-SE (7.5 μg) on days −58, −51 and −30 of virus exposure. All subjects
were challenged with 10,000 PFU of guinea pig-adapted LASV (GPa-LASV
(IRF0205); L segment GenBank KY425651.1; S segment GenBank KY425650.1) by
IP route48. Subjects were monitored at least once daily throughout the experiment
and at least twice daily following virus exposure until clinical signs of disease
abated. Blood withdrawals were performed at days −65, −58, −51, −30, 0, 16 and
study end at day 42 post-exposure. All LASV experiments were performed in a bio-
safety level 4 environment and subjects were anesthetized using isoflurane/O2 gas
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anesthesia for all procedures. Clinical scoring to determine euthanasia was based
on the appearance of one of the following clinical changes: change in skin and
mucous membrane color, unthrifty appearance, unresponsiveniess, agonal
breathing, paralysis, head tilt, persistent scratching, tremors. Subjects that met
endpoint criteria and subjects that survived to study end, day 42, were humanely
euthanized and a complete necropsy was performed.

In vitro ADCC/ADCP evaluation. The sera used for these assays were collected on
day 42 from two groups of five mice each IM immunized with 10 μg BPL-
inactivated LASSARAB or FILORAB1 (two doses: at day 0 and at day 28) for-
mulated with GLA-SE adjuvant. Serum collected from individual mice was pooled
and heat inactivated for 30 min at 56 °C. For IgG purification, serum was run
through a protein G high performance Spintrap column (GE Healthcare).

Surrogate LASV challenge on mouse model. Four groups of either Balb/C or Fcγ
knockout Balb/C (Balb/C Fcγ−/− generously donated by Dr. Jeffrey V. Ravetch,
Rockefeller University) were IM immunized with 10 μg BPL-inactivated LAS-
SARAB or FILORAB1 (two doses: at day 0 and at day 28) formulated with GLA-SE
adjuvant and sera were collected on day 0 or day 35 post-immunization. On day 41,
mice were injected IP with 1.25 mg of mouse anti-IFAR1 mAb clone: MAR1-5A3
(Leinco Technologies, catalogue number: I-401). On day 42, mice were injected
with 104 pfu of rVSV-GPC diluted in PBS. rVSV-GPC was previously confirmed to
be pathogenic in immunosuppressed mice by titering the virus to the least amount
that causes 100% lethality on naïve Balb/C mice. Health and weight were mon-
itored daily. Mice were sacrificed when: (1) weight loss reached > 20% or (2) if
severe clinical signs of disease were observed. Terminal bleeding was collected upon
sacrifice when possible.

Enzyme-linked immunosorbent assay (ELISA). Individual mouse or guinea pig
serum was analyzed by ELISA for the presence of IgG specific to LASV GPC,
RABV G, and EBOV GP. Antigens were resuspended in coating buffer (50 mM
Na2CO3 [pH 9.6]) at a concentration of 500 ng/ml and then plated in 96-well
immulon 4 HBX plates (Nunc®) at 100 μl in each well and incubated O/N for 4 °C.
Plates were then washed three times with PBS-T (0.05% Tween 20 in 1 × PBS),
blocked for 1 h (5% milk in PBS-T), washed three times with PBS-T, and then
incubated O/N at 4 °C with three-fold serial dilutions of sera or control mAb
(starting at either 1:50 or 1:150 dillution) in PBS containing 0.5% BSA. Next, plates
were washed three times, followed by the addition of either horseradish peroxidase
(HRP) conjugated goat anti-mouse: IgG (H+L), Fc specific (heavy chain), IgG2c,
IgG2a, and IgG1; or goat anti-guinea pig Fc-specific (heavy chain) secondary
antibody at 1:10,000 dilution in PBS-T (Jackson ImmunoResearch® catalogue
numbers: 115-035-146; 115-035-071; 115-035-205; 115-035-206; 115-035-208; 106-
035-008). After incubation for 2 h at RT, plates were washed three times with PBS-
T, and 200 μl of o-phenylenediamine dihydrochloride (OPD) substrate (Sigma-
Aldrich) was added and left incubating for exactly 15 min. The reaction was
stopped by adding 50 μl of 3 M H2SO4. Optical density was determined at 490 nm
(OD490). ELISA data was analyzed with GraphPad Prism 7 using a sigmoidal
nonlinear fit (4PL regression curve) model to determine the half maximal Effective
Concentration (EC50) serum or antibody titer.

Generation and production of ELISA antigens. RABV G antigen was generated
as described36. Briefly, RABV G and LASV GPC antigen were generated by
infecting BSR cells with either rVSV-GPC (for LASV GPC antigen) or SPBN
(RABV G antigen) in Opti-Pro SFM (Gibco®). Viral supernatants were con-
centrated and purified as described in virus purification methods section (see
above). Viral pellets were then resuspended in TEN buffer (100 mM NaCl, 100 mM
Tris, 10 mM EDTA pH7.6) containing 2% OGP (Octyl β-D-glucopyranoside)
detergent and incubated for 30 min while shaking at RT. Mixture was then cen-
trifuged at 3000 g, and the supernatant was collected and further centrifuged at
250000 g for 90 min. Supernatant was collected and analyzed by SDS-PAGE and
WB for LASV GP1 and GP2 presence (see above).

Virus neutralization assay. Virus neutralization assay (VNA) was conducted
based on a modified VSV based VNA38, by generating a single round VSV
pseudotype reporter virus (ppVSV-NL-GFP) expressing nano-luciferase (Nano-
Luc® Promega) and GFP.

Generation of VSV pseudovirons (ppVSV). To generate ppVSV, the cDNA
plasmid backbone of rVSV-GPC was digested with MluI and NheI restriction
enzymes to remove the LASV GPC glycoprotein and insert the NanoLuc ORF
(Promega). To enable GPC expression, the EGFP ORF plus a VSV start stop signal
were inserted in XhoI and NheI cloning sites. Viruses were recovered as described
above and further propagated on BSR cell line expressing VSV-G. To pseudotype
ppVSV-NL-GFP with either LASV GPC, RABV G, or EBOV GP, 293T cells were
transfected with pCAGGS plasmid encoding either LASV GPC (Josiah strain),
RABV G (SAD-B19 strain), or EBOV GP (Mayinga strain), respectively, using X-
tremeGENE 9 (Sigma-Aldrich) as a transfection reagent. 24 h post transfection,

pVSV-NL-GFP was added to the cells at an MOI of 1 and viral supernatant was
collected 24 and 48 h later.

Virus neutralization assay (VNA). For VNA using animal sera (mouse or guinea
pig), the serum was heat inactivated at 56 °C for 30 min to ensure complement
deactivation. Next, heat-inactivated serum was diluted two fold starting at 1:10
dilution (1:100 in RABV-G pseudotyped assays) in Opti-MEM (Gibco), and 104

ppVSV-NL-GFP particles were added to each dilution series. Control mAbs (12.1F,
25.10C, 37.7H, and 9E9, see Antibodies section above) and WHO international
standard sera were added starting at 30 µg/ml and 2 UI/ml, respectively. The sera/
antibody+virus mix was incubated for 2 h at 34 °C with 5% CO2 and transferred to
a previously seeded monolayer of Vero cells in a 96 well plate and further incubated
for 2 h at 34 °C with 5% CO2. Next, the virus/serum mix was replaced by complete
DMEMmedia. At 18–22 h later, cells were lysed with passive lysis buffer (Promega)
and transferred to an opaque white 96-well plate, with NanoLuc® substrate (Pro-
mega) added following the manufacturer’s recommendations. Relative lumines-
cence units were normalized to 100% infectivity signal as measured by no sera
control (maximum signal). Half maximal inhibition (IC50) values were calculated
by GraphPad® Prism 7 using a sigmoidal nonlinear fit model (4PL regression
curve). Values that were above 100% infectivity were converted to 100%.

RT-PCR analysis for LASV viral loads. See also refs.70. 200 ul of whole blood was
lysed for RNA extraction using Trizol LS at a 3:1 vol:vol ratio. RNA samples were
then extracted using the QIAMP Viral RNA Mini Kit (QIAGEN) and eluted in
50 µl Buffer AVE (QIAGEN). 5 uL of extracted RNA per reaction was added to 2X
Master Mix with Superscript III Platinum One Step qRT-PCR kit (Invitrogen) with
final concentrations of 1 µM forward primer (5’CCACCATYTTRTGCATRTGC
CA), 1 µM reverse primer (5′GCACATGTNTCHTAYAGYATGGAYCA) and
0.1 µM probe (FAM_AARTGGGGYCCDATGATGTGYCCWTT). Cycling condi-
tions were 45 °C for 15 min for reverse transcription, 95 °C for 2 min, followed by
PCR amplification for 45 cycles at 95 °C for 15 s, then 60 °C for 30 s on an ABI
7500 real-time PCR system (Applied Biosystem®). In-vitro transcribed RNA was
used as the standard. The LASV sequence from 3255 to 3726 (Genbank accession
number: KY425634.1) was cloned under a T7 promoter in vector pCMV6-AC. The
fragment was linearized and 1ug of DNA was used in the in-vitro transcription
reaction using the MEGAscript T7 transcription kit (Ambion). RNA copy number
was calculated and 1:10 dilutions were made to provide a standard from 9log10 viral
RNA copies to 1log10 viral RNA copies. Quantification was performed by CT
analysis (Applied Biosystem®).

Target cell generation for ADCC and ADCP. Target cell generation (3T3-LASV
GPC) was achieved by transducing 3T3 cells with MSCV vector based on pMIGII
(a generous gift of Dr. Jianke Zhang, Thomas Jefferson University) in which the
LASV-GPC ORF was amplified by MP3 and MP4 primers (Supplementary
Table 1) and added between the EcorI and XhoI restriction digest sites thus gen-
erating MSCV-GPC-IRES-GFP. Briefly, MSCV-GPC-IRES-GFP was co-transfected
with a pCAGGS-VSV G with Xtreme-Gene 9 in a Gryphon packaging cell line
(Allele Biotechnology) and infective retroviral virions were harvested 48 h post
transfection. Next, low passage 3T3 murine cell line was transduced with viral
supernatant and 8 µg/ml of polybrene and centrifuged at 800xg for 30 min. After
72 h, 3T3 cells were enriched by GFP expression through BD FACSAria II™.
Confirmation of LASV GPC expression was done by immunofluorescence by using
50 μl/ml of 9E9 mAb and by FACS using 10 μg/ml of 4C8 mAb. Control target cell
line (3T3-MARV) was generated through similar methods but with a Marburg
virus GP (Angola strain) expressing MSCV (kind gift from Rohan Keshwara,
Thomas Jefferson University).

Murine NK cell (effector cells) isolation and purification. Mouse splenocytes
obtained from naïve C57BL/6 mouse spleens were made in a single cell suspension
through mechanical methods and strained through a 35 µm mesh. Then, the mouse
NK Cell Isolation Kit II (MACS-Miltenyi Biotec) was used following the manu-
facturer’s protocol. Purified murine NK cells were collected in RPMI (10% FBS,
50 mM βME, 5 IU/ml of mIL-2 (Biolegend), and 2 ng/ml of mIL-15 (Biolegend)
and used immediately for ADCC at either 1:5, 1:10, or 1:20 target to effector cell
ratio (see below). Remaining NK cells were stained with 1:200 dilutions of anti-
CD3, NK1.1, CD335 (NKp46), CD32/16 markers (BioLegend, catalogue number:
100221; 108709; 137611; 101323), and by 1:1000 dilution of Zombie® UV viability
dye (BioLegend) and characterized by flow cytometry (BD LSRFortessa) to confirm
NK cell purity and Fcγ-Receptor III expression29.

Macrophage effector cells. IC-21 or J774A.1 macrophages were cultured as per
above. At 24 h before an ADCC or ADCP assay, macrophages were scraped in a
single cell suspension, centrifuged at 200 g and resuspended in sterile cell culture
PBS. For ADCP assays the internal cellular dye CellTrace® Far Red (Invitrogen®)
was added following the manufacturer’s recommendations. Macrophages were
resuspended in serum-free cell culture media containing 5 ng/ml of mGM-CSF
(cell signaling technology) and used in the following day for ADCC/ADCP assays
and phenotypical analysis. To confirm macrophage phenotype and expression of all
Fcγ-receptors29, macrophages were stained with 1:200 dilution of F4/80, CD64,
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CD32/16, and CD16.2 fluorophore-conjugated antibodies (BioLegend, catalogue
numbers: 101323; 139303; 123115; 149513) and characterized by flow cytometry,
(BD LSRFortessa).

ADCC/ADCP assays. Either 1:100 of heat-inactivated sera from immunized mice
(see immunizations section), 40 µg/ml of purified IgG from the sera (see immu-
nizations section) or 40 µg/ml of control mAbs (4C8, 9E9 and 5A3) were added to
previously seeded 2 × 104 3T3-LASV GPC target cells or control target cells and
incubated for 30 min at 37 °C in 5% CO2. For Fcγ receptor blockade 100 μg/ml of
either anti-CD64, CD32/16, or CD16.2 (BioLegend) was added to effector cells (see
above) for 30 min. Next, effector cells were added to target cells at different effector
to target cell ratios and incubated for 4 h. Target cells were then dissociated from
the plate with Cellstripper® solution (Corning), washed, and resuspended in 200 μl
of FACS buffer (5% FBS in PBS) with 30 µg/ml of propidium iodine (PI) viability
dye. Cells were then immediately analysed by flow cytometry (BD LSRFortessa).

ADCP confocal microscopy analysis. For confocal analysis ADCP assay was
conducted in the same conditions as described above but adapted for later
microscopy analysis. Briefly, 3T3-LASV GPC target cells were seeded in glass
cover-slips and incubated with the respective sera conditions, and then J774A.1
macrophages previously stained with 1:1000 CellTrace® Far Red (see above) were
added at a 1:1 Target to effector cell ratio to allow easy visualization. After 4 h,
coverslips were washed and mounted in slides with DAPI containing mounting
media (VECTASHIELD) and allowed to solidify O/N. Next, day samples were
analyzed in a Nikon confocal microscope and further compiled through ImageJ
software.

Gating strategy and ADCC and ADCP analysis. All flow cytometry data were
collected using the FACSDiva (BD) software. Laser voltage settings were adjusted
for each analysis by running single color controls. For ADCC analysis, cells were
first gated for size using the side scatter (SS) and forward scatter (FS) and selecting
the 3T3 population (Supplementary Fig. 3). Next, using the histogram function
GFP+ cells were gated and based on this gate a total of 5000 GFP+ events were
captured. Due to size variability, ADCP analysis was performed by excluding PI+

events and collecting a total of 10,000 APC+ events (macrophages). For data
analysis FlowJo 10 (BD) software was used. The percentage of cytotoxicity (ADCC)
was measured by the percentage of PI+ cells of the total GFP+ population after size
gating. Since PI is a continuous dye in apoptotic cells71, PI+ histogram gating was
based by defining a 10% PI+ population gate on the control 3T3-LASV GPC cells
(no effector cells and sera) as the background. ADCP percentage was measured by
measuring the percentage of GFP+/APC+ of the total APC+ population. After
defining gating strategy on control cells all gating was applied uniformly to all
samples.

Statistical analysis. All statistical analysis was performed by using the Graphpad 7
(Prism). To determine the statistical test to be used the population was first ana-
lyzed to check whether it followed a normal distribution (Gaussian curve) by
applying a D'Agostino-Pearson omnibus normality test. If so a parametric two-
tailed T-test was used for comparison within two groups. For grouped analysis, a
one-way ANOVA or two-way ANOVA test was used and a post-Hoc analysis using
either Sidak or Tukey Honest significant Difference Test with a 95% confidence
interval to test significance within groups. Non-parametric tests were used if the
population did not follow a normal distribution (indicated in the figure legends).

Data availability
All relevant data are available from the corresponding author upon request. Sequences of
LASV GPC are available at Genbank under accession number MH778559.
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