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Identification of biomarkers, immune 
infiltration landscape, and treatment targets 
of ischemia–reperfusion acute kidney injury 
at an early stage by bioinformatics methods
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Abstract 

Background:  Mechanisms underlying ischemia/reperfusion injury-acute kidney injury (IRI-AKI) are not fully eluci-
dated. We conducted an integrative analysis of IRI-AKI by bioinformatics methods.

Methods:  We screened gene expression profiles of the IRI-AKI at early phase from the Gene Expression Omnibus 
(GEO) database. Differentially expressed genes (DEGs) were identified and enrichment pathways were conducted 
based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and Gene set enrich-
ment analysis (GSEA). Immune cell infiltration analysis was performed to reveal the change of the microenvironment 
cell types. We constructed protein–protein interaction (PPI), and Cytoscape with plug-ins to find hub genes and 
modules. We performed robust rank aggregation (RRA) to combine DEGs and analyzed the target genes for miRNA/
transcription factor (TF) and drug-gene interaction networks.

Results:  A total of 239 and 384 DEGs were identified in GSE87024 and GSE34351 separately, with the 73 common 
DEGs. Enrichment analysis revealed that the significant pathways involve mitogen-activated protein kinase (MAPK) 
signaling, interleukin-17, and tumor necrosis factor (TNF) signaling pathway, etc. RRA analysis detected a total of 27 
common DEGs. Immune cell infiltration analysis showed the plasma cells reduced and T cells increased in IRI-AKI. We 
identified JUN, ATF3, FOS, EGR1, HMOX1, DDIT3, JUNB, NFKBIZ, PPP1R15A, CXCL1, ATF4, and HSPA1B as hub genes. The 
target genes interacted with 23 miRNAs and 116 drugs or molecular compounds such as curcumin, staurosporine, 
and deferoxamine.

Conclusion:  Our study first focused on the early IRI-AKI adopting RRA analysis to combine DEGs in different datasets. 
We identified significant biomarkers and crucial pathways involved in IRI-AKI and first construct the immune land-
scape and detected the potential therapeutic targets of the IRI-AKI by drug-gene network.

Keywords:  Ischemia/reperfusion injury, Acute kidney injury, Robust rank aggregation, Immune infiltration, Drug-
gene interaction network
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Background
Acute kidney injury (AKI), characterized by a rapid 
decrease in glomerular filtration rate, is a universal dis-
ease in hospital with high morbidity and mortality. It is 
reported that the incidence of AKI is 10–15% of all hos-
pitalizations [1] and approximately 50% in the intensive 
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care unit [2]. The ischemia–reperfusion injury (IRI) is 
the most common cause of AKI [3], which often occurs 
after surgery and contributes to adverse outcomes in 
kidney transplantation. The mismatch between supply 
and demand of oxygen is the central pathophysiology of 
the IRI/AKI leading to oxidative metabolism reduction 
and further injury of tubular epithelial cells [4]. Though 
several biomarkers, such as kidney injury molecule-1 
(KIM-1), neutrophil gelatinase-associated lipocalin 
(NGAL), and interleukin-18 (IL-18), have been studied 
for a long time, no one can substitute the creatinine in 
the clinical setting since low specificity to predict and 
diagnose AKI. Scientists haven’t found pharmacologi-
cal therapy to prevent or reverse the damage once kid-
ney injury is established. Renal replacement therapy is 
the only alternative treatment available for severe AKI 
patients currently [5]. An in-depth understanding of 
the molecular and cellular pathophysiological mecha-
nisms underlying IRI-AKI will contribute to exploring 
a more precision approach to detect and treat kidney 
injury.

Microarray, a high-throughput tool for powerfully 
performing global gene expression profiles. At present, 
many studies have applied microarray to explore poten-
tial biomarkers and pathways in disease development [6, 
7], which provides instructions for further experiments. 
Since seldom IRI-AKI patients receive kidney biopsy, 
human kidney specimen is hard-acquired in genome-
wide transcriptional analysis. We investigated the tran-
scriptional pathogenesis and progressions of IRI-AKI 
based on the data from experimental animal models 
which were widely used in this field.

With the development of bioinformatics, several meth-
ods have been applied to screen the key biomarkers and 
pathways involved in the IRI-AKI. However, limited 
sample sizes of individual studies and the use of differ-
ent technological platforms lead to substantial inter-
study variability. The robust rank aggregation (RRA) is 
an effective method to integrate differentially expressed 
genes (DEGs) lists of different platforms, which is both 
computationally efficient and statistically stable. This 
method has been used in many disorders, such as gastric 
cancer [8], papillary thyroid carcinoma [9], and diabetic 
nephropathy [10], but hasn’t been applied in IRI-AKI 
thus far. Here, we extracted the samples with the same 
tissue type and similar genetic background IRI-AKI 
mice from GSE87024 and GSE34351 datasets in GEO 
database. We adopted the RRA method to find com-
mon DEGs and gene pathways. Further protein–protein 
interaction (PPI), gene-miRNA/transcription factor (TF) 
network, and drug-gene interaction network were per-
formed to improve the in-depth understanding of the 
IRI-AKI (Fig. 1).

Materials and methods
Microarray data and normalization
We searched the "acute kidney injury [MeSH Terms] 
OR acute kidney failure [All fields] OR "renal ischemia–
reperfusion injury" OR "ischemic AKI" AND ‘Expres-
sion profiling by array’[Filter])" in the Gene Expression 
Omnibus (GEO) (http://​www.​ncbi.​nlm.​nih.​gov/​geo). 
The inclusion is: (1) The study focused on the ischemia–
reperfusion injury. (2) The sample tissue is the kidney. 
(3) The organism is wild-type mice. (4) The IRI-AKI 
time is early within 24 h. Besides, considering detecting 
the biomarkers of AKI as early as possible and reduc-
ing the heterogeneity of different datasets, we chose the 
two datasets (GSE87024 and GSE34351 published in 
high-level journals without being analyzed well before 
(Table  1). For GSE87024, we extracted the IRI-6  h 
(GSM2319037, GSM2319038, GSM2319039) and sham 
group (GSM2319034, GSM2319035, GSM2319036) and 
for GSE34351, we chose the IRI-4 h (n = 3, GSM847661, 
GSM847662, GSM847663) and control group of 
wild-type mice (n = 3, GSM847664, GSM847665, 
GSM847666). The method of performing the IRI-AKI 
model in the dataset GSE34351 was clipping the left renal 
for either 16  min or 23  min after right nephrectomy, 
which was like the dataset GSE87024 making the left 
renal occluded for 17.5 min.

The platform for GSE87024 is GPL6887, Illumina 
MouseWG-6 v2.0 expression beadchip, while GSE34351 
is GPL1261 [Mouse430_2], Affymetrix Mouse Genome 
430 2.0 Array. Normalization of these data was carried 
out with the "limma" R package.

Identification of differentially expressed genes
We applied the linear model and empirical Bayes model 
analysis by the "limma" R package to find the DEGs and 
calculate the differential expression. The |log2fold change 
(FC)|> 1.5 and p-value < 0.05 were used as the significant 
criteria. Heatmaps and volcano plots of DEGs were con-
ducted using the "Pheatmap" and "ggplot2" packages in 
R. 4.0.0. An unsupervised principal component analysis 
(PCA) method was performed to extract two features 
from each group. The overlapping DEGs were further 
visualized by the "VennDiagram" R package.

Functional and pathway enrichment analysis
We conducted the Gene ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analysis of DEGs in different datasets. 
GO analysis can find the biological characteristics in 
the biological process (BP) of the genes. KEGG analysis 
offers a comprehensive knowledge of bio-interpretation 
of cellular processes and identifies shared pathways of 
co-expressed genes. We completed and visualized the 
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Fig. 1  Flow chart of the study design. GEO: Gene Expression Omnibus; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; 
GSEA: gene set enrichment analysis; IRI-AKI: Ischemia–reperfusion injury induced acute kidney injury. PPI: Protein–protein interaction; DEGs: 
differentially expressed genes; WT: wild type

Table 1  Characteristics of the individual studies

GEO Gene Expression Omnibus, IRI Ischemic renal injury

JASN Journal of American Society of Nephrology, KI Kidney International

GEO ID Platform Published Time Organism Strain Tissue Type IRI time Sample size Citation (PMID) Citation 
(Journal)

GSE87024 GPL6887 2016 Mus musculus C57BL/6 IRI vs Sham kidney 6 h 3 vs 3 26,823,548 JASN

GSE34351 GPL1261 2012 Mus musculus C57BL/10 IRI vs Sham kidney 4 h 3 vs 3 22,895,517 KI
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analysis by the "ClusterProiler" V3.16.1 package [11] (sig-
nificant criteria is p < 0.05 and q-value < 0.05) and "DOSE" 
v3.16.0 [12].

Gene set enrichment analysis (GSEA) of the two expression 
data sets
GSEA is a powerful analytical method to identify whole 
gene sets, which share common chromosomal location, 
biological function, or regulation by comparison with 
knowledge-based databases accumulating large-scale 
expression data sets [13]. We conducted the GSEA of the 
two datasets in GO and KEGG respectively. Each analy-
sis performed 1000 times of arrangement of the gene set. 
The criteria of the significantly enriched gene sets were 
P-value < 0.05. The GSEA analysis was performed by the 
"ClusterProiler" V3.16.1 package.

Evaluation of immune cell infiltration
To evaluate the immune cell role and change in the IRI-
AKI, we conducted the immune cell infiltration analysis 
by CIBERSORT method [14]. CIBERSORT can accu-
rately estimate the immune composition of tissue. We 
conducted this analysis by " CIBERSORT.R" script and 
visualized the results by "pheatmap" and "ggpubr" R 
packages.

Construction and analysis of protein and protein 
interactions (PPI) network
We searched the common DEGs in the online tool 
STRING (http://​www.​string-​db.​org/) to construct the PPI 
network showing interactions between genes or proteins. 
We conducted the confidence score of 0.4 as the cut-off 
value, visualized the PPI network of DEGs by Cytoscape 
software [15]. Cytohubba and CytoNCA [16] plug-in 
were employed to identify the hub genes separately. We 
adopted 11 methods (MCC displays a satisfying com-
parative performance) in Cytohubba and 3  evaluation 
indexes (degree centrality (DC), betweenness centrality 
(BC), closeness centrality (CC) applied in the CytoNCA. 
We further extracted hub modules using another plug-in 
- Molecular Complex Detection (MCODE) with the cut-
off score of 2.

Robust rank aggregation (RRA) method to find the DEGs
We used the de-bach effect, the robust rank aggregation, 
and probabilistic models to integrate sorted lists of dif-
ferent gene expression profiles from the different pro-
tocols or measurement platforms. Based on each gene 
freely arranged in each data assumption, we scored the 
rank vector by the order-based statistical analysis and 
defined the final score of each vector as the minimum 
p-value. The p-value is corrected to determine whether 
the ranking of a specific gene is statistically significant, 

and multiple checks to assess the stability of the acquired 
p values. We repeated leave-one-out cross-valida-
tion  10,000 times and calculated the averaged p values 
from all rounds. If a gene ranks high in the results of all 
DEGs, the smaller p-value was by the RRA method and 
with the greater probability of the DEGs’ robustness. This 
process was conducted by the “RobustRankAggreg” R 
package [17].

Transcription factor (TF)‑gene interactions 
and gene‑miRNA network of the combined DEGs and hub 
genes
We constructed the gene-miRNA network and TF-gene 
interactions of the combined DEGs from RRA analysis and 
hub genes in the NetworkAnalyst [18] (https://​www.​net 
workanalyst.ca/), which is a comprehensive web platform 
for gene expression analysis. The gene-miRNA network 
is based on the miRTarBase (http://​mirta​rbase.​mbc.​nctu.​
edu. tw/php/download.php), while TF-gene interactions 
based on the ENCODE (http://​cistr​ome.​org/ BETA/).

Construction of Drug Gene Interaction network
The Drug Gene Interaction Database (DGIdb) version 3.0.2 
(https://​www.​dgidb.​org) consolidates, synthesis, and nor-
malizes drug-gene interactions and gene druggability infor-
mation from 30 disparate sources [19]. We searched the 
DEGs genes from the RRA analysis and hub genes in the 
DGIdb to explore potential drugs or molecular compounds 
that interacted with the genes. The drug-gene interaction 
network was visualized by the Cytoscape software.

Results
Identification of differentially expressed genes
After standardization of the two datasets (Figure S1), 239 
(187 up-regulated and 52 down-regulated genes) and 384 
DEGs (259 up-regulated and 125 down-regulated genes) 
were extracted from the GSE87024 and GSE34351. PCA 
score trajectory plots indicated that the IRI and CON 
groups didn’t overlap suggesting the apparent differences 
between the two groups (Fig. 2 A-B). Heatmaps showed 
the DEGs could discriminate between the IRI and control 
(CON) groups (Fig. 2 C-D). The volcano plots visualized 
the distribution of DEGs (Fig. 2E-F).

Functional and pathway enrichment analysis
For up-regulated genes in GSE87024, the KEGG pathway 
analysis acquired the 23 significant pathways with the top 
3 pathways are TNF signaling pathway, MAPK signaling 
pathway, and IL-17 signaling pathway (Fig.  3A). Cneplot 
visualized the conjunction between genes and the enrich-
ment pathway(Fig. 3B). GO functional enrichment analysis 
showed up-regulated genes were mainly involved in GO 
terms about the regulation of vasculature development, 

http://www.string-db.org/
https://www.net
http://mirtarbase.mbc.nctu.edu
http://mirtarbase.mbc.nctu.edu
http://cistrome.org/
https://www.dgidb.org
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response to extracellular stimulus, and intrinsic apop-
totic signaling pathway (Fig. 3C). GO Cluster plot showed 
the interaction between clusters and genes in GO terms 
(Fig.  3D). Relationships of different GO terms were 

visualized in Goplot (Fig.  3E). The down-regulated genes 
weren’t enriched in any pathways.

For GSE34351, up-regulated genes were enriched in 28 
significant pathways, including MAPK, IL-17, TNF, and 
Estrogen signaling pathways (Fig.  4A). Emaplot displayed 

Fig. 2  Principal components analysis (PCA) score trajectory plots, heatmaps, and volcano plots of the two datasets. A, B Principal components 
analysis (PCA) score trajectory plots (A: GSE87024; B: GSE34351) indicate obvious differences between the ischemic acute kidney injury (IRI) 
and control (CON) group. C, D Heatmaps and showing the differentially expressed genes (DEGs) between the IRI and CON group. The red color 
represents the up-regulated genes, while the blue color represents the down-regulated genes. Samples are sorted by columns, and genes are 
sorted by rows. E, F Volcano plots showed the significantly DEGs in two datasets (A: GSE87024; B: GSE34351). Red points represent up-regulated, 
and green represent down-regulated genes. The differences are set as |log FC|> 1.5 and P < 0.05
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the interaction of enriched pathways, and Cneplot visual-
ized the interaction between genes and the enrichment 
pathways (Fig. 4B-C). Significant enrichment of GO terms 
included the unfolded protein, regulation of vascula-
ture development, transcription from RNA polymerase 
II promoter to stress, and topologically incorrect protein 
(Fig. 4D). GO circle and cluster plot showed the distribu-
tions of the genes and GO terms (Fig. 4E-F). No pathway 
was enriched in the down-regulated genes. Venn diagram 
showed the common 73 DEGs from the two expressional 
datasets (Fig. 5A).

Combined DEGs enrichment analysis of GO and KEGG 
showed the significant pathways involved C − type lec-
tin receptor, NF − kappa B, and GnRH signaling pathways 
(Table S1-2, Fig. 5B-D).

GSEA of the two expression data sets
GSEA of all detected genes in GSE87024 showed that the 
top KEGG gene set is the PI3K-Akt signaling pathway 
(Fig.  6A). The other possible mechanisms of IRI—AKI 
included MAPK signaling pathway and cytokine- cytokine 
receptor interaction in KEGG (Fig. 6B). The most signifi-
cantly enriched gene set of GO terms was the mitotic cell 
cycle regulation (Fig. 6C). The other top 10 enrichment GO 
terms involved cell growth, upregulation of cell projection 
organization, T cell activation, and negative regulation of 
phosphorylation (Fig. 6D). For GSE34351, GSEA analysis of 
KEGG pathways was similar to the GSE87024 (Fig. 7A-B). 
GO terms indicated the biological process of the IRI-AKI 
development related to positive regulation of cellular com-
ponent biogenesis, reproductive structure development, 
and positive regulation of MAPK cascade (Fig. 7C-D).

Evaluation of immune cell infiltration
Immune cell infiltration analysis showed plasma cells, T 
cells CD4 naive decreased in IRI-AKI group, while T cells 
CD4 memory resting and T cells follicular helper increased 
in GSE87024. In GSE34351, macrophages M1 elevated 
while the plasma cells and NK cells reduced in IRI-AKI 
(Fig. 8).

PPI network and analysis of hub genes and modules
The cluster of the PPI network of common 73 DEGs 
was composed of 73 nodes and 206 edges (Fig. 9A). The 
top 10 hub genes selected in the Cytohubba plug-in 
using the MCC method (score ≥ 5000) and node degree 
(score ≥ 10) included Activating Transcription Factor 3 

(ATF3), FOS, JUN, DNA Damage Inducible Transcript 
3 (DDIT3), Activating Transcription Factor 4 (ATF4), 
Early Growth Response 1 (EGR1), Heme Oxygenase 
1 (HMOX1), Heat Shock Protein Family A Member 1B 
(HSPA1B), JUNB, and Protein Phosphatase 1 Regulatory 
Subunit 15A (PPP1R15A) (Fig. 9B). Applying CytoNCA, 
we obtained ten hub genes, namely JUN, ATF3, FOS, 
EGR1, HMOX1, DDIT3, JUNB, NF-kappa-B inhibitor 
zeta (NFKBIZ), PPP1R15A, and C-X-C Motif Chemokine 
Ligand 1 (CXCL1). Three hub modules were identified 
and the most significant module had 15 nodes (MCODE 
score = 6, Fig. 9C-E).

RRA to find the combined DEGs
A total of 25 significant up-regulated genes and two 
down-regulated genes were identified in the RRA analy-
sis. The heat map showed the expression profile of the 
top 20 most significant up and down-regulated genes. 
Each square represented a different gene, and each col-
umn represented the expression level of all genes in a 
data set (Fig. 10).

TF‑gene interactions and gene‑miRNA network
Gene-miRNA network showed both Adm and Jun modu-
lated by 5 miRNAs,  while Egr1 regulated by 3 miRNAs 
(Fig. 11A). The top 3 targeted DEGs for TFs were Junb, 
2410006H16Rik, and Nfkbiz modulated by 26, 18, and 16 
TFs separately (Fig. 11B).

Construction of drug gene interaction network
The drug-gene interaction network indicated that JUN, 
DDIT3, CFRT, FOS, ADM, interact with 44, 26, 22, 10, 
and 7 drugs or molecular compounds separately. The 
deferoxamine, glutamine, sirolimus, indomethacin are 
connected with JUN and DDIT3. (Table S3, Fig. 12).

Discussion
In this study, we screened two expression profiles with 
the same tissue and similar genetic background mice in 
early-stage IRI-AKI from the GEO database, adopted 
RRA analysis to integrate the DEGs for detecting the 
potential biomarkers and pathways in the pathogenesis of 
IRI-AKI. We identified the MAPK, TNF, and IL-17 sign-
aling pathways in KEGG database. Regulating the vascu-
lature development, responding to extracellular stimulus, 
and intrinsic apoptotic signaling pathway were identified 

(See figure on next page.)
Fig. 3  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) enrichment of up-regulated differentially expressed 
genes (DEGs) in GSE87024. A Advanced bubble chart shows significant KEGG pathways of the DEGs. B Cneplot visualized the conjunction between 
genes and the enrichment pathway. C Bar chart visualized the GO enrichment significance items of DEGs. D GO Cluster plot showed the interaction 
between clusters and genes in GO terms. E GO plot of the interactions between different GO terms
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Fig. 3  (See legend on previous page.)
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in GO database. Further GSEA analysis showed the 
PI3K-Akt signaling pathway, cytokine-cytokine receptor, 
positive regulation of cellular component biogenesis, and 

reproductive structure development pathway are crucial 
in IRI-AKI. Combined with the analysis by Cytohubba 
and CytoNCA, we figured out the JUN, ATF3, FOS, 

Fig. 4  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analysis (KEGG) enrichment of up-regulated differentially expressed 
genes (DEGs) in GSE34351. A Advanced bubble chart shows significant KEGG pathways of the DEGs. B Cneplot visualized the conjunction between 
genes and the enrichment pathways. C Emaplot suggested the interaction of enriched pathways. D Bar chart visualized the GO enrichment 
significance items of DEGs. E Chord plot shows the distribution of DEGs in different GO terms. Gene symbols are presented on the left side of the 
graph and fold change values of DEGs are mapped by color scale. Gene involvement in the GO terms was determined by colored connecting lines. 
F GO Cluster plot showed the interaction between clusters and genes in GO terms
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Fig. 5  Visualization of the enrichment of common differentially expressed genes (DEGs) from two datasets. A Venn diagram presents a 
combination of all differentially expressed genes of two datasets. B Bar chart shows the significant KEGG pathways enriched by the 73 DEGs. C 
Bubble chart displays the significant GO terms. D GO plot shows the interacts with different enriched GO terms
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Fig. 6  Visualization of the gene set enrichment analysis (GSEA) of the GSE87024. A GSEA plots shows the most enriched gene sets in KEGG of all 
detected genes in the GSE87024. B The top 10 most significant up-regulated enriched gene sets in KEGG. E The top terms enriched in GO database. 
D The top 10 most significantly enriched terms in GO database
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EGR1, HMOX1, DDIT3, JUNB, NFKBIZ, PPP1R15A, 
CXCL1, ATF4, and HSPA1B as hub genes.

GO, KEGG and GSEA analysis showed that the MAPK, 
TNF and IL-17 signaling pathways are crucial in IRI-AKI 
development. MAPK signaling pathway consists of four 

branches, namely ERK, JNK, p38, and ERK5. Activation 
of p38 and JNK signaling is a feature of acute kidney dis-
ease. The relative levels of JNK, p38, and ERK activation 
have been considered to determine cell fate after kid-
ney damage. Selective inhibitors of p38 MAPK seemed 

Fig. 7  Visualization of the gene set enrichment analysis (GSEA) of the GSE34351. A GSEA plots shows the most enriched gene sets in KEGG of all 
detected genes in the GSE34351. B The top 10 most significant up-regulated enriched gene sets in KEGG. E The top terms enriched in GO database. 
D The top 10 most significantly enriched terms in GO database
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to be effective in rodent models of acute kidney disease 
[20]. Remote ischemic pretreatment plays a role in pre-
venting IRI from developing through activating JNK, 
p38, and MAPK kinase [21]. Several drugs or molecu-
lar compounds mitigate IRI via the MAPK pathway [22, 
23]. TNF, considered as a crucial mediator in cell pro-
liferation, cell death, and differentiation, interacts with 
two cell surface receptors: TNFR1 and TNFR2 (TNFRs) 
[24]. Studies showed the level of circulating TNF was 
increased during IRI-AKI causing renal cell damage via 
neutrophil-mediated inflammatory injury and apoptosis 
[25]. IRI mice with genetic deletion of TNFR1 displayed 
a significant lessening in renal injury and inflammation 

[26]. Pretreatment soluble TNFR2 fusion protein to neu-
tralize TNF-a mitigate renal injury in IRI rats [27]. The 
IL-17 family consists of six members IL-17A-F and five 
members IL-17R A-E form the IL-17 receptor family. 
Researches showed IL-17A activation in IRI mice may 
promote inflammation activity. Administration of a neu-
tralizing monoclonal anti-IL-17A antibody can attenuate 
renal damage by reducing pro-inflammatory mediators 
and enhancing renal and circulation levels of anti-inflam-
matory cytokines [28, 29]. Further researches are needed 
to detect the function of these pathways in IRI-AKI.

We identified 10 hub genes in IRI-AKI with one 
biomarker (Atf3) has been studied in IRI-AKI, five 

Fig. 8  Evaluation and visualization of immune cell infiltration. A Heatmaps of the immune cell abundance in GSE87024; B Heatmaps of the 
immune cell abundance in GSE34351; C Barplot of the propotion of the immune cell in each sample (GSE87024). D Barplot of the propotion of the 
immune cell in each sample (GSE34351). E Box plot of the immune cell distribution in different group (GSE87024). F Box plot of the immune cell 
distribution in different group (GSE34351)
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biomarkers (Cxcl1 and Jun, Fos, Nfkbiz, Hmox1) were 
researched in other types of AKI, 2 genes (Atf4 and Egr1) 
play role in I/R injury of other organs and three genes 
(Ppp1r15a, Hspa1b, and Ddit3) had not been reported 
in AKI or IRI researches. Atf3 could protect against IRI-
AKI via suppressing p53 and inducing p21. In vitro stud-
ies showed it attenuated cell apoptosis by interacting 
with Nicotiflorin [30, 31]. CXCL1-CXCR2 signaling axis 
played an important role in alleviating cisplatin-induced 

AKI by regulation of inflammatory response [32]. Jun was 
studied in acute kidney injury including aristolochic acid-
induced AKI, crush syndrome induced AKI, and myoglo-
binuric AKI but not IRI-AKI [33–35]. Inhibitor of c-Fos/
activator protein-1 could decrease the production of 
TNF-a and other downstream molecules, which protect 
against LPS-AKI [36]. FosB induced the elevated expres-
sion of matrix metalloproteinase-2 in the cardiac IRI 
mice [37]. Studies found the NF-κB/miR-376b/NFKBIZ 

Fig. 9  Outcomes of Protein–protein interaction (PPI) network. A PPI network of the common 73 differentially expressed genes (DEGs) of the 2 
datasets. Node color reflects the grade of Degree scores calculated in the CytoNCA. (Green color represents a higher degree, and yellow color 
represents a lower degree). B 10 hub genes identified from the Cytohubba. C, D, E Subnetwork of hub modules acquired in the MCODE with MCC 
scores are 6, 4.8, and 4.5 respectively
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negative feedback loop adjusted intrarenal inflammation 
and alleviated renal damage in septic AKI [38]. HMOX1 
long GT tandem repeats are associated with the occur-
rence of AKI in sickle cell anemia people [39]. Atf4 was 
related to endoplasmic reticulum stress, amino acid star-
vation, mitochondrial stress, and oxidative stress. It was 
reported that MIF-2/D-DT increased proximal tubular 
cell regeneration via ATF4-dependent pathways in IRI 
mice [40]. Egr1 was mainly studied in myocardial IRI and 
it may serve as a major regulator of remote precondition-
ing [41]. For Ppp1r15a, Hspa1b, and Ddit3, we haven’t 
found any related AKI or IRI studies, which should be 
further verified in experimental studies.

In the gene-miRNA network analysis, mmu-mir-138-5p 
was found continuously increased in urine samples of 
rats daily administrated with gentamicin [42]. Researches 
showed that miR-709 was significantly upregulated in the 
proximal tubular cells of human and mice when suffering 
AKI [43]. However, there was no article about the roles of 
those miRNAs on IRI-AKI. Further studies were needed 
to examine the effects of these miRNAs on IRI-AKI.

We first conducted the drug-gene interaction network 
to identify the potential targets of IRI - AKI. Our results 
showed that staurosporine is a common molecular com-
pounds interacting with CXCL2 and DDIT3. Consid-
ered as a protein kinase C inhibitor, staurosporine could 
protect against the impairment of working memory in 
IRI gerbils and rats [44, 45]. Curcumin interacts with 
both DDIT3 and cystic fibrosis transmembrane con-
ductance regulator (CFTR). It is a diketone compound 
extracted from the plant turmeric. Some animal stud-
ies have shown that curcumin can protect the I/R injury 
and toxin-induced injury [46, 47]. Nowadays, researchers 
have designed a stepwise-targeting chitosan oligosac-
charide conjugate, which can convey curcumin to renal 
tubular epithelial cells and remove excessive reactive 
oxygen species (ROS), to treat acute kidney injury [48]. 
Crofelemer, an inhibitor of the CFTR, was applied to 
alleviate pain in women with irritable bowel syndrome-
diarrhea (IBS-D) as well as treat noninfectious diarrhea 
in HIV-positive patients receiving antiretroviral therapy 
[49]. Further studies should be conducted to discover the 

Fig. 10  Heatmap of the Robust Rank Aggregated showed the top 20 differentially expressed genes aggregated of the two datasets. The red 
represents log FoldChange (FC) > 0, while green represents log FC < 0. The value in the box displays the log FC value
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Fig. 11  The networks of target gene-miRNA and TF-gene interactions. A Target gene-miRNA network. The pink circle nodes are the genes, and 
the blue octagon nodes are the miRNAs. B TF-gene interactions network. The red circle nodes are the genes, and blue octagon nodes are the 
transcription factors (TFs)
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roles of the drugs or molecular compounds as potential 
therapeutic targets.

Our study have some strengths. First, we screened all 
the datasets about the IRI-AKI in GEO and focused on 
the early onset of this disease selecting the mice with 
similar genetic background to reduce individual dif-
ferences. Second, we applied multiple bioinformatic 
methods to identify common DEGs that are potentially 
involved in the disease. In our limited knowledge, this 
was the first study applied the RRA analysis, a robust 
and compelling approach to integrate different datasets 
on IRI  -  AKI. Third, we performed the GSEA method 
utilizing all genetic expression information in data-
sets to find the crucial pathways in IRI-AKI. Different 
methods are applied to detect the hub genes and hub 
modules. Forth, we further analyzed the target genes 
for miRNA/TF. Fifth, we analyzed the signature of the 
immune cell in and found the T cell increasing in IRI-
AKI. Last, we first conducted the drug-gene interaction 

network and identified 116 drugs or compounds as 
potential therapeutic targets of IRI-AKI giving new 
insights for further study.

There were some limitations in our study. First, to 
aggerate samples with similar genetic background mice 
and IRI-AKI occurrence time, we only selected two data-
sets and extracted a total of 12 samples. Though different 
times of IRI in GSE87024, we chose the earliest time after 
IRI-AKI to analyze. Since the limited sample numbers, 
we can’t apply the weighted gene co-expression network 
analysis (WGCNA) to construct gene co-expression net-
works in our study. Second, we focused on the microar-
ray and didn’t include the RNA-seq, so we lack the data 
of miRNA and lncRNA. However, we constructed the 
TF-gene interactions and gene-miRNA network utilizing 
the open database. Third, the DEGs acquired from the 
RRA analysis are limited, we didn’t perform further GO 
and KEGG pathway analysis. Fourth, we didn’t validate 

Fig. 12  The drug-gene interaction network plot. The orange circle nodes are the genes, and the green octagon nodes are the drugs or molecular 
compounds
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the hub genes identified in this study in AKI patients or 
experiment, which is a part of our future work.

Conclusions
To conclude, our study identified 10 hub genes and 3 
modules, key pathways involved in early IRI-AKI diag-
nosis and treatment utilizing various bioinformatic 
methods. We constructed the immune landscape and 
provided new insights and implications for further 
experimental confirmation.
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