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Reverse engineering protocols for 
controlling spin dynamics
Qi Zhang1,2,3, Xi Chen1 & D. Guéry-Odelin2,3

We put forward reverse engineering protocols to shape in time the components of the magnetic field 
to manipulate a single spin, two independent spins with different gyromagnetic factors, and two 
interacting spins in short amount of times. We also use these techniques to setup protocols robust 
against the exact knowledge of the gyromagnetic factors for the one spin problem, or to generate 
entangled states for two or more spins coupled by dipole-dipole interactions.

The implementation of quantum computing and quantum information processing require a careful prepara-
tion of the initial quantum state and accurate control of its further evolution in time. There is a large body of 
literature dealing with coherent control in quantum systems. A widely known technique relies on resonant π 
(or π/2) pulses1. It has the advantage of being fast but turns out to be very sensitive to the pulse duration and 
peak intensity. Alternatively, the composite pulses approach provide a much more robust quantum manipulation 
but at the expense of a relatively slow process. It requires a precise control of the relative phase of the successive 
pulses and on the intensity of each pulse2–5. Another fast and efficient technique is the optimal control theory6–11. 
However, the optimization may be complicated since it can require a huge number of parameters. On a more 
analytical and geometric side, the development of the quantum brachistochrone formalism, formulated by using 
the Pontryagin Maximum Principle (PMP), belongs to the same class of solutions12. Otherwise, purely numerical 
techniques have been setup for quantum manipulation using for instance genetic algorithm13. Nevertheless, the 
purely numerical algorithm for optimization works as a black box without understanding the dynamics or know-
ing the structure of control fields.

Adiabatic processes have been also successful, and in particular the RAP (rapid adiabatic passage)14 for 
two-states systems, or the STIRAP technique in three-state systems15–17. In essence, such techniques are devel-
oped so to ensure the adiabatic condition. This means in practice long pulse duration combined with high peak 
intensity. Interestingly, they can be stated so to generate smooth variations of the parameters in time.

In this article, we setup another strategy inspired by the recent development of “Shortcuts to Adiabaticity” 
(STA)18,19. In contrast with adiabatic processes, non-adiabatic coupling are canceled out using well-tailored sup-
plementary fields20. Here we will concentrate on a subclass of such solutions usually referred to as reverse engi-
neering protocols21. Such techniques have been recently applied to the fast transport or manipulation of wave 
functions22–25, or in tailored transformations in statistical physics26–28. The reverse engineering protocol consists 
in imposing the desired evolution of the dynamical quantity of interest and inferring from it the time evolution 
of the parameters. Remarkably, reverse engineering protocols can be worked out analytically, see also refs29,30, Its 
performance when combined with a given constraint has been compared with optimal control in ref.27. They pro-
vide an efficient way to drive spin-1/2 system31,32, or, equivalently, a generic two-level system with cold atoms33–35.

The shaping of the three components of the time-dependent magnetic field that one shall apply to induce an 
arbitrary trajectory on the Bloch sphere of a single spin 1/2 has been explicitly worked out in ref.36. Interestingly, 
the equation of motion of the mean value of the spin cannot be reversed in an unique manner. It means in practice 
that there is a lot of freedom to reach a given target state and to fulfill also some extra requirements. We will take 
advantage of this feature in the following. In this article, we setup (i) a few general procedures for reverse engi-
neering, (ii) an algorithm to build up the smooth variations in time of the magnetic field components that one 
should apply to spin flip a spin 1/2 (or connect two points on the Bloch sphere) in an arbitrary short amount of 
time, (iii) expand the parameter space of those solutions to fulfill extra requirements such as the robustness of the 
operation or the application of the transformation to two spins with different coupling strength to the magnetic 
field. We then discuss how those protocols shall be modified to take into account interactions between spins, and 
generate in an optimal amount of time entangled states of two or more spins.
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Results
Reverse engineering protocols for a single spin. In the reverse engineering approach, the magnetic 
field components as a function of time are inferred from the equations of evolution of the system once the desired 
quantum state change, suitably parametrized, is imposed. In practice, it can be useful to have different formula-
tions of the same problem since the inversion37 or the generalization to higher dimension can be easier for one of 
them. Those ideas have a wide range of possible applications in various systems, including spin system38–40, Bose-
Einstein condensates (BECs)41,42, and other many-body systems43–45.

Hereafter, we propose to work out such an inversion with three different formulations of a spin 1/2 in 
a time-dependent magnetic field: (i) the direct reversing of the time evolution operator, (ii) the inversion of 
Madelung representation formulation of the problem and (iii) the inversion of the precession equations. This is a 
non exhaustive list. For instance, another common method for reverse engineering relies on dynamical invariant33,  
and will be used in last subsection before discussion.

Inverting the time evolution operator. We consider a spin 1/2 in an initial state ψ| 〉(0) . Its time evolution is encap-
sulated in the evolution operator U(t): ψ ψ| 〉 = | 〉t U t( ) ( ) (0) . The most general form for U is a 2 × 2 complex matrix 
whose coefficients are partially related to ensure its unitary property. Denoting ρ= ϕu eij ij

i ij, the coefficients of U 
shall fulfill the following relations ϕ ϕ ϕ= ≡12 21 , ρ ρ ρ= ≡12 21 , ρ ρ= ≡ r11 22  and ϕ ϕ ϕ π+ = +211 22 . The 
most general form of U therefore reads
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where the variables r, ϕ11 and ϕ are time-dependent. The reverse engineering protocol consists in shaping in time 
the three variables r, ϕ11 and ϕ to ensure the transformation ψ ψ ψ| 〉 → | 〉 = | 〉t(0) ( )f target . The Schrödinger equa-
tion ψ ψ∂ | 〉 = | 〉i t H t( ) ( )t  implies that = 

†H i UU . The expansion of H on the Pauli matrices σi ( =i x y z, , ) gives 
the time-dependent magnetic field components that should be implemented in order to follow the desired trajec-
tory: γ γ σ= − ⋅ = − ⋅H t ts B B( ) ( )/21 1 1  with
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where γ1 is the gyromagnetic factor and ϕ ϕΦ = − 11 the relative phase. We conclude that only two parameters 
are relevant in this case r(t) and Φ(t). This form generally contains the particular results deduced from other 
methods such as the tracking transitionless algorithm and the dynamical invariant approach18, see also refs29,30.

As a simple example, let’s work out the simplest form of the magnetic field components to ensure the spin flip 
of the spin. The wave function reads ψ| 〉 = |+〉 + − |−〉ϕ ϕt r t e r t e( ) ( ) 1 ( )i t i t( ) 2 ( )11 , where |+〉 are the eigenstates 
of σz with eigenvalues ±1, corresponding to the spin up and down. To ensure the spin flip from |+〉 to |−〉 in an 
amount of time tf, we need to fulfill the following boundary conditions, =r(0) 1 and =r t( ) 0f . To avoid the 
divergence of denominators, we choose Φ = 0 and θ=r t t( ) cos( ( )) with θ =(0) 0 and θ π=t( ) /2f . We find 

=B 0x  and =B 0z , and a solution that contains the famous π-pulse solution with a constant magnetic field 
π γ=B t/( )y f

0
1 . The general method that we have worked out enables one to have any type of final state, including 

superposition of states.

Inverting the Madelung representation formulation. Another strategy consists in using an exact semiclassical 
approach based on the phase-modulus equations, commonly referred to as the Madelung representation. To 
derive the corresponding set of coupled equations we start by introducing the general form 
ψ| 〉 = |+〉 + |−〉t a t b t( ) ( ) ( )  into the Schrödinger equation in the presence of a time-dependent magnetic field:
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Let’s rewrite the coefficients a and b in modulus-phase representation = ϕa t n t e( ) ( )a
i t( )a , = ϕb t n t e( ) ( )a

i t( )b . 
The two previous complex equations can be recast as a Hamiltonian problem for the conjugate variables ϕn( , )a a  
and ϕn( , )b b : = −∂ϕn Hi i

, ϕ = ∂


Hi ni
 with ( =i a b, ). It is convenient to introduce the relative variables 

Δ = −t n t n t( ) ( ) ( )n a b  and θ ϕ ϕ= −t t t( ) ( ) ( )a b . The expression of the Hamiltonian now reads

γ θ θ= Δ + − Δ −H B B B/2 1 ( cos sin ), (4)z n n x y1
2
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and the dynamics is given by the two scalar equations

γ θ θΔ = − Δ + B B1 ( sin cos ), (5)n n x y1
2
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From the evolution of Δn and θ, we can infer the components of the magnetic field. For instance,
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Inverting the precession equation. Alternatively, we can work out the equations of motion for the mean value of 
the spin


γ

〈 〉
= 〈 〉 = 〈 〉 × .

t i
H td s

d
1 [s , ] s B( ) (7)

1
1 1 1

In the following, we note = 〈 〉S 2 s /1 1  and use the spherical coordinates to describe the motion of the spin on 
the Bloch sphere: θ ϕ θ ϕ θt t t t tS (sin ( )cos ( ), sin ( )sin ( ), cos ( ))1 . To work out our reverse protocol, we calculate the 
left-hand side of precession equations (7)

θ θ ϕ ϕ θ ϕ= − 


S cos cos sin sin , (8)x1

θ θ ϕ ϕ θ ϕ= + 


S cos sin sin cos , (9)y1

θ θ= − . S sin (10)z1

Combining Eqs (8)–(10), we get

θ γ ϕ ϕ= − B B( cos sin ), (11)y x1

ϕ γ θ ϕ ϕ= − +


B B B[ cot ( cos sin )], (12)z x y1

from which we infer the expression of the transverse magnetic field components. With this set of equations we 
already obtain a class of solution by setting = =B B 0x z  and ϕ = 0, we find θ γ= By1 . The reverse engineering 
protocol consists here in choosing for θ(t) a function that obeys the boundary conditions θ =(0) 0 and θ π=t( )f , 
and to infer from it the expression for By(t). We can readily recover here also the π-pulse solution.

It is interesting to let the possibility to shape any curve on the Bloch sphere36. For this purpose, we need non 
trivial dependence of both θ(t) and ϕ(t). However, as suggested by Eqs (11) and (12), we can engineer only trans-
verse magnetic field components and impose the variation of the longitudinal magnetic field component. This 
choice amounts to using explicitly the non uniqueness of the solution. The solution is then quite simple, we set the 
evolution of θ(t), ϕ(t) and B t( )z  according to our boundary conditions. We have to be careful since we need to 
avoid divergences. This means that we have to take care of the terms having a tanθ. This latter terms diverge for 
θ π= /2, at time = ⁎t t  for which θ π=⁎t( ) /2. To compensate for this divergence, we have to cancel also ϕ =



⁎t( ) 0 
and =⁎B t( ) 0z1 . A way out for the last term consists in choosing θ=B t B t( ) cos( ( ))z1 0 . The set of equations (11) 
and (12) then reads
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Consider the following example, we want to spin flip the spin from |+〉 to |−〉 in an amount of time =t t f . For 
convenience, we use in the following the dimensionless time =s t t/ f . We use the boundary conditions θ =(0) 0 
and θ π=(1) . The simplest polynomial interpolation between those two boundary conditions is θ π=s s( ) . In this 
case, =⁎s 1/2. The boundary conditions for ϕ are therefore ϕ =(0) 0, ϕ =(1) 0 and ϕ =


(1/2) 0. We choose here 

a polynomial ansatz ϕ = −s s s( ) 2 to fulfill those conditions. Equations (13) and (14) take then the simple form
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Figure (1a and b) provide respectively the evolution of the components of the magnetic field and of the spin. 
The choice of smooth polynomial ansatz for the reverse engineering protocol generates a smooth solution. As 
intuitively expected, the shorter tf, the larger the variation. This feature can be seen directly on Eqs (15) and (16) 
through the 1/tf, factors.

In conclusion of this subsection, we have shown that different formulations of the same problem yield different 
class of solutions. Within a given formulation, there is an infinitely large number of solutions for given boundary 
conditions. Those observations are useful to setup protocols for which we can add more constraints.

In the following, we discuss the simultaneous spin flip of two spin having different gyromagnetic factors with 
the same time-dependent magnetic field, and the design of magnetic field trajectories that ensure an optimal spin 
flip fidelity robust against the value of the exact value of the gyromagnetic factor. We will focus on the preces-
sion equations which presents the advantage of a direct possible visualization of the spin trajectory on the Bloch 
sphere.

Simultaneous control of two different spins. Spin flip of different spins. We now consider a second 
spin S2 having a different gyromagnetic factor γ2 (we assume that there is no interactions between the two spins). 
We want to setup a protocol allowing to control both spins with the same time-dependent magnetic field. Such a 
situation is common in NMR46 and in quantum dots47. To setup the reverse engineering protocol, we proceed in 
the following manner: we enlarge the space of functions that flip the first spin, and search for the subset of param-
eters that also ensure the spin flip of the second spin. We shall use the same variation as previously for θ (=πs) but 
a more involved ϕ(s) ansatz with two free parameters, κ and η: ϕ κ η η η= + − − +s s s s s( ) [ ( 1) 2 ]2 3 4 . This inter-
polating function fulfills the required boundary conditions ϕ =(0) 0, ϕ =(1) 0 and ϕ =


(1/2) 0. Using Eqs (13) 

and (14), we can readily infer the time-dependent components of the magnetic field that one should apply.
In Fig. 2, we plot ψΔ = −|〈−| 〉| = +t S1 ( ) (1 )/2f z

2
2  as a function of the two parameters γ γ/2 1 and η, and this 

for different values of κ. Δ provides a direct measurement of the projection of the spin on the z axis at the end of 
the transformation. The blue zone are those for which we approach the target of a perfect reversing of spin two. 
This calculation shows (i) that whatever is the ratio γ γ/2 1 there exists a couple of η κ( , ) parameters that will ensure 
a perfect rotation of the two spins despite the fact that their coupling strength to the magnetic field is different and 
(ii) the existence of dense blue zones (for γ γ∼2 1) for which the rotation for both spin can be very good, this 
feature is the one required for robustness against dispersion of the values of γ2 (see below). Actually, the existence 
of many curves with minimum values of Δ in Fig. 2 means that we can simultaneously spin flip many spins hav-
ing different gyromagnetic factors with the appropriate magnetic field. An example is depicted in Fig. 3 for three 
different spins where we have represented on the Bloch sphere the time-evolution of each spin. Interestingly, our 
protocol generates loops on the Bloch sphere to ensure that all spin trajectories end up at the opposite pole at the 
same time. The one loop trajectory is reminiscent of the spin echo technique but is here generated automatically 
by our protocol.

Magnetic field shaping to ensure the robustness of the spin flip protocol. The reverse engineering protocol is well 
adapted to add further constraints. An important issue is to design spin flip protocols that are robust against the 
dispersion in the parameters governing the time evolution of the system. A standard example is provided by the 

Figure 1. (a) Evolution of the magnetic field components B B/z 0 (solid line), B B/y 0 (dashed line) and B B/x 0 
(dotted line) as a function of time. The shaping of the magnetic field components is obtained self-consistently 
from a reverse engineering protocol in which we impose the variations of the spin components according to the 
target state (spin flip in this case) and the time duration of the transformation. (b) Spin components S1z (solid 
line), S1y (dashed line) and S1x (dotted line) as a function of time. Parameters: γ γ≡ =


t( ) 2f1 1 , =B 10 .
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dispersion of Larmor frequencies of an ensemble of two-level systems in liquid and solid NMR experiments3. This 
question is important for the implementation of quantum computing algorithm48.

In this subsection, we propose to optimize the spin flip of a population independent spins whose gyromag-
netic factors belongs to the interval γ ε γ ε− +[ (1 ); (1 )]. For this purpose, we optimize the spin flip fidelity using 
the free parameters κ and η of our ansatz for the azimuthal angle ϕ t( ). We introduce the function εΛ( ) that meas-
ures the average distance towards the exact spin flip by averaging the different probabilities of remaining in the 
initial state in an interval of size γ ε2  about the mean gyromagnetic factor γ  under consideration:

Figure 2. We design the magnetic field η κ tB( , , ) components as a function of time to ensure the exact spin flip 
of spin 1 (of gyromagnetic factor γ1) in an amount of time tf. The parameter space of such solutions has two free 
extra parameters η and κ. We then calculate the evolution of spin 2 in the time interval t[0, ]f  in the presence of 

η κ tB( , , ). We plot the probability, Δ, that spin 2 remains in its initial state as a function of γ γ/2 1 and η parameter 
for different values of the κ parameter: (a) κ = .0 5, (b) κ = .2 5, (c) κ = .3 1 and (d) κ = .4 5.

Figure 3. Example for which the same tB( ) spin flips perfectly 3 different spin having different gyromagnetic 
factor: (a) γ = 21 , (b) γ = .5 342  and (c) γ = .8 943 . Parameters: κ = .0 5 and η = 5.
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Figure 4 shows the decimal logarithm of the robustness function Λ as a function of κ where ε = .0 01 and η = 20 
is fixed. We observe the existence of a set of discrete “magic” values for κ that ensures an optimal spin flips. The quality 
of the spin flips increases with the value of the magic κ value. For instance, we get εΛ = . = − .log [ ( 0 01)] 7 881610  for 
the first magic value κ = .2 0564, εΛ = . = − .log [ ( 0 01)] 8 712710  for κ = .3 262. We have also represented the evo-
lution of the second spin on the Bloch sphere in the inset of Fig. 4 for κ = .9 1892, which corresponds to 

εΛ = . = − .log [ ( 0 01)] 9 429710 .
For a given time duration tf of the process, the robustness increases at the expense of an increasingly large 

transient magnetic field amplitude. The use of high optimal values of magic κ generates many rotations of the 
spin on the Bloch sphere (see the inset of Fig. 4). This is not surprising since it simply generalizes somehow the 
spin echo technique.

Figure 5 summarizes the robustness functions of different spin flip protocols for gyromagnetic factors span-
ning the interval γ ε2  about the mean value γ . It compares the performance of (i) the simple π-pulse designed for 
the mean value γ  and whose explicit expression is derived in Appendix, (ii) the spin echo technique (see 
Appendix) and different reverse engineering protocols. We include those latter protocols for a non magic value of 
the κ parameter and for three magic values. The first magic value is already competitive with the spin echo tech-
nique (nearly superposition of the two corresponding robustness function). The larger magic values clearly 
improve efficiently the fidelity of the spin flip operation on the whole interval investigated here (up to 5% differ-
ence of the gyromagnetic factor).

Figure 4. Robustness function εΛ = .log [ ( 0 01)]10 , as a function of κ for η = 20. Inset: Spin flip trajectory of 
the second spin on the Bloch sphere with γ γ= .1 012 1, η = 20 and κ = .9 18918. For this large magic value of κ, 
we get εΛ = . = − .log [ ( 0 01)] 9 429710 .

Figure 5. Robustness function of εΛlog [ ( )]10  as a function of ε for different spin flip protocols: π-pulse (upper 
solid line), spin echo technique (lower solid line), reverse engineering protocol for the non magic value κ = .0 5 
(dotted line), reverse engineering protocols for the magic values κ = .2 0564, κ = .3 262, and κ = .9 1892 (and 
dashed lines). The larger the magic value the lower the robustness function.
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Simultaneous perfect spin flip and superposition state generation. The method presented in the previous subsec-
tions can be readily generalized for other requirements. One could flip spin 1 and require for the spin 2 to end up 
in the horizontal plane of the Bloch sphere (superposition of state up and down with the same weight).

To confirm such possibilities offered by our extended space of parameter, we fix the ratio γ γ/2 1, and plot the 
new Δ ( = S z2 ) function as a function of both parameters η and κ. An example is provided in Fig. 6a for 
γ γ = ./ 0 52 1 . The two cut of the 2D plot (Fig. 6b) taken for two values of the η parameter shows explicitly the exist-
ence of two values of κ that ensures an optimal spin flip of spin 1 and that rotate spin 2 in the equatorial plane of 
the Bloch sphere. For instance, the optimal parameters are here: for η = 2, κ = .4 6936 with = − .Slog ( ) 12 5451z10 2  
and for η = 3, κ = .3 799 with = − .Slog ( ) 12 8491z10 2 .

Our method is generic. For instance with γ = 31  and γ = 12 , our protocol also provides an optimal solution for 
the same target states. As an example, we find for η = 8, κ = .5 429 with = − .Slog ( ) 12 6294z10 2 .

Control of the spin trajectory in the presence of interactions. In this subsection, we extend the 
results presented in the previous subsections to the situation for which there is an isotropic mutual interactions 
between the two spins. Interestingly, the solution can be readily obtained from that without interactions. We then 
discuss a more involved strategy for the case of exchange interaction ξ= .V s s4dd

z zint
( )

1 2  also referred to as the Ising 
interaction49–51.

Isotropic interactions. Consider a magnetic field function tB ( )0  that solves simultaneously the equations (7) for 
spin 1 of gyromagnetic factor γ1 and spin 2 of gyromagnetic factor γ2 for the desired target states. It obeys (with 
the same notations as in Sec. Inverting the precession equation)

γ

γ

∂ = ×

∂ = × .

t
t

S B S
S B S

( ) ,
( ) (18)

t

t

1
0

1 0 1
0

2
0

2 0 2
0

In the presence of isotropic interactions ( µ= ⋅V s snt
is

i
( )

1 2), we search the magnetic field function B t( ) that one 
should apply to reach the same target states. We therefore have to solve

γ µ
γ µ

∂ = × + ×
∂ = × + × .

t
t

S B S S S
S B S S S

( ) ,
( ) (19)

t

t

1 1 1 2 1

2 2 2 1 2

Let’s search for a solution of the form α β= + +t tB B S S( ) ( )0 1 2, where α and β are two constant parameters 
that need to be determined. We have

γ µ βγ
γ µ αγ

∂ = × + − ×
∂ = × + − × .

t
t

S B S S S
S B S S S

( ) ( ) ,
( ) ( ) (20)

t

t

1 1 0 1 1 2 1

2 2 0 2 2 1 2

Choosing β µ γ= / 1 and α µ γ= / 2, we now have to solve the set of equations

γ
γ

∂ = ×
∂ = × .

t
t

S B S
S B S

( ) ,
( ) (21)

t

t

1 1 0 1

2 2 0 2

and we know the solution =S S1 1
0 and =S S2 2

0. We conclude that the system (19) admits the solution =S S1 1
0 and 

=S S2 2
0 with a magnetic field that varies as

Figure 6. (a) Mean value of the z component of the second spin at tf (in decimal logarithmic scale) as a function 
of η and κ with γ = 21  and γ = 12 . (b) Cut section of Fig. 6(a) as a function of κ for η = 2 (solid line) and η = 3 
(dashed line).
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µ
γ

µ
γ

= + + .t tB B S S( ) ( )
(22)0

2
1
0

1
2
0

In other words, once we have a solution for two independent spins (including in the case of two different gyro-
magnetic factors) we have also the solution for two spins that interact through an isotropic interaction potential 
of the form µ= ⋅V s sis

int
( )

1 2 whatever is the strength of interaction between the two spins. However, one can never 
rich the Bell state | 〉 = |+−〉 + |−+〉Bell ( )/ 2  with isotropic interactions.

Ising interactions. To reach such a state, one needs anisotropic interactions. The Hamiltonian of two identical 
spins 1/2 therefore reads

γ γ= − ⋅ − ⋅ + .H t t VS B S B( ) ( ) (23)dd
1 2 int

( )

It is block diagonal in the basis that classifies the states by their angular momentum |++〉, | 〉Bell  and 
| 〉 = |+−〉 − |−+〉A ( )/ 2 .

As we are interested in the simultaneous spin flip of the two interacting spins or in the generation of the Bell state, 
we search for a solution in the subspace of angular momentum J = 1: ψ| 〉 = |++〉 + | 〉 + |−−〉t a t b t c t( ) ( ) ( ) Bell ( ) . 
The time dependent complex coefficients a(t), b(t) and c(t) obey the set of linearly coupled equations

 γ ξ γ= + + −i a a B bB( ) / 2 , (24)z

γ ξ γ= − ++ −
i b aB b cB/ 2 / 2 , (25)

γ γ ξ= + − ++i c bB c B/ 2 ( ), (26)z

where γ is the gyromagnetic factor and = ±±B B iBx y.
The adiabatic passage techniques shows that the dynamics is amenable to a 2 × 2 submatrix involving only a 

and b variables49. The adiabaticity requires a transformation on a typical time scale of  ξ30 / . The shortcuts to 
adiabaticity techniques can be used in this subspace to accelerate the transition from the fully polarized state 
|++〉 to the Bell state | 〉Bell 52.

For this purpose, we search for a solution that corresponds to a transverse rotating magnetic field whose 
amplitude varies as a function of time: γ ω=B t B t t( ) ( )cos( )x  and γ ω=B t B t t( ) ( )sin( )y . The sub matrix on a and b 
variables can be recast in a symmetric form within the interaction picture

=





Δ
−Δ






H t t B t
B t t

( ) ( )/2 ( )/ 2
( )/ 2 ( )/2

,
(27)

I

where the diagonal time dependent coefficient is related to the longitudinal magnetic field component: 
γ ω ξΔ = − +t B t( ) ( ) 2z . A convenient and classical method to implement reverse engineering in this context 

relies on the use of dynamical invariants. This method simply consists in determining a matrix I(t) that fulfills the 
following relation


=

∂
∂

− =
dI t

dt
I t

t
i I t H t( ) ( ) [ ( ), ( )] 0, (28)I

with the boundary conditions = =H I H t I t[ (0), (0)] [ ( ), ( )] 0I I f f . To find this matrix I(t), we use the Lie algebra 
operators and expand I(t) on the Pauli matrices: = ⋅ σI t( ) u  where u is a unit vector of spherical angles θ ϕ( , ). 
The eigenstate of I(t), φ θ θ| 〉 = |++〉 + | 〉ϕ

+ t e( ) cos( /2) sin( /2) Belli , is also the eigenstate of H t( )I  for initial and 
final time according to the commutation relations for boundary conditions. The reverse engineering method 
amounts to fixing the evolution of the vector u in order to interpolated the evolution between the initial state 
φ| 〉 ∝ |++〉+(0)  and the desired final state φ| 〉 ∝ | 〉+ t( ) Bellf . To this end, the commutation relations shall be trans-
posed as boundary conditions for the time dependent variables θ(t) and ϕ(t): θ =(0) 0, θ π= −t( )f , θ =(0) 0, 
θ = t( ) 0f , ϕ π= −(0) /2, ϕ π= −t( ) /2f , ϕ π= −t( /2) /2f , ϕ π= −


t(0) / f , and ϕ π=


t t( ) /f f . From Eq. (28), we 

obtain the relation between the Hamiltonian variables and the angles of u, namely,

θ ϕ= B t2 ( ) sin , (29)

ϕ θ
θ ϕ

= − Δ + .




t( )
tan tan (30)

We infer the value of B t( ) and B t( )z , using the polynomial interpolation of minimum order according to the 
boundary conditions for the θ(t) and ϕ(t) variables.

In Fig. 7, we plot the fidelity towards the desired Bell state at final time by solving the set of Eqs (24)–(26) with 
the magnetic field derived from the preceding approach. We find an improvement of at least one order of magni-
tude on the time required to reach the Bell state with high fidelity compared to the adiabatic evolution. As 
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intuitively expected, it is impossible to accelerate to arbitrary short time. This is due to the finite value of the 
coupling (the ζ parameter) that we kept fixed and which imposes a timescale ξ/ .

Interestingly, this method can be readily generalized to more spins in a symmetric configuration. For instance, 
with three spins at the vertex of an equilateral triangle the same approach enables one to design in time the 
required fast evolution of the magnetic field components to drive the system from the fully polarized state |+++〉 
to the W entangled state = |−++〉 + |+−+〉+ |++−〉( )/ 3  (see dashed line in Fig. 7). The method devel-
oped here can be readily generalized to larger number of coupled spins. An interesting perspective is the possibil-
ity to generate reliably states pertaining to different equivalent classes through stochastic local operations with 
classical communications53,54.

Discussion
In this paper, we have proposed a reverse engineering approach to shape a time-dependent magnetic field to 
manipulate a single spin, two spins with different gyromagnetic factors, and two or more interacting spins in short 
amount of times. These techniques, as extension of previous STA techniques for atomic transport22–24, provide 
robust protocols against the exact knowledge of the gyromagnetic factors for the one spin problem, or can be used 
to generate entangled states of two or more coupled spins. The analytical and smooth magnetic fields derived 
from reverse engineering are experimentally implementable, and the further optimization does not requires 
time-dependent perturbation theory or numerical iteration, as compared to the previous results in refs6,33. Such 
fully analytical protocols with good understanding on the spin dynamics and the structure of magnetic fields may 
also provide an efficient initial guess for numerical iteration used in optimization, see the example in refs37,45. The 
large space of parameters available in reverse engineering enables one to handle extra constraints. For instance, 
our technique can be readily adapted to the use of only two control fields (for instance in the xy- plane) as usually 
done in NMR. We have investigated several state to state transfer. Actually, the reverse engineering formalism 
presented for the evolution operator also provides the appropriate framework to generate universal rotation or 
unitary gates55.

Finally, we emphasize that the reverse engineering for spin dynamics provides powerful and effective language 
to implement the possible coherent control for spin qubits by shaping time-dependent magnetic field. Since the spin 
1/2 systems, and equivalent two-level systems, are ubiquitous in the areas of quantum optics, the results, including 
fast and robust spin flip and entanglement generation, are applicable to quantum commutating and quantum infor-
mation transfer, encompassing rather different quantum systems. An important extension of this work is the design 
of reverse engineering protocols in the presence of dissipation, a topic that has been extensively studied in the frame-
work of optimal control theory56,57, with possible applications in the used of quantum dots58, nitrogen-vacancy 
centre in diamond59, control of nonlinear excitations in ferromagnet60–62, superconducting circuits63,64,  
and optomechanical systems65, to name a few recent examples.
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