
https://doi.org/10.1177/11779322211067365

Bioinformatics and Biology Insights
Volume 15: 1–15
© The Author(s) 2021
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/11779322211067365

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
At the December of 2019, a novel corona virus, called severe 
acute respiratory syndrome corona virus 2 (SARS-CoV-2) or 
novel corona virus 2019 (2019-nCoV) is a single-stranded 
RNA, nonsegmented, enveloped viruses, resulted fast spread-
ing from its origin in China to the rest of the globe.1 Symptoms 
of this viral infection vary in severity from a simple cold to 
severe illness, and can lead to death. Despite the fact that great 
progress has been made in antivirals and vaccination for this 
SARS-CoV-2 infection, the survival rate is less. Remdesivir is 
the only antiviral drug for treatment of SARS-CoV-2 infec-
tion.2 Because the precise molecular changes after remdesivir 
treatment for SARS-CoV-2 infection remain unknown, it is 
extremely essential to examine molecular changes during rem-
desivir treatment in SARS-CoV-2 infection.3

Expression profiling by high-throughput sequencing is very 
essential to understand the molecular pathogenesis of viral 
infection and also to the advancement of novel antivirals drugs 
and vaccines for the novel viral infections.4 With the rapid 
advancement of next-generation sequencing (NGS) technol-
ogy to find out differentially expressed genes (DEGs) during 
diagonosis of viral infections.5 We rationally presume that 
DEGs can affect the promotion of various viral infections. 
Now, through expression profiling by high-throughput 
sequencing investigation using NGS technology, more and 
more DEGs were linked with SARS-CoV-2 infection during 
remdesivir treatment and understanding its biological charac-
teristics is essential in improving clinical treatment outcomes.

In the current investigation, we downloaded the RNA-seq 
dataset GSE149273 from the Gene Expression Omnibus 
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ABSTRACT

INTRODuCTION: Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infections (COVID 19) is a progressive viral infection that 
has been investigated extensively. However, genetic features and molecular pathogenesis underlying remdesivir treatment for SARS-CoV-2 
infection remain unclear. Here, we used bioinformatics to investigate the candidate genes associated in the molecular pathogenesis of rem-
desivir-treated SARS-CoV-2-infected patients.

MeThODS: Expression profiling by high-throughput sequencing dataset (GSE149273) was downloaded from the Gene Expression Omni-
bus, and the differentially expressed genes (DEGs) in remdesivir-treated SARS-CoV-2 infection samples and nontreated SARS-CoV-2 infec-
tion samples with an adjusted P value of <.05 and a |log fold change| > 1.3 were first identified by limma in R software package. Next, 
pathway and gene ontology (GO) enrichment analysis of these DEGs was performed. Then, the hub genes were identified by the Network-
Analyzer plugin and the other bioinformatics approaches including protein-protein interaction network analysis, module analysis, target 
gene—miRNA regulatory network, and target gene—TF regulatory network. Finally, a receiver-operating characteristic analysis was per-
formed for diagnostic values associated with hub genes.

ReSulTS: A total of 909 DEGs were identified, including 453 upregulated genes and 457 downregulated genes. As for the pathway and 
GO enrichment analysis, the upregulated genes were mainly linked with influenza A and defense response, whereas downregulated genes 
were mainly linked with drug metabolism—cytochrome P450 and reproductive process. In addition, 10 hub genes (VCAM1, IKBKE, STAT1, 
IL7R, ISG15, E2F1, ZBTB16, TFAP4, ATP6V1B1, and APBB1) were identified. Receiver-operating characteristic analysis showed that hub 
genes (CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FMO5, and PDE1A) had good diagnostic values.

CONCluSION: This study provided insights into the molecular mechanism of remdesivir-treated SARS-CoV-2 infection that might be useful 
in further investigations.
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(GEO) database (http://www.ncbi.nlm.nih.gov/geo/)6 and 
conducted a bioinformatics analysis to study the DEGs between 
remdesivir-treated SARS-CoV-2 infection samples and non-
treated SARS-CoV-2 infection samples. We performed gene 
ontology (GO) and pathway enrichment analyses, protein-pro-
tein interaction (PPI) network construction and analysis, mod-
ules analysis, target gene—miRNA regulatory network, and 
target gene—TF regulatory network construction and analysis. 
Finally, we performed receiver-operating characteristic (ROC) 
analyses for diagnostic values of hub genes. The findings in our 
study may contribute to novel molecular changes during remde-
sivir treatment for SARS-CoV-2 infection.

Materials and Methods
Data resource

The study was designed according to the flowchart (Figure 1). 
Expression profiling by high-throughput sequencing dataset 
GSE149273 based on GPL21290 Illumina HiSeq 3000 
(Homo sapiens) platform was downloaded from the GEO 
database, a public depository database of gene expression data. 
GSE149273 contains 60 samples, including 30 remdesivir-
treated SARS-CoV-2 infection samples and 30 nontreated 
SARS-CoV-2 infection samples.

Screening of the DEGs

For the expression profiling by high-throughput sequencing 
dataset, the R package limma7 was applied for performing the 

differential analysis between 30 remdesivir-treated SARS-
CoV-2 infection samples and nontreated SARS-CoV-2 infec-
tion samples. The P values were adjusted by Benjamini and 
Hochberg method.8 Based on the |log fold change (FC)| val-
ues and the P values, the DEGs (thresholds: |logFC| > 1.3 for 
upregulated genes and |logFC| < −1.3 for downregulated 
genes, adjusted P < .05).

Pathway enrichment analysis for DEGs

To analyze the functions of DEGs, BIOCYC (https://biocyc.
org/),9 Kyoto Encyclopedia of Genes and Genomes (http://www.
genome.jp/kegg/pathway.html),10 Pathway Interaction Database 
(https://wiki.nci.nih.gov/pages/viewpage.action?pageId= 
315491760),11 REACTOME (https://reactome.org/),12 
GenMAPP (http://www.genmapp.org/),13 MSigDB C2 
BIOCARTA (http://software.broadinstitute.org/gsea/msigdb/
collections.jsp),14 PantherDB (http://www.pantherdb.org/),15 
Pathway Ontology (http://www.obofoundry.org/ontology/
pw.html),16 and Small Molecule Pathway Database (http://
smpdb.ca/)17 pathway analysis were performed by using the 
ToppGene (ToppFun) (https://toppgene.cchmc.org/enrich-
ment.jsp)18 online tool. P < .05 was set as the cut-off point.

Gene ontology enrichment analysis for DEGs

The ToppGene (ToppFun) (https://toppgene.cchmc.org/
enrichment.jsp)18 was used to study GO enrichment analyses 
of DEGs. The ToppGene online tool for GO analysis (http://

Figure 1. Flowchart of this study.
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www.geneontology.org)19 was used to complete the function of 
DEGs. Data from biological processes (BP), cellular compo-
nents (CC), and molecular functions (MF) were documented 
from each set of genes. A P < .05 was considered statistically 
significant for all analyses.

Protein-protein interaction network construction 
and module analysis

The IMEX: The International Molecular Exchange Consortium 
(https://www.imexconsortium.org/)20 is a biological database 
designed for predicting PPI networks and integrated with PPI 
databases such as Database of Interacting Proteins (http:// 
dip.doe-mbi.ucla.edu/dip/Main.cgi),21 IntAct Molecular 
Interaction Database (https://www.ebi.ac.uk/intact/),22 the 
Molecular INTeraction database (https://mint.bio.uniroma2.
it/),23 InnateDB (https://www.innatedb.com/),24 Human 
Protein Reference Database (http://www.hprd.org/),25 BioGRID 
(https://thebiogrid.org/),26 Integrated Interactions Database 
from a well-known online server (http://iid.ophid.utoronto.
ca),27 and MatrixDB (http://matrixdb.univ-lyon1.fr/).28 
Cytoscape (http://www.cytoscape.org/, version 3.8.0),29 open 
software, was used to visualize the PPI networks. The top genes 
with the highest node degree,30 betweenness centrality,31 stress 
centrality,32 closeness centrality,31 and lowest clustering coeffi-
cient33 were considered as hub genes based on the analysis using 
NetworkAnalyzer from Cytoscape. PEWCC1 (http://apps.
cytoscape.org/apps/PEWCC1),34 a plugin of Cytoscape, can 
screen a significant module from the PPI network.

Construction of target genes—miRNA regulatory 
network

The miRNet database (https://www.mirnet.ca/)35 is the big-
gest collection of predicted and experimentally verified target 
gene—miRNA interactions using 10 algorithms such as 
TarBase (http://diana.imis.athena-innovation.gr/DianaTools/
index.php?r=tarbase/index),36 miRTarBase (http://mirtarbase. 
mbc.nctu.edu.tw/php/download.php),37 miRecords (http://
miRecords.umn.edu/miRecords),38 miR2Disease (http://
www.mir2disease.org/),39 HMDD (http://www.cuilab.cn/
hmdd),40 PhenomiR (http://mips.helmholtz-muenchen.de/
phenomir/),41 SM2miR (http://bioinfo.hrbmu.edu.cn/SM2 
miR/),42 PharmacomiR (http://www.pharmaco-mir.org/),43 
EpimiR (http://bioinfo.hrbmu.edu.cn/EpimiR/),44 and star-
Base (http://starbase.sysu.edu.cn/).45 Target genes—miRNA 
regulatory network among upregulated and downregulated 
genes was constructed by Cytoscape (http://cytoscape.org/).29

Construction of target genes—TF regulatory 
network

The NetworkAnalyst database (https://www.networkanalyst.
ca/)46 is the biggest collection of predicted and experimentally 

verified target gene—TF interactions using JASPAR (http://
jaspar.genereg.net/)47 database. Target genes—TF regulatory 
network among upregulated and downregulated genes was 
constructed by Cytoscape (http://cytoscape.org/).29

Validation of hub genes

To identify the diagnostic value of upregulated and downregu-
lated hub genes in SARS-CoV-2 infection, pROC package48 in 
R language to illustrate ROC curves was used in this investiga-
tion and area under the curve (AUC) of ROC curves was deter-
mined to check the act of each upregulated and downregulated 
hub genes. When the AUC value was greater than 0.6, the 
upregulated and downregulated hub genes were able of distin-
guishing remdesivir-treated SARS-CoV-2 infection samples 
and nontreated SARS-CoV-2 infection samples. The diagnos-
tic value of upregulated and downregulated hub genes in 
GSE149273 dataset was estimated in our research work.

Results
Screening of the DEGs

A total of 909 DEGs (453 upregulated genes and 457 down-
regulated genes) were identified between remdesivir-treated 
SARS-CoV-2 infection and nontreated SARS-CoV-2 infec-
tion (|logFC| > 1.3 for upregulated genes and |logFC| < −1.3 
for downregulated genes, adjusted P < .05) and volcano plots 
showing the results of differential analysis are given in Figure 2. 
The upregulated genes and downregulated genes are listed in 
Supplemental Table 1. Heatmaps are shown in Figures 3 and 4, 
respectively.

Pathway enrichment analysis for DEGs

To further understand the function and mechanism of the identi-
fied upregulated and downregulated genes, pathway enrichment 
analysis was performed using the ToppGene web tool. 
Upregulated genes were particularly enriched in pyrimidine 
deoxyribonucleoside degradation, tryptophan degradation to 
2-amino-3-carboxymuconate semialdehyde, influenza A, 
cytokine-cytokine receptor interaction, IL23-mediated signaling 
events, direct p53 effectors, cytokine signaling in immune system, 
interferon signaling, C21 steroid hormone metabolism, purine 
metabolism, genes encoding secreted soluble factors, ensemble of 
genes encoding extracellular matrix (ECM)-associated proteins 
including ECM-affiliated proteins, ECM regulators and secreted 
factors, toll receptor signaling pathway, inflammation mediated 
by chemokine and cytokine signaling pathway, JAK-STAT sign-
aling, purine metabolic, steroidogenesis, and pyrimidine metabo-
lism are listed in Supplemental Table 2. Similarly, downregulated 
genes were notably enriched in pyridoxal 5′-phosphate salvage, 
glutamine degradation/glutamate biosynthesis, drug metabo-
lism—cytochrome P450, chemical carcinogenesis, signaling 
events mediated by the hedgehog family, glypican 2 network, 
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GPCR ligand binding, phase 2—plateau phase, glycolysis, gluco-
neogenesis, type III secretion system, genes encoding secreted 
soluble factors, ensemble of genes encoding ECM-associated 
proteins including ECM-affiliated proteins, ECM regulators 
and secreted factors, notch signaling pathway, transforming 
growth factor-beta signaling pathway, notch signaling, wnt sign-
aling, sulfate/sulfite metabolism, and leukotriene C4 synthesis 
deficiency are listed in Supplemental Table 3.

Gene ontology enrichment analysis for DEGs

Gene ontology term enrichment analysis was performed 
using web tool ToppGene. Supplemental Tables 4 and 5 show 

the functions of the identified upregulated and downregu-
lated genes. Upregulated genes of BP were associated with 
defense response and response to external biotic stimulus. 
Downregulated genes of BP were associated with reproduc-
tive process and positive regulation of transcription by RNA 
polymerase II. Upregulated genes of CC were associated with 
cell surface and external side of plasma membrane. 
Downregulated genes of CC were associated with intrinsic 
component of plasma membrane and nuclear chromatin. 
Upregulated genes of MF were associated with cytokine 
activity and receptor ligand activity. Downregulated genes of 
MF were associated with transporter activity and cation 
transmembrane transporter activity.

Figure 2. Volcano plot of differentially expressed genes. Genes with a significant change of more than 2-fold were selected. Green dot represented 

upregulated significant genes and red dot represented downregulated significant genes.

Figure 3. Heat map of upregulated differentially expressed genes. Legend on the top left indicates log fold change of genes (A1-A30 = nontreated 

SARS-CoV-2 infection samples [blue color box]; B1-B30 = remdesivir-treated SARS-CoV-2 infection samples [green color box]). SARS-CoV-2 indicates 

severe acute respiratory syndrome corona virus 2.
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Protein-protein interaction network construction 
and module analysis

The PPI network of upregulated genes consisting of 206 nodes 
and 412 edges was constructed in the IMEX database (Figure 
5). Top hub genes were selected by the NetworkAnalyzer 
(Supplemental Table 6), including VCAM1, IKBKE, STAT1, 
IL7R, ISG15, PML, NOS2, FBXO6, IRF1, IRF7, ADAM8, 
SBK1, ARL14, and TGM2, and statistical results in scatter 
plot for node degree distribution, betweenness centrality, stress 
centrality, closeness centrality, and clustering coefficient are 
displayed in Figure 6A to E. Enrichment analysis revealed that 
hub genes in PPI network were mainly associated with malaria, 
influenza A, defense response, cytokine-cytokine receptor 

interaction, cytokine signaling in immune system, direct p53 
effectors, activating transcription factor-2 transcription factor 
network, adaptive immune system, IL6-mediated signaling 
events, measles, innate immune system, and ensemble of genes 
encoding ECM-associated proteins including ECM-affiliated 
proteins, ECM regulators, and secreted factors. Similarly, PPI 
network of downregulated genes consisting of 206 nodes and 
412 edges was constructed in the IMEX database (Figure 7). 
Top hub genes were selected by the NetworkAnalyzer 
(Supplemental Table 6), including E2F1, ZBTB16, TFAP4, 
ATP6V1B1, APBB1, ELF5, CBX2, USP2, ERP27, 
DSCAML1, KCNF1, DLX3, EGFL6, and AMIGO1, and 
statistical results in scatter plot for node degree distribution, 

Figure 4. Heat map of downregulated differentially expressed genes. Legend on the top left indicates log fold change of genes (A1-A30 = nontreated 

SARS-CoV-2 infection samples [blue color box]; B1-B30 = remdesivir-treated SARS-CoV-2 infection samples [green color box]). SARS-CoV-2 indicates 

severe acute respiratory syndrome corona virus 2.

Figure 5. Protein-protein interaction network of upregulated genes. Green nodes denote upregulated genes.
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betweenness centrality, stress centrality, closeness centrality, 
and clustering coefficient are displayed in Figure 8A to E. 
Enrichment analysis revealed that hub genes in PPI network 
were mainly associated with notch-mediated HES/HEY net-
work, map kinase inactivation of SMRT corepressor, positive 
regulation of transcription by RNA polymerase II, iron uptake 
and transport, positive regulation of RNA metabolic process, 
nuclear chromatin, reproductive process, positive regulation of 
developmental process, de novo pyrimidine ribonucleotide bio-
synthesis, neuronal system, transcription regulatory region 
sequence-specific DNA binding, signaling receptor binding, 
and MF regulator.

Analysis using the PEWCC1 Cytoscape software plugin 
was used to create modules for the PPI networks. A total of 
423 modules were created from PPI network of upregulated 
genes. Four significant modules were identified: module 1 

(nodes 44 and edges 173), module 6 (nodes 24 and edges 69), 
module 12 (nodes 20 and edges 38), and module 16 (nodes 18 
and edges 33) are shown in Figure 9. Enrichment analysis 
revealed that hub genes in modules were mainly associated 
with influenza A, measles, chemokine signaling pathway, 
cytokine signaling in immune system, defense response, 
response to external biotic stimulus, and innate immune 
response. A total of 219 modules were created from PPI net-
work of downregulated genes. Four significant modules were 
identified: module 4 (nodes 87 and edges 86), module 5 (nodes 
77 and edges 76), module 13 (nodes 41 and edges 41), and 
module 16 (nodes 29 and edges 28) are shown in Figure 10. 
Enrichment analysis revealed that hub genes in modules were 
mainly associated with multiorganism reproductive process, 
iron uptake and transport, neuroactive ligand-receptor interac-
tion, and cell-cell signaling.

Figure 6. Scatter plot for upregulated genes. (A) Node degree. (B) Betweenness centrality. (C) Stress centrality. (D) Closeness centrality. (E) Clustering 

coefficient.

Figure 7. Protein-protein interaction network of downregulated genes. Red nodes denote downregulated genes.
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Construction of target genes—miRNA regulatory 
network

The upregulated and downregulated genes were analyzed using 
the miRNet database. Target genes—miRNA regulatory net-
work for upregulated genes consisting of 2182 nodes (1862 miR-
NAs and 320 upregulated genes) and 5899 edges (Figure 11). 
The results of the topological property analysis demonstrated 
that SOD2 (degree = 257; ex, hsa-mir-4298), PMAIP1 
(degree = 147; ex, hsa-mir-5697), APOL6 (degree = 127; ex, hsa-
mir-4478), ICOSLG (degree = 119; ex, hsa-mir-4739), and 
NPR1 (degree = 118; ex, hsa-mir-6131) are listed in Supplemental 
Table 7. Enrichment analyses revealed that target genes in net-
work were mainly associated with cytokine-mediated signaling 

pathway, viral carcinogenesis, adaptive immune system, and 
purine metabolism. Target genes—miRNA regulatory network 
for downregulated genes consisting of 2345 nodes (1783 miR-
NAs and 262 downregulated genes) and 4885 edges (Figure 12). 
The results of the topological property analysis demonstrated 
that VAV3 (degree = 165; ex, hsa-mir-4315), ZNF703 
(degree = 115; ex, hsa-mir-5787), FAXC (degree = 112; ex, hsa-
mir-4279), GPR137C (degree = 97; ex, hsa-mir-3914), and 
ZNF704 (degree = 86; ex, hsa-mir-1538) are listed in 
Supplemental Table 7. Enrichment analysis revealed that target 
genes in network were mainly associated with regulation of actin 
cytoskeleton, positive regulation of developmental process, and 
transcription regulatory region sequence-specific DNA binding.

Figure 8. Scatter plot for downregulated genes. (A) Node degree. (B) Betweenness centrality. (C) Stress centrality. (D) Closeness centrality. (E) 

Clustering coefficient.

Figure 9. Modules in PPI network. The green nodes denote the upregulated genes. PPI indicates protein-protein interaction.
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Construction of target genes—TF regulatory 
network
The upregulated and downregulated genes were analyzed 
using the NetworkAnalyst database. Target genes—TF regu-
latory network for upregulated genes consisting of 516 nodes 
(92 TFs and 424 upregulated genes) and 3459 edges (Figure 
13). The results of the topological property analysis demon-
strated that CD7 (degree = 265; ex, FOXC1), ELOVL7 
(degree = 195; ex, GATA2), NTNG2 (degree = 136; ex, YY1), 
CXCL2 (degree = 125; ex, FOXL1), and (degree = 102; ex, 
NFKB1) are listed in Supplemental Table 8. Enrichment 
analysis revealed that target genes in network were mainly 
associated with fas signaling pathway, ensemble of genes 

encoding ECM and ECM-associated proteins, ensemble of 
genes encoding ECM and ECM-associated proteins, and 
influenza A. Target genes—TF regulatory network for down-
regulated genes consisting of 516 nodes (80 TFs and 458 
downregulated genes) and 2424 edges (Figure 14). The results 
of the topological property analysis demonstrated that 
ABCA17P (degree = 217; ex, FOXC1), TACR1 (degree = 182; 
ex, GATA2), REEP1 (degree = 97; ex, YY1), TRAM1L1 
(degree = 97; ex, FOXL1), and FGF9 (degree = 74; ex, 
TFAP2A) are listed in Supplemental Table 8. Enrichment 
analysis revealed that target genes in network were mainly 
associated with calcium signaling pathway, signaling receptor 
binding, transmembrane transport, and cell-cell signaling.

Figure 10. Modules in PPI network. The red nodes denote the downregulated genes. PPI indicates protein-protein interaction.

Figure 11. The network of upregulated genes and their related miRNAs. The green circle nodes are the upregulated genes, and yellow diamond nodes 

are the miRNAs.
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Validation of hub gene

The prediction achievement by ROC analysis showed that as 
single classifiers, CIITA, HSPA6, MYD88, SOCS3, 
TNFRSF10A, ADH1A, CACNA2D2, DUSP9, FMO5, and 
PDE1A had significant predictive values with AUCs of 
0.956, 0.752, 0.992, 0.914, 0.837, 0.759, 0.781, 0.788, 0.833, 
and 0.788, and P values of .00022, .00714, .00152, .00038, 
.00054, .00275, .00093, .00092, .00294, and .00252, respec-
tively (Figure 15).

Discussion
Outbreaks of appearing and reappearing of SARS-CoV-2 
infection are frequent threats to human health across globe. 
When a novel virus was detected and linked with human dis-
ease, it is necessary to understand molecular changes during 

antiviral treatment in SARS-CoV-2 infection.49 In this investi-
gation, we performed a series of bioinformatics analysis to 
screen hub genes and pathways were associated with remdesi-
vir-treated SARS-CoV-2 infection. The expression profiling by 
high-throughput RNA sequencing found that 49 upregulated 
genes and 72 downregulated genes were identified in remdesi-
vir-treated SARS-CoV-2 infection compared with nontreated 
SARS-CoV-2 infection. IRF7,50 MX2,51 TRIM25,52 
TRIM14,53 IFIT5,54 and IFIT155 have been shown to be a 
meaningful advance factor for progression of influenza virus 
infection, but these novel genes expressed in remdesivir-treated 
SARS-CoV-2 infection. Genes including OAS3,56 OASL 
(2′-5′-oligoadenylate synthetase like),57 and USP1858 were a 
preferred anticancer target, but these novel genes expressed in 
remdesivir-treated SARS-CoV-2 infection. Kurokawa et  al59 

Figure 12. The network of downregulated genes and their related miRNAs. The red circle nodes are the downregulated genes, and blue diamond nodes 

are the miRNAs.

Figure 13. The network of upregulated genes and their related TFs. The green circle nodes are the upregulated genes, and purple triangle nodes are the 

TFs.
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demonstrated that altered expression of RSAD2 during measles 
virus infection, but this novel gene might be expressed in rem-
desivir-treated SARS-CoV-2 infection.

The ToppGene online tool was used to perform a pathway 
enrichment analysis. Xia et  al60 showed that DDX58 pro-
moted aggressiveness of measles virus infection, but this novel 
gene was expressed in remdesivir-treated SARS-CoV-2 infec-
tion. CIITA (class II major histocompatibility complex trans-
activator),61 CCL2,62 PML (promyelocytic leukemia),63 
ICAM1,64 IL1A,65 MX1,66 CXCL8,67 MYD88,67 CXCL10,68 
STAT1,69 STAT2,70 SOCS3,71 CASP1,72 TLR3,73 TNF 
(tumor necrosis factor),74 IL32,75 TRIM22,76 IFITM3,77 
FGF2,78 IFITM1,79 IFITM2,80 IFI27,81 ISG15,82 SOCS1,83 
IRF1,84 ISG20,85 IL22RA1,86 SOCS2,87 GBP5,88 BST2,89 
HERC5,90 IL27,91 CXCL13,92 CXCL3,93 TLR2,94 and 
TNFAIP395 proved to be positively correlated with the pro-
gress of influenza virus infection, but these novel genes were 
expressed in remdesivir-treated SARS-CoV-2 infection. 
CCL5,96 IL19,97 CCL3,96 CCL4,98 CCL20,99 IFIT3,100 
CSF3,101 and IL7R102 proved to be an independent diagnostic 
factors in respiratory syncytial virus infection, but these novel 
genes were expressed in remdesivir-treated SARS-CoV-2 
infection. Conti et al103 and Wu and Yang104 found expression 
of IL6 and JAK2 was correlated with SARS-CoV-2 infection 
progression. TICAM1,105 OAS1,106 OAS2,107 CXCL9,108 
EREG (epiregulin),109 CCL22,110 VCAM1,111 IFI35,112 
IFIT2,113 TRIM5,114 XAF1,115 IFI6,116 IL7,117 SP100,118 
GBP1,119 GBP2,120 IRF4,121 MIR5193,122 IFNL3,123 
CYP21A2,124 CXCL5,125 CX3CL1,126 CCL4L1,127 
WNT16,128 GNB3,129 FLG (filaggrin),130 and HEY1131 have 
been found to be differentially expressed in various viral infec-
tions, but these novel genes were expressed in remdesivir-
treated SARS-CoV-2 infection. Sanders et al132 believed that 
NOS2 plays an important role in the pathophysiology 

of rhinovirus infection, but this novel gene was expressed in 
remdesivir-treated SARS-CoV-2 infection. Bonville et  al133 
reported that the expression of the gene CCR1 is correlated 
with pneumovirus infection, but this novel gene was expressed 
in remdesivir-treated SARS-CoV-2 infection. IRAK2 is a 
promising biomarker in bronchitis virus infection134 detection 
and diagnosis, but this novel gene was expressed in remdesi-
vir-treated SARS-CoV-2 infection.

The functions of the upregulated and downregulated genes 
were identified by GO enrichment analysis. The involvement of 
TREX1,135 IFNL4,136 MICB (MHC class I polypeptide-related 
sequence B),137 RAB43,138 APOL1,139 IFI16,140 APOBEC3B,141 
SLAMF7,142 HDAC9,143 APOBEC3A,144 SERPING1,145 
TAP2,146 LAG3,147 OPTN (optineurin),148 CD68,149 SP140,150 
PDCD1,151 PLVAP (plasmalemma vesicle-associated pro-
tein),152 CD34,153 CD38,154 CD69,155 SLC30A8,156 and 
ATP6V1G2157 with various viral infections was demonstrated 
previously, but these novel genes were expressed in remdesivir-
treated SARS-CoV-2 infection. The altered expression of 
APOBEC3G,158 ADAM8,159 ZBP1,160 NLRC5,161 AIM2,162 
DUOX2,163 NOX1,164 IDO1,165 CEACAM1,166 PTX3,167 
TAP1,168 FFAR2,169 and E2F1170 was observed to be associated 
with the progression of influenza virus infection, but these novel 
genes were expressed in remdesivir-treated SARS-CoV-2 infec-
tion. Currently, CD83 has been reported to be very important in 
progression of respiratory syndrome virus infection,171 but this 
novel gene was expressed in remdesivir-treated SARS-CoV-2 
infection. ACE2 is recognized as an important molecular marker 
of SARS-CoV-2 infection.172 Cheng et al173 found the expres-
sion of NMI (N-myc and STAT interactor) in patients with 
severe acute respiratory syndrome corona virus infection, but this 
novel gene was expressed in remdesivir-treated SARS-CoV-2 
infection. Previous studies had shown that the altered expression 
of CD274 was closely related to the occurrence of rhino virus 

Figure 14. The network of downregulated genes and their related TFs. The green circle nodes are the downregulated genes, and blue triangle nodes are 

the TFs.
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infection,174 but this novel gene was expressed in remdesivir-
treated SARS-CoV-2 infection.

The construction of protein-protein interaction network 
and module analysis for upregulated and downregulated genes 
have been proven to be useful in the analysis of hub genes 
involved in remdesivir-treated SARS-CoV-2 infection. Fusco 
et al175 revealed that HELZ2 may be the potential targets for 
dengue virus infection diagnosis and treatment, but this novel 
gene was expressed in remdesivir-treated SARS-CoV-2 

infection. BATF3 levels are correlated with disease severity in 
patients with respiratory poxvirus infection,176 but this novel 
gene was expressed in remdesivir-treated SARS-CoV-2 infec-
tion. In general, our findings suggested that novel biomarkers 
such as FBXO6, SBK1, ARL14, LMO2, LAP3, TFAP4, 
APBB1, ELF5, USP2, ERP27, DSCAML1, NGEF (neuronal 
guanine nucleotide exchange factor), MARC1, GPRASP1, 
RAB26, DEPTOR (DEP domain containing MTOR inter-
acting protein), HMGCS2, EEPD1, CAMKK1, PDE1A, 

Figure 15. ROC curve validated the sensitivity and specificity of hub genes as a predictive biomarker for SARS-CoV-2 infection. (A) CIITA. (B) HSPA6. 

(C) MYD88. (D) SOCS3. (E) TNFRSF10A. (F) ADH1A. (G) CACNA2D2. (H) DUSP9. (I) FMO5. (J) PDE1A. ROC indicates receiver-operating characteristic; 

SARS-CoV-2, severe acute respiratory syndrome corona virus 2.
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PPP1R3C, WDR88, SERF1A, KLHL32, SMTNL2, 
RASL11B, ABLIM1, TOX2, LMCD1, TMCC2, and CERK 
(ceramide kinase) might play key roles in the action mecha-
nism of SARS-CoV-2 infection.

The construction of target genes—miRNA regulatory net-
work—and target genes—TF regulatory network analysis for 
upregulated and downregulated genes—has been proven to be 
useful in the analysis of target genes involved in remdesivir-
treated SARS-CoV-2 infection. Uckun et  al177 and Purdy 
et  al178 revealed that CD7 and ELOVL7 are associated with 
HIV infection, but these novel genes were expressed in remde-
sivir-treated SARS-CoV-2 infection. In general, our findings 
suggested that novel biomarkers such as SOD2, APOL6, 
NPR1, NTNG2, VAV3, ZNF703, FAXC (failed axon connec-
tions homolog, metaxin-like GST domain), GPR137C, 
ZNF704, ABCA17P, REEP1, and TRAM1L1 might play key 
roles in the action mechanism of remdesivir treated SARS-
CoV-2 infection.

However, in addition to the objection of sample collection, 
huge obstacles in the analysis need to be overcome. In addition, 
due to the smallness of available datasets in the GEO database, 
the sample size in this study was finite. We will raise the sample 
size in a future investigation if Supplemental datasets can be 
replaced from the database.

In conclusion, we conducted a comprehensive bioinformat-
ics analysis on NGS data of remdesivir-treated SARS-CoV-2 
infection. Pivotal DEGs (upregulated and downregulated 
genes) and pathways were diagnosed and screened to provide a 
theoretical basis for molecular changes during antiviral treat-
ment in SARS-CoV-2 infection. Ten hub genes, especially 
CIITA, HSPA6, MYD88, SOCS3, TNFRSF10A, ADH1A, 
CACNA2D2, DUSP9, FMO5, and PDE1A, were found to 
differentiate remdesivir-treated SARS-CoV-2 infection from 
nontreated SARS-CoV-2 infection. Nevertheless, additional 
relevant investigations are needed to further confirm the iden-
tified upregulated and downregulated genes, and pathways in 
remdesivir-treated SARS-CoV-2 infection.
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