
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REVIEW ARTICLE
published: 11 November 2013

doi: 10.3389/fendo.2013.00166

New frontiers in the intrarenal renin-angiotensin system: a
critical review of classical and new paradigms
Jia L. Zhuo1,2*, Fernanda M. Ferrao1,Yun Zheng1 and Xiao C. Li 1

1 Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
2 Department of Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS, USA

Edited by:
Walmor De Mello, University of
Puerto Rico, USA

Reviewed by:
Norifumi Iijima, Yale University School
of Medicine, USA
Mark Chappell, Wake Forest
University School of Medicine, USA

*Correspondence:
Jia L. Zhuo, Department of
Pharmacology and Toxicology,
University of Mississippi Medical
Center, 2500 North State Street,
Jackson, MS 39216-4505, USA
e-mail: jzhuo@umc.edu

The renin-angiotensin system (RAS) is well-recognized as one of the oldest and most impor-
tant regulators of arterial blood pressure, cardiovascular, and renal function. New frontiers
have recently emerged in the RAS research well beyond its classic paradigm as a potent
vasoconstrictor, an aldosterone release stimulator, or a sodium-retaining hormone. First,
two new members of the RAS have been uncovered, which include the renin/(Pro)renin
receptor (PRR) and angiotensin-converting enzyme 2 (ACE2). Recent studies suggest that
prorenin may act on the PRR independent of the classical ACE/ANG II/AT1 receptor axis,
whereas ACE2 may degrade ANG II to generate ANG (1–7), which activates the Mas recep-
tor. Second, there is increasing evidence that ANG II may function as an intracellular peptide
to activate intracellular and/or nuclear receptors. Third, currently there is a debate on the
relative contribution of systemic versus intrarenal RAS to the physiological regulation of
blood pressure and the development of hypertension. The objectives of this article are to
review and discuss the new insights and perspectives derived from recent studies using
novel transgenic mice that either overexpress or are deficient of one key enzyme, ANG
peptide, or receptor of the RAS.This information may help us better understand how ANG
II acts, both independently or through interactions with other members of the system, to
regulate the kidney function and blood pressure in health and disease.

Keywords: angiotensin 1-converting enzyme, ACE2, angiotensin II receptor, blood pressure, hypertension, kidney,
proximal tubule, signal transduction

INTRODUCTION
Although Tigerstedt and Bergman discovered the rate-limiting
enzyme renin about 115 years ago (1), the renin-angiotensin
system (RAS) remains to be a remarkable subject for continu-
ous research. Our current understanding of the RAS has greatly
evolved from the classical renin/angiotensin-converting enzyme
(ACE)/angiotensin II (ANG II)/AT1 receptor axis and its physio-
logical roles in the regulation of cardiovascular and renal func-
tion, blood pressure, aldosterone biosynthesis and release, and
body salt and fluid balance (2–14). However, new frontiers are
continuously emerging from the RAS research in recent years,
especially in uncovering new enzyme(s) and/or receptor(s) of the
system, studying their novel roles, and elucidating their signaling
transduction mechanisms. It is now recognized that the classical
renin/ACE/ANG II/AT1 and AT2 axis is no longer the exclusive
effector and signaling pathway for the system (15). Three new axes
have been recently described to include the ACE2/ANG (1–7)/Mas
receptor axis, the prorenin/PRR/MAP kinases ERK1/2 axis, and
the ANG IV/AT4/IRAP (insulin-regulated aminopeptidase, IRAP)
axis (Figure 1) (8, 12, 15–17). The notion that ANG II is the only
active peptide of the RAS appears to be outdated, since ANG II can
be hydrolyzed by various angiotensinases, ACE2, and neprilysin to
generate ANG (1–7), ANG III, ANG IV, and ANG A (2, 16, 18).
Prorenin and smaller ANG fragments, including ANG (1–7), ANG
III, and ANG IV, can bind their respective receptors or act as an
agonist for ANG II receptors to induce a physiological effect (2,

8, 17, 19–21). Indeed, in addition to AT1 and AT2 receptors that
mediate the well-recognized effects of ANG II in the kidney and
other tissues, new receptors for prorenin (PRR), ANG (1–7) (Mas
receptor), and ANG IV (AT4 receptor) have been identified (21–
23). Depending on the receptor activated, small ANG peptides
may act as an agonist or an antagonist of ANG II. For example,
appropriate concentrations of ANG (1–7), ANG III, and ANG IV
may activate their respective Mas receptors (8, 9, 16), AT2 recep-
tors (19, 24, 25), or AT4 receptors to oppose the known effects of
ANG II (26, 27). Conversely, high concentrations of ANG (1–7),
ANG III, and ANG IV may activate AT1 receptors to induce the
well-recognized effects of ANG II (16, 20, 28–30). Furthermore,
the renin/prorenin receptor, PRR, not only catalyzes prorenin to
generate ANG II, but also induces intracellular responses in an
ANG II-independent manner (13, 31, 32). Finally, the RAS is no
longer considered to act only as an endocrine system, but also
acts as a paracrine, autacrine, and intracrine system (33–37). It
is likely that ANG II and its smaller ANG peptides may act as
both endocrine, paracrine, and intracrine peptides by stimulating
cell surface, cytoplasmic and nuclear receptors to exert biological,
physiological, and nuclear effects.

The major objective of this article is to review recent advances
in biomedical research with a focus on the intrarenal RAS and
its paracrine, autacrine, and intracrine roles. New insights, con-
troversies, and perspectives will be discussed by reviewing recent
in vitro and in vivo studies using innovative approaches or

www.frontiersin.org November 2013 | Volume 4 | Article 166 | 1

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/about
http://www.frontiersin.org/Journal/10.3389/fendo.2013.00166/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2013.00166/abstract
http://www.frontiersin.org/people/u/108538
http://www.frontiersin.org/people/u/110186
http://www.frontiersin.org/people/YunZheng/58230
mailto:jzhuo@umc.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Endocrinology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zhuo et al. New frontiers in angiotensin research

FIGURE 1 | A representative overview of the evolving renin-angiotensin
system. (1) The classical angiotensinogen/renin/ACE/ANG II/AT1 and AT2

receptor axis. (2) The prorenin/PRR/MAP kinases ERK 1/2 axis. (3) The
ACE2/ANG (1–7)/Mas receptor axis. (4) The ANG IV/AT4/IRAP axis. ANG A,
angiotensin A. ANG I, angiotensin I. ANG (1–7), angiotensin (1–7). ACE,

angiotensin-converting enzyme. ACE2, angiotensin-converting enzyme 2.
ANG II, angiotensin II. ANG III, angiotensin III. ANG IV, angiotensin (3–8). APA,
aminopeptidase A; APN, aminopeptidase N; AT1, type 1 ANG II receptor; AT2,
type 2 ANG II receptor; IRAP, insulin-regulated aminopeptidase or AT4

receptor; JGA, juxtaglomerular apparatus.

animal models including global and tissue-specific RAS trans-
genic animals. The review article will cover the classical ACE/ANG
II/AT1 and AT2 receptor axis, the ACE2/ANG (1–7)/Mas receptor
axis, the prorenin/PRR/MAP kinases ERK1/2 axis, and the ANG
IV/AT4/IRAP axis. It is expected that this new information may
further improve our understanding of physiological and patho-
physiological roles of the RAS and help the development of new
drugs or strategies to treat hypertension, diabetes, and cardiovas-
cular and kidney diseases by targeting ANG II and other ANG
peptides and/or their receptors.

CURRENT INSIGHTS AND FUTURE PERSPECTIVES ON THE
ROLES OF THE CLASSICAL ACE/ANG II/AT1 AND AT2
RECEPTOR AXIS IN THE KIDNEY
It is well established that the ACE/ANG II/AT1 and AT2 recep-
tor axis may function as a circulating or endocrine and paracrine
system to regulate cardiovascular, neural, adrenal, and renal func-
tion, contributing to normal blood pressure homeostasis and
the development of hypertension. However, the specific role of
and the extent to which the intrarenal ACE/ANG II/AT1 and
AT2 receptor axis versus the systemic counterpart plays in nor-
mal blood pressure control and the development of hypertension
remain an issue of continuous debate (10, 38–42). Now, there
is a general consensus that all major components of the RAS
necessary for generation of ANG II are expressed or present
in the kidney (Figure 2) (2, 18, 43–45), and that the levels of
ANG II in the kidney are much higher than in plasma (2, 44,
46–49). This is especially true that high ANG II levels have
been demonstrated in interstitial and proximal tubular fluid of
the kidney and intracellular endosomal compartment (46–48,
50–52).

The mechanisms underlying high levels of ANG II in the kid-
ney are not well understood. In addition to the well-documented
expression of all major components of the RAS in the kidney, two
major mechanisms may play a critical role under physiological
conditions and during the development of ANG II-dependent
hypertension. The first is that AT1 receptors are abundantly
expressed in the kidney, where AT1 (AT1a) receptor mediates
the intracellular accumulation of ANG II especially in proxi-
mal tubules (48, 53–58). Classically, a receptor pharmacological
dogma suggests that the purpose of G protein-coupled receptor
(GPCR)-mediated internalization or endocytosis of an agonist
or ligand is to desensitize the cellular responses to the ago-
nist stimulation by moving the agonist/ligand into the cell for
degradation in the lysosomal compartment (59–64). The recep-
tor recycles back to the cell membrane to initiate a new round
of biological response. However, we and others infused ANG
II into rats and mice for 2 weeks, and found no desensitiza-
tion of ANG II responses, because blood pressure continued to
increase and hypertension persists as long as ANG II is infused
(48, 53–58). Zhuo et al. reported that in ANG II-infused hyper-
tensive rats, ANG II levels were about 10 times higher in renal
cortical endosomes than in control rats via an AT1 receptor-
mediated mechanism (48). Nishiyama et al. showed that renal
interstitial fluid ANG II levels were substantially increased in ANG
II-infused rats, an effect also mediated by AT1 receptors (65).
In AT1a receptor-deficient mice (Agtr1a−/−), we further demon-
strated that AT1 receptor-mediated increases in ANG II uptake
in the kidney were largely abolished (57, 58). These studies sug-
gest that AT1 (AT1a) receptor-mediated uptake of ANG II at least
partly contributes to the demonstrated high levels of ANG II in
the kidney.
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FIGURE 2 | Intrarenal localization or expression of major components of
the renin-angiotensin system. (A) Active renin binding in juxtaglomerular
apparatus in the dog kidney using the radiolabeled renin inhibitor, 125I-H77.
(B) ACE binding in the proximal tubule of the rat kidney using 125I-351A
(C) AT1 receptor binding in the rat kidney in the presence of the AT2 receptor
blocker PD123319. (D) AT2 receptor binding in the rat kidney in the presence
of the AT1 receptor blocker losartan using 125I-[Sar1,Ile8]-Ang II. (E) Ang (1–7)

receptor binding in the rat kidney using 125I-Ang (1–7) as the radioligand. And
(F) Ang IV receptor binding in the rat kidney using 125I-Ang (3–8). The levels of
binding are indicated by color calibration bars with red representing the
highest, whereas blue showing the lowest levels of enzyme or receptor
binding. G, glomerulus; IM, inner medulla; IS, inner stripe of the outer
medulla; JGA, juxtaglomerular apparatus; P, proximal tubule. Reproduced
from Li and Zhuo with permission (45).

The second classical dogma in the RAS field is that the expres-
sion and activity of the RAS is strictly regulated by a negative
feedback mechanism by ANG II itself. An increase in the circu-
lating and tissue ANG II is expected to suppress renin release
from JGA cells and therefore the production of ANG II in the
kidney. However, there is evidence that a positive feed-forward
loop exists in the kidney during ANG II-dependent hypertension
(43, 44, 66–69). Navar’s group has shown that prorenin and renin
(68–70), angiotensinogen (43, 67), and ACE (66) are significantly
augmented in response to long-term infusion of ANG II to induce
hypertension in rats or mice. Renin and prorenin expression in the
collecting ducts are also stimulated during ANG II infusion, likely
contributing to increased urinary levels in ANG II-infused hyper-
tensive rats (69–72). Taken together, these studies suggest that in
ANG II-infused hypertensive animals, intrarenal ANG II produc-
tion may be augmented due to increased expression of prorenin
and renin, AGT, and ACE.

Currently, there is a great debate on whether AGT,ACE, and AT1

receptors in the kidney contribute to the normal blood pressure
regulation and the development of hypertension (4, 10, 39–42,
73–77). The classical dogma is that the circulating RAS via the
kidney derived renin, liver-derived AGT and vascular endothelial
ACE, rather than the intrarenal RAS, plays an important role in
the normal blood pressure control and the development of hyper-
tension (78–82). To determine the roles of systemic/endothelial
ACE versus tissue/kidney ACE in normal blood pressure and renal
control, Bernstein’s group first used targeted homologous recom-
bination to create mice, ACE 2/2, expressing a form of ACE that
lacks the COOH-terminal half of ACE with normal or elevated
circulating ACE without tissue-bound/kidney ACE (78). Homol-
ogous ACE 2/2 mice have significantly lower blood pressure, renal

vascular thickening, urine concentrating defect, and significant
increase in fractional proximal tubular reabsorption (78). These
studies suggests that tissue-bound ACE, rather than circulating
ACE, is important for maintaining normal blood pressure (78),
and that ACE in the proximal tubule may not be necessary for
maintaining normal proximal fluid reabsorption (80). The same
group of investigators later generated the so-called ACE 3/3 mice,
which is deficient of endothelial ACE in the lung, aorta, or any
vascular structure (79). ACE activity in the kidney is about 14%
that of wild-type mice, but hepatic ACE expression in ACE 3/3
mice is almost 90-fold that of wild-type. Interestingly, basal blood
pressure, plasma ANG II levels, response to ACE inhibitors, and
renal function of ACE 3/3 mice were similar to those of wild-type
mice. The underlying conclusion of this study is that endothe-
lial ACE is not required for maintaining normal blood pressure
and renal function (79). Sen’s group also generated two differ-
ent strains of mutant mice that express ACE either in vascular
endothelial cells (Ts strain) or in renal proximal tubules (Gs strain)
(81, 82). Both mutant mice show equivalent serum ACE and ANG
II levels, normal kidney structure and fluid homeostasis. In con-
trast to Bernstein’s ACE3/3 mice (79), only those mutant mice
that expressed ACE in vascular endothelial cells had normal blood
pressure (81). Proximal fluid reabsorption was found to be nor-
mal in the chronic absence of proximal tubule ACE (82). Thus
there is still a lack of consensus with respect to the precise roles
of systemic/endothelial versus tissue/kidney ACE in normal blood
pressure control.

Recently, Gonzalez-Villalobos et al. further determine the
role of intrarenal ACE in the normal blood pressure regulation
and the development of ANG II-induced hypertension (10, 75).
First, Gonzalez-Villalobos et al. also used targeted homologous
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recombination to generate mice, ACE9/9, that express ACE only
in the kidney tubules but not in other tissues (75), or mice with
complete deficiency of the entire kidney ACE, ACE 10/10 (10).
Similar to Sen’s Gs strain (82), ACE 9/9 mice had lower blood
pressure, associated with reduced circulating ANG II, but main-
tained normal kidney ANG II levels. ACE 9/9 mice responded to
chronic ANG I infusion to substantially increase blood pressure
(75). In ACE 10/10 mice whose basal blood pressure was similar to
wild-type mice, the blood pressure responses to 2-week of ANG II
infusion were substantially attenuated in the kidney ACE-KO mice
(10). The later study indicates that intrarenal ACE plays a key role
in the development of ANG II-induced hypertension, whereas the
absence of ACE in the kidney protects against hypertension (10).

However, a careful evaluation of these studies on different
strains of ACE mutant mice evokes more questions than answers
in the current debate on the relative roles of circulating and
intrarenal ACE and therefore ANG II in the blood pressure regula-
tion and the development of hypertension (39, 83). For example,
mice with the lack of vascular endothelial ACE may be normoten-
sive (79) or hypotensive (75, 81). Conversely, mice with the lack
of kidney/proximal tubular ACE may be normotensive (10, 81).
ACE/ANG II appear not to be necessary for maintaining normal
proximal tubular fluid reabsorption in mice with overexpression
or deficiency of ACE in the proximal tubule (79–82) or the entire
kidney (10). Furthermore, circulating or kidney ANG II levels may
be normal in these ACE transgenic mice despite of the lack of
systemic/endothelial or kidney/proximal tubular ACE (10, 75, 79,
82). These contradictory biochemical, blood pressure, and proxi-
mal tubular transport phenotypes, as revealed in various mutant
ACE-knockout mice, are difficult to reconcile with well-recognized
roles of ACE in the formation of ANG II in the circulation and
the kidney, in promoting sodium reabsorption in the proximal
tubule and other tubular segments, and in maintaining normal
blood pressure homeostasis. However, these diverse phenotypes
may provide a new insight into an important role of AT1 (AT1a)
receptor-mediated uptake of circulating ANG II by the kidney,
especially in the proximal tubule, in maintaining normal levels of
ANG II in the kidney of ACE9/9 and/or ACE10/10 mice (10, 75).
As discussed previously, AT1 (AT1a) receptor-mediated uptake of
circulating ANG II at least partly contributes to higher basal ANG
II levels and increased ANG II levels in the kidney during ANG II-
induced hypertension (48, 54, 57, 58, 84, 85). Another new insight
derived from these mutant ACE mouse models is that blood pres-
sure and proximal tubule phenotypes of these ACE-knockout mice
are likely complicated by the fact that ACE is chiefly responsible
for the metabolism of bradykinin, ANG (1–7), and many other
vasoactive peptides such as substance P (8, 9, 18, 86). Knockout
of systemic and/or kidney ACE would lead to marked decreases in
circulating and intrarenal ANG II and generation of other vasode-
pressor substances in the circulation and kidney, which may alter
blood pressure and renal responses to ANG II or other vasoac-
tive substances under physiological as well as pathophysiological
conditions.

Recent studies using mice with kidney or proximal tubule-
specific knockout of AT1 receptors provide new insights and
perspectives into the roles of the kidney or proximal tubular
AT1a receptors in the normal blood pressure regulation and the

development of hypertension (4, 38, 40–42, 77, 87). Coffman and
Crowley’s group has been instrumental to use the kidney cross-
transplantation approach between wild-type and global AT1a

receptor-knockout mice (Agtr1a−/−) (4, 38, 87). These investi-
gators transplanted the kidney of wild-type mice into Agtr1a−/−

mice to generate systemic AT1a-KO mice, and conversely trans-
planted the kidney of Agtr1a−/− mice into wild-type mice to
generate the kidney-specific AT1a-KO mice. Blood pressure and
cardiac hypertrophic responses to ANG II infusion or high salt
intake were compared in the systemic- and kidney-specific AT1a-
KO mice (4, 38, 87). These elegant studies confirmed that the
kidney AT1 receptors are absolutely required for the development
of ANG II-dependent hypertension and cardiac hypertrophy, and
systemic AT1 receptors is not sufficient for ANG II to induce hyper-
tension or cardiac hypertrophy (38). Using the Cre/Lox strategy,
Gurley et al. (40) and Li et al. (41) generated proximal tubule-
specific AT1a-KO mice to determine the role of proximal tubule
AT1a receptors in blood pressure regulation. Both studies demon-
strated that deletion of AT1a receptor and its signaling in the
proximal tubule alone is sufficient to significantly decrease basal
blood pressure, despite intact systemic AT1a receptor expression
and vascular responses (40,41). Alternatively,we have recently pro-
duced adenoviral constructs encoding GFP-tagged AT1a receptor
gene (AT1aR/GFP) (Figure 3), or an enhanced cyan fluorescent
protein (ECFP)-tagged ANG II fusion protein, and a proximal
tubule-specific sodium and glucose cotransporter 2 (sglt2) pro-
moter (Figure 4) (42). We demonstrated that intrarenal transfer of
AT1aR/GFP alone selectively in the proximal tubule was sufficient
to increase systolic blood pressure by ∼12 mmHg 14 days after the
gene transfer (42). Cotransfer of AT1aR/GFP with ECFP/ANG II
increased blood pressure further to 18 mmHg. The increases in
blood pressure were associated with twofold increases in phos-
phorylated MAP kinases ERK1/2, lysate and membrane NHE3
proteins in freshly isolated proximal tubules, and a decrease in 24 h
urinary sodium excretion (42). Taken together, these elegant stud-
ies strongly suggest that the proximal tubule ACE/ANG II/AT1a

receptor axis via promoting proximal tubular sodium and fluid
reabsorption may contribute approximately 15 mmHg to basal
blood pressure homeostasis in mice.

CURRENT INSIGHTS AND FUTURE PERSPECTIVES ON THE
ROLES OF THE ACE2/ANG (1–7)/Mas RECEPTOR AXIS IN THE
KIDNEY
ANG (1–7) is the most extensively studied smaller ANG pep-
tide in the RAS since 1970s (8, 9, 17, 18, 88). Early studies
showed that structural deletion of either phenylalanine (position
8) or the dipeptide, Pro-Phe (positions 7 and 8) from ANG II
completely removed the vasoconstrictor, central pressor, or thirst-
stimulating actions of ANG II (89). The structural and activity
studies suggested that ANG (1–7) may be an inactive component
of the RAS. However, subsequent studies primarily from Ferrario’s
group demonstrated that ANG (1–7) has significant vasodepressor
and antihypertensive actions in hypertensive animals or humans,
which may oppose the actions of ANG II either directly or indi-
rectly by stimulation of prostaglandins and nitric oxide (8,9,17,18,
88). The importance of this heptapeptide in cardiovascular, blood
pressure, and renal control gains further recognition recently upon
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FIGURE 3 | Proximal tubule-specific expression of AT1aR/GFP in a
representative Agtr1a−/− mouse kidney 2 week after intrarenal
adenoviral transfer. (A) AT1aR/GFP expression (green) in proximal tubules
(PT). (B) Alexa Fluor 594-labeled megalin expression (red) in proximal
tubules. (C) DAPI-stained nuclei (blue) in the same kidney section.
(D) Merged image of (A–C), showing the colocalization of AT1aR/GFP and
megalin expression (yellow) in proximal tubules. Only very low levels of

AT1aR/GFP and megalin expression are visible in the glomerulus (G) and
cortical collecting tubules (CCT). (E) AT1aR/GFP expression in the outer
medulla. (F) Alexa Fluor 594-labeled megalin expression in the outer
medulla. (G) DAPI-stained nuclei in the outer medulla. (H) Merged image
of (E–G), showing the lack of AT1aR/GFP and megalin expression in the
outer medulla. Magnification: ×40. Reproduced from Li and Zhuo with
permission (42).

FIGURE 4 | Effects of proximal tubule-specific, adenovirus-mediated
transfer of ECFP/ANG II on ECFP/ANG II expression in the renal outer
cortex and freshly isolated proximal tubule of mouse kidneys 2 wk after
gene transfer. (A) ECFP expression (blue-green). (B) DAPI-stained nuclei
(red). (C) Merged image of (A,B), respectively, in the outer renal cortex of a

representative rat transferred with ECFP/ANG II selectively in proximal
tubules. (D–F) Expression of ECFP/ANG II in a freshly isolated representative
proximal convoluted tubule. Bars=100 µm for the renal cortex and 10 µm for
the isolated proximal tubule. G, glomerulus; PT, proximal tubule. Reproduced
from Li et al. with permission (77).

the molecular characterization of a GPCR using ANG (1–7) as a
ligand, the Mas receptor (23). It is increasingly recognized that the
new ACE2/ANG (1–7)/Mas receptor axis acts to counteract most
of the known deleterious actions of the ACE/ANG II/AT1 recep-
tor axis (8, 16, 17). However, recent studies on transgenic animals
overexpressing ANG (1–7) have provided new insights and per-
spectives on whether ANG (1–7) plays beneficial cardiovascular,
blood pressure, and renal hemodynamic effects (90–92).

The kidney is one of the key tissues in which ANG (1–7) is gen-
erated from the metabolism of ANG II by ACE2 with the proximal
tubule exhibiting the most robust ACE2 activities (8, 49). ANG (1–
7) can be easily detected in the proximal tubule and urine of rats,
sheep, and humans, but it can be rapidly hydrolyzed to ANG (1–
5) and ANG (1–4) by ACE and neprilysin (8, 49). Whether ANG
(1–7) is primarily produced from the degradation of ANG II by
ACE2 in the circulation and kidney remains an issue of continuous
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debate. An early study by Yamamoto et al. showed that infusion of
ANG II in WKY or SHR rats was not accompanied by significantly
increased plasma ANG (1–7) levels (93). Modrall et al. reported
that in tissue ACE-knockout mice, intrarenal ANG I and ANG II
levels were decreased by 70–80% compared with wild-type mice,
but ANG (1–7) levels were surprisingly normal in the kidney (94).
Thus a more balanced view may be that ANG (1–7) is derived from
both the metabolism of ANG I via the endopeptidase-dependent
pathway and the metabolism of ANG II by the ACE2-dependent
pathway.

Both renal hemodynamic and tubular effects have been demon-
strated although the signaling mechanisms involved are not fully
understood (17). However, the current insight is that ANG (1–7)
acts primarily to oppose the cardiovascular and renal effects of
ANG II. For example, ANG II is known to increase blood pres-
sure, induce renal vasoconstriction to decrease renal blood flow
(RBF) and glomerular filtration rate (GFR), and induce antid-
iuresis and antinatriuresis (43, 95–98). By contrast, ANG (1–7)
infusion generally opposes and attenuates these effects of ANG II
(8, 16, 17, 36, 99). The diuretic/natriuretic effects of ANG (1–7)
may be partly due to the renal vasodilatation as well as inhibition
of sodium and water reabsorption along the nephron segments.
Previous studies demonstrated that ANG (1–7) may be a potent
inhibitor of Na+-K+-ATPase in the proximal tubule (16, 17). ANG
(1–7) may inhibit Na+-K+-ATPase via AT2 receptor-mediated
stimulation of the G(i/o) protein/cGMP/PKG signaling pathway
(100, 101). Moreover, ANG (1–7) showed biphasic effects on the
Na+/H+ exchanger activity in isolated proximal tubules mediated
by the Mas receptor and changes in [Ca2+]i (30, 102). In rat inner
medullary collecting ducts (IMCD), ANG (1–7) enhanced water
transport via the vasopressin V2 receptor (103). However, some
of renal effects induced by ANG (1–7) are very difficult to rec-
oncile with the dogma on the potential roles of the ACE2/ANG
(1–7)/Mas receptor axis to counteract with detrimental roles of
the renin/ACE/ANG II/AT1 receptor axis. A careful review of the
above-mentioned studies reveals that ANG (1–7) may also activate
the well-recognized downstream ANG II/AT1 receptor signaling
transduction to induce similar effects induced by ANG II.

New insights and perspectives into the physiological roles of
ANG (1–7) acting via the Mas receptors in the cardiovascular,
blood pressure, and renal regulation may be best inferred from
transgenic animals with overexpression of ANG (1–7) (90, 91,
104) or ACE2 (105–107) to substantially increasing production of
ANG (1–7) in the circulation or tissues or due to global or tissue-
specific deletion of the Mas receptor. Santos’ group has generated
transgenic rats that express an ANG (1–7)-producing fusion pro-
tein, TGR(A1–7)3292, in the testis (90). Expression of ANG (1–7)
in the testis acts as an ANG (1–7) biological pump to increase the
plasma ANG (1–7) concentration 2.5-fold. Surprisingly, overex-
pression of ANG (1–7) did not alter basal blood pressure levels in
TGR(A1–7)3292 rats despite of significant increases in stroke vol-
ume and cardiac index and a decrease in total peripheral resistance
(90, 104). While acute intravenous infusion of ANG (1–7) induces
renal vasodilatation, diuresis, and natriuresis (17, 99), GFR and
24 h urinary sodium excretion in TGR(A1–7)3292 rats are similar
to those in Sprague-Dawley rats, whereas 24 h urine excretion was
decreased and osmolality increased, respectively (91). The results

obtained from TGR(A1–7)3292 rats appear to be contradictory to
the well-known vasodepressor, diuretic and natriuretic effects of
ANG (1–7). In a different study, Rentzsch et al. generated trans-
genic rats on a SHRSP genetic background expressing the human
ACE2 in vascular smooth muscle cells by the use of the SM22
promoter, SHRSP-ACE2 (105). SHRSP-ACE2 rats have signifi-
cantly elevated circulating levels of ANG (1–7), which is associated
with a 15 mmHg decrease in mean arterial blood pressure and
significantly attenuated responses to ANG II (105). These data
suggest that vascular ACE2 overexpression may be a novel ther-
apeutic strategy in the treatment of hypertension. Liu et al. used
the adenoviral gene delivery approach to overexpress ACE2 glob-
ally and found that blood pressure was not different between
control and ACE2-overexpressing Wistar rats before and after
streptozotocin treatment to induce diabetic nephropathy (106).
Despite of these inconsistencies, global or tissue-specific overex-
pression of ACE2 has been reported to reduce blood pressure or
hypertension-induced injury in SHR (108, 109), and protect from
ischemia-induced cardiac injury (110), and attenuate diabetic
nephropathy (106).

Although the GPCR Mas was reported to be the specific recep-
tor for ANG (1–7) more than 10 years ago (23), there is surprisingly
little progress that has been made in using these Mas receptor-
deficient mice (Mas-KO) to determine the physiological roles of
ANG (1–7) (111–114). Too often, the reported cardiovascular,
blood pressure, and renal phenotypes are sometimes contradic-
tory between studies. Botelho-Santos reported that mean arterial
pressure in anesthetized Mas-KO mice (12–16 weeks old) was not
different from that of WT mice, despite of significant decreases
in stroke volume and cardiac index and marked increases in vas-
cular resistance and a decrease in blood flow in the kidney (115).
Walther et al. also confirmed that neither heart rate nor blood
pressure was significantly different between Mas-KO mice and
controls, although salt-induced increase in blood pressure was
prevented in Mas-KO mice (116, 117). Subsequent studies from
the same groups of investigators showed a significantly higher
basal blood pressure in Mas-KO mice (112, 118). These differ-
ences may be explained by the difference in genetic backgrounds,
in that the former Mas-KO mice were generated from mixed
genetic background, 129×C57BL/6, whereas the latter were gen-
erated from the FVB/N genetic background for seven generations
(16, 119). Other studies supporting the counterregulatory roles
of the ACE2/ANG (1–7)/Mas receptor axis against those of the
ACE/ANG II/AT1 receptor axis in the kidney include the devel-
opment of glomerular hyperfiltration and microalbuminuria in
Mas-KO mice (120). However, Esteban et al. recently shown that
ANG (1–7), via the Mas receptor, has proinflammatory properties
at least as potent as those of ANG II and TNFα in the kidney (121).
Clearly, controversies remain with respect to the specific roles of
the Mas receptor in mediating the effects of ANG (1–7) in the
kidney (122).

CURRENT INSIGHTS AND FUTURE PERSPECTIVES ON THE
ROLES OF THE PRORENIN/PRR/MAP KINASES ERK 1/2 AXIS
IN THE KIDNEY
A new frontier in the RAS research field emerges during recent
years is the prorenin/PRR/MAP kinases ERK 1/2 axis. According
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to the classical dogma, prorenin is primarily synthesized in the
juxtaglomerular (JGA) cells and is biologically inactive (123).
Prorenin becomes active renin in JGA cells and is released in
response to a decrease in blood pressure (hypotension), activation
of renal sympathetic nerves, and sodium depletion. Renin released
from JGA cells initiates the activation of the RAS by hydrolyzing
circulating and tissue AGT to generate ANG I (123). This classical
dogma may be subject to significant revisions as a result of recent
progresses being made in the field.

There is strong evidence that prorenin may also be constitu-
tively secreted from the kidney, and to a less extent from extrarenal
tissues including eyes and adrenal glands (11–13, 22, 124–126).
Whether prorenin is physiologically or pathophysiologically rele-
vant remains an issue of intensive debate before and after Ngyuen
et al. first cloned the prorenin/renin receptor (PRR) (22, 127).
PRR has a single transmembrane domain and 350-amino acid (22,
127). It has specific binding site not only for the inactive precursor
prorenin, but also for active renin, which is the key initiator of the
ACE/ANG II/AT1 receptor axis. Thus it is difficult to determine
whether it is prorenin or active renin that binds and activates
PRR under physiological conditions and in cardiovascular, dia-
betic and renal diseases. However, it has been shown that prorenin
has a “handle” region with higher affinity for PRR than renin,
which binds to PRR to initiate the catalytic activity of prorenin,
leading the activation of the prorenin/PRR/MAP kinases ERK1/2
axis (12, 22, 127). It has been further suggested that a decoy “han-
dle” region peptide (HRP) may thus target this “handle” region
by competitively inhibiting the binding of prorenin to the PRR,
and produce pharmacological and therapeutical effects in treating
cardiovascular, hypertensive, and diabetic diseases (31, 128, 129).
Whether HRP may specifically block PRR to exert beneficial ther-
apeutic effects remains highly controversial (13, 126, 130). Several
studies have been unable to confirm the role(s) of prorenin and
the effects of HRP in cultured cells and animals (131–133). Even if
HRP is indeed effective in blocking prorenin and PRR interactions,
its clinical relevance remains unknown due to its peptide proper-
ties. The renin-specific inhibitors have been developed to treat
hypertension and cardiovascular and kidney diseases. Whether
the renin inhibitors are therapeutically superior to classical ACE
inhibitors or ARBs remains to be determined. If prorenin and PRR
indeed play important physiological and pathophysiological roles
in blood pressure regulation and pathologies of cardiovascular,
renal, and diabetic diseases, the development of orally active PRR-
specific inhibitors to block prorenin-induced activation of PRR
will be highly necessary.

While prorenin and renin are present primarily in JGAs of the
renal cortex under physiological conditions, PRR is reportedly
expressed in glomerular mesangial cells and the subendothelium
of renal arteries (22), and in the apical membrane of intercalated
cells in collecting ducts (134). Activation of PRR by the rat recom-
binant prorenin has been shown to stimulate cyclooxygenase-
2 (COX-2)-derived prostaglandins via MAP kinases 1/2 in rat
renal inner medullary collecting duct cells (IMCD) (135). Fur-
thermore, prorenin appears to activate the prorenin/PRR/MAP
kinases ERK 1/2 axis to increase V-ATPase activity (vacuolar-type
H+-ATPase) at nanomolar concentrations in intercalated cells,
MDCK.C11 (136). PRR has been described as an accessory subunit

for V-ATPase, and may function as a H+-ATPase subunit in dis-
tal nephron segments of the kidney (137). However, Oshima et al.
reported that PRR may be necessary for the maintenance of normal
podocyte structure and function (138).

Activation of PRR by prorenin may be implicated in the devel-
opment and progression of renal diseases in animal models.
Kaneshiro et al. generated transgenic rats with overexpression of
human prorenin/renin, and showed that these rats slowly devel-
oped nephropathy via MAP Kinases ERK1/2 signaling through
an ANG II-independent mechanism (139). Ichihara et al. showed
that the prorenin/PRR/MAP kinases ERK1/2 axis plays a pivotal
role in the development of diabetic nephropathy in ANG II AT1a

receptor-deficient mice (129) and in diabetic rats (128). Further-
more, Prieto and Navar’ group has shown that prorenin and PRR
expression are markedly increased in the collecting ducts of dis-
tal nephron in ANG II-induced and 2K1C renal hypertension,
although the precise roles of prorenin and PRR as a byproduct
or mediator of ANG II-dependent hypertension remain unknown
(69, 72).

Overall, prorenin and PRR have been studied extensively during
last several years and appear to play important roles under cer-
tain biological, physiological, and pathophysiological conditions
or animal models (12, 140, 141). However, their specific roles in
the physiological regulation of cardiovascular, blood pressure, and
renal function and the development of cardiovascular, hyperten-
sive, and renal diseases in humans remain to be confirmed (13,
126). Recently, Reudelhuber (13) and Campbell (126) have pro-
vided excellent critical reviews in these issues. One key issue is
that mice is known to express abundant prorenin and PRR than
rats and humans, but they do not develop hypertension or cardio-
vascular and renal diseases. Another issue is that it is difficult to
prove the activation of PRR by prorenin independent from renin
without genetic deletion of PRR in mice, which is lethal at present
(142, 143). The third issue is that prorenin may be overexpressed in
transgenic rats or mice with hundreds or even thousands of time
higher than those in humans to manifest cardiovascular, blood
pressure, and renal phenotypes, which is unlikely replicated in
normal and diseased humans (125, 144, 145). Finally, some, if
not all, prorenin-induced blood pressure and cardiovascular and
renal responses remain to be ANG II/AT1 receptor-dependent (13,
32, 126).

CURRENT INSIGHTS AND FUTURE PERSPECTIVES ON THE
ROLES OF INTRACRINE OR INTRACELLULAR ANG II IN THE
KIDNEY
A new frontier in the RAS research field has recently gained increas-
ing attention (33–37, 146). This is now recognized as an intracrine
or intracellular RAS. Many tissues or cells may synthesize ANG
II within the cells, wherein ANG II bind to intracellular and/or
nuclear receptors, activate downstream signaling pathways, and
induce cellular and/or nuclear responses independent of cell sur-
face receptors (33, 147–150). Alternatively, we and others have
shown that circulating, paracrine, and autacrine ANG II may
enter cells via AT1 (AT1a) receptor-mediated uptake or inter-
nalization in the kidney, primarily in the proximal tubule (48,
52, 57, 58, 151, 152). There is substantial evidence that not all
internalized ANG II are degraded in lysosomes as the classical
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receptor pharmacology dogma suggests, and ANG II may escape
from degradation by lysosomes. For example, systemically infused
125I-labeled ANG I or 125I-ANG II have been identified and quan-
tified in pig kidney cells (55, 56, 85) and rat kidney cells (153,
154). Imig et al. demonstrated ACE, ANG II and AT1a receptors
in cortical endosomes of the rat kidney (52). In ANG II-infused
rat kidney, we found that ANG II levels in the renal cortical
light and heavy endosomes were up to 10-fold higher compared
with control rats (48). Intracellular accumulation of ANG II in
the proximal tubule of the kidney may be blocked by the AT1

receptor blockers candesartan (48), losartan or in AT1a-KO mice
(57, 58). To further support the new intracellular ANG II par-
adigm, specific and functional AT1 (AT1a) and AT2 receptors
have been demonstrated in rat renal cortical endosomes (48, 52),
mouse kidney proximal tubule mitochondria (155), and rat or
sheep renal cortical nuclei (156–159). Thus the localization of
intracellular and/or nuclear ANG II and AT1/AT2 receptors pro-
vides evidence that ANG II may interact with AT1/AT2 receptors
within the kidney cells to induce biological and physiological
effects.

In the kidney, previous studies demonstrated that AT1a

receptor-mediated endocytosis of ANG II is required for ANG
II-stimulated proximal tubular sodium transport or uptake of
22Na+ (160–163). We also showed that AT1a receptor-mediated
ANG II uptake was associated the inhibition of cAMP signal-
ing (151), activation of NF-κB signaling (163), and increases in
lysate and membrane phosphorylated NHE3 proteins in proxi-
mal tubule cells (164). However these studies by no means pro-
vide direct evidence to support the role of intracellular and/or
nuclear ANG II in the regulation of renal function and blood
pressure responses. Several recent proof-of-concept studies have
provided some new insights and perspectives into the poten-
tial roles of intracellular ANG II in the kidney. First, we used
the single cell microinjection approach as described by Haller
et al. (149) to determine the role of intracellular ANG II and its
receptors in mobilizing intracellular calcium responses in rabbit
proximal tubule cells (150). While the cell surface AT1 receptors
were blocked by losartan in the medium, ANG II was directly
microinjected into single monolayer proximal tubule cells sub-
cultured on glass coverslips with or without the AT1 receptor
blocker losartan or the AT2 receptor blocker PD123319. Microin-
jection of ANG II evoked marked increases in intracellular calcium
responses, which were largely blocked by concurrent microinjec-
tion of losartan, but not by PD123319, indicating an AT1 receptor-
mediated response (150). In a subsequent proof-of-concept study,
we isolated fresh nuclei from the renal cortex of the rat kidney
and incubated the nuclei with ANG II in an in vitro transcrip-
tional system to determine the transcriptional effects of ANG II
(156). We demonstrated that ANG II directly stimulated nuclear
AT1a receptors to increase in vitro transcription of mRNAs for
TGF-β1, MCP-1, and NHE3, which are known to play impor-
tant roles in cell proliferation and hypertrophy, tissue fibrosis,
and sodium transport in the kidney. Again, these nuclear tran-
scriptional responses to ANG II were blocked by losartan but
not by PD123319, further underlying an important role of AT1

(AT1a) receptors in proximal tubule cells. In alternative proof-of-
concept studies, Chappell’s group showed that ANG II and ANG

(1–7) directly stimulated nuclear AT2 or ANG (1–7) receptors to
increase NO production, and activated AT1 receptors to increase
super oxide production in freshly isolated sheep kidney nuclei
(157, 158, 165).

Although it has been hypothesized that intracellular ANG II
may play a physiological role in the cardiovascular and renal sys-
tems and blood pressure regulation, there was no direct evidence
supporting this role until recently. Cook’s group was instrumen-
tal in generating transgenic mice that globally express an ANG
II fused downstream of ECFP in all tissues, and its expression
was driven by the mouse metallothionein promoter (146). The
fusion protein, ECFP/ANG II, lacks a secretory signal, so its expres-
sion is retained intracellularly. Although plasma ANG II was not
altered in these transgenic mice, basal blood pressure was sig-
nificantly increased by approximately 16 mmHg, and thrombotic
microangiopathy or microthrombosis was developed within the
glomerular capillaries and small vessels (146). This study demon-
strated for the first time that overexpression of an intracellular
ANG II fusion protein is sufficient to elevate basal blood pressure
and induce renal pathology. To determine the role of intracel-
lular ANG II in the regulation of proximal tubular reabsorption
and blood pressure, we performed intrarenal transfer of the same
ECFP/ANG II selectively in the proximal tubule of rats and mice
(Figures 3 and 4) (42, 77, 166). We showed that proximal tubule-
specific overexpression of intracellular ECFP/ANG II significantly
increased blood pressure by approximately 15–20 mmHg in rats
and C57BL/6J mice 7 days after the gene transfer, and the blood
pressure responses were blocked by losartan treatment or in AT1a-
KO mice (42, 166, 167). Furthermore, the hypertensive effects of
proximal tubule-specific ECFP/ANG II expression were associ-
ated with decreases in 24 h urinary sodium excretion, increases in
phosphorylated ERK1/2, lysate, and membrane NHE3 proteins
in freshly isolated proximal tubules and decrease in fractional
lithium excretion (42, 166, 167). These responses are consistently
with the concept that intracellular ANG II may stimulate AT1

receptor to increase proximal tubular sodium and fluid reab-
sorption, which in turn contributes to the regulation of blood
pressure.

CURRENT INSIGHTS AND FUTURE PERSPECTIVES ON THE
ROLES OF ANG III, ANG IV, OR ANG A IN THE KIDNEY
Two other smaller ANG peptides, ANG III and ANG IV, have
been reported to have significant effects on blood pressure and
renal function (2, 18, 19, 24, 28, 168). ANG III, ANG (2–8), is
derived from the metabolism of ANG II by aminopeptidase A.
To date, there is no evidence for a specific ANG III receptor. In
the kidney, ANG III normally binds to the AT1 receptor and AT2

receptors, and the reported natriuretic and antinatriuretic effects
of ANG III may be dose-dependent on whether the AT1 or AT2

receptor is activated (2, 18, 28, 168). When centrally adminis-
trated, ANG III appears to enhance vasopressin release, thirst, and
blood pressure (169). Most recently, Carey’s group has shown that
intrarenal interstitial ANG III infusion induced natriuresis via
the AT2 receptor/nitric oxide/cGMP-dependent mechanism (19,
24, 170).

In the kidney, ANG III can be further hydrolyzed by aminopep-
tidase N to generate ANG IV or ANG (3–8) (2, 18, 171, 172). The
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receptor for ANG IV, AT4, has been identified as an IRAP, associ-
ated with the M1 family of aminopeptidases and GLUT4 vesicles
in insulin-responsive cells (21, 173). The AT4 receptor has been
localized in different tissues in the brain, heart, blood vessels, and
kidney (20, 26, 174, 175). It is worth mentioning that other pep-
tides such as LVV-hemorphin 7 also bind the AT4 receptor (21, 175,
176), and ANG IV also stimulates the AT1 receptor (20, 177–179).
ANG IV is implicated in the regulation of learning and memory in
rodents and improves memory in animal models of amnesia, and
has been suggested to be used to treat Alzheimer’s disease (21, 175,
176). Aminopeptidases A and N are particularly abundant in the
kidney, especially in the glomeruli and proximal nephron segment
(2, 18, 171, 172). We have previously shown that nanomolar con-
centrations of ANG IV may increase blood pressure and induce
renal vasoconstriction via the AT1 receptor-activated signaling in
anesthetized rats (20), but others showed increased renal cortical
blood flow and decreases Na+ transport in isolated renal proxi-
mal tubules (26, 27). Furthermore, Ang IV infusion into the renal
artery decreased RBF, without any change in blood pressure, sug-
gesting an AT1-mediated constriction in renal vascular bed (180).
Other Ang IV responses in different kidney cells appear to occur
via AT1 receptor activation as well, such as Ca2+ mobilization
in glomerular mesangial cells (20, 178), and in human proximal
tubules cells (181). In wild-type and AT1a, AT1b, AT2 receptor and
IRAP knockout mice, Ang IV was found to mediate blood pres-
sure and renal vasoconstrictor effects via AT1a receptors (182, 183).
Thus, the physiological roles of ANG IV/AT4 receptors in blood
pressure and renal regulation remain uncertain, given that circu-
lating and tissue ANG IV levels are unlikely to be higher than those
of ANG II in health and disease and that ANG IV also binds and
stimulates AT1 receptors.

Recently, an ANG peptide-derived fragment called ANG A (Ala-
Arg-Val-Tyr-Ile-His-Pro-Phe) has been described in the plasma
of healthy humans and with increased concentrations in end-
stage renal failure patients (184–186). ANG A may be generated
from ANG II by decarboxylation of Asp1 and have the same
affinity for AT1 receptor as ANG II, and higher affinity for AT2

receptor (186, 187). In rats, ANG A and ANG II have similar
hypertensive effects, but ANG A possesses a greater proliferative
effect on vascular smooth muscle cells than ANG II (186, 187).
In genetically modified mice and in normotensive and hyper-
tensive rats, ANG A induces pressor and renal vasoconstrictor
responses also in the AT1 receptor-dependent manner (186). The
role(s) of ANG A and its receptor-mediated downstream signal-
ing mechanisms remain incompletely understood. However, since
the ANG II/AT1 receptor-dependent pathways are involved, the
translational impact of the ANG A research may likely be limited
because the available ARBs are expected to block the actions of
ANG A in tissues.

CONCLUDING REMARKS
In summary, the RAS has evolved from a circulating and endocrine
system to multiple endocrine, paracrine, and intracrine systems.
At least four axes for the RAS have been identified in the kidney
and other tissues (Figure 1) and their physiological and patho-
physiological roles explored. These include the most-studied and
recognized classical renin/ACE/ANG II/AT1 and AT2 receptor

axis, and three new axes including the ACE2/ANG (1–7)/Mas
receptor, the prorenin/PRR/MAP kinases ERK1/2, and the ANG
IV/AT4/IRAP axis. Each of these axes has its own enzyme(s), sub-
strate(s), agonist(s), or ligand(s), respective receptor and down-
stream signaling mechanisms. Thus the roles of the RAS have been
extended far beyond the regulation of blood pressure, aldosterone
synthesis, and body salt and fluid homeostasis by the AT1 and AT2

receptors. Indeed, novel actions have been described for each axis
of the entire RAS, interactions of which undoubtedly contribute
to the overall regulation of cardiovascular, neural, and renal func-
tion and blood pressure. It is now well understood that imbalance
of actions induced by ANG II and its smaller metabolites, ANG
(1–7), ANG III, and ANG IV in favoring increases in tissue ANG II
formation and the activation of the ACE/ANG II/AT1 receptor axis
may lead to the development of hypertension and ANG II-induced
target organ injury and diseases. Conversely, genetic and pharma-
cological approaches to increase the production of ANG (1–7) via
overexpression of ACE2 or ANG (1–7) fusion protein may partially
oppose the well-recognized actions of ANG II through activation
of the Mas receptor. However, despite of the great progress new
challenges still remain in the RAS research field. For example,
the challenges for studying the classical ACE/ANG II/AT1 receptor
axis may include determining the roles of intracellular and nuclear
ANG II and its receptors play in the nuclear and/or transcriptional
responses to ANG II in various diseases, and developing novel
molecular and pharmacological approaches or drugs to block the
transcriptional actions of intracellular ANG II. Since ANG III,
ANG IV, and ANG A may also function as potent agonists of the
AT1 and/or AT2 receptor to alter blood pressure and renal func-
tion, their physiological and pathophysiological roles remain to be
determined. Similarly, the challenges for studying the roles of the
prorenin/PRR/MAP kinases ERK1/2 axis is how to better differen-
tiate the ANG II/AT1 receptor-dependent and independent effects
of prorenin/PRR activation, and whether blockade of prorenin
activation provides additional and beneficial effects beyond renin
and ACE inhibitors or AT1 receptor blockers. Finally, although the
ACE/ANG (1–7)/Mas receptor axis may play a counterregulatory
role to oppose the effects of the renin/ACE/ANG II/AT1 receptor
axis, the development and clinical relevance of the orally active
agonists or compounds that promote metabolism of ANG II to
increase ANG (1–7) production or to activate the Mas receptor
still await clinical trials.
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