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Aedes albopictus and Aedes japonicus - two
invasive mosquito species with different
temperature niches in Europe
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Abstract

Background: Aedes albopictus and Ae. japonicus are two of the most widespread invasive mosquito species that
have recently become established in western Europe. Both species are associated with the transmission of a
number of serious diseases and are projected to continue their spread in Europe.

Methods: In the present study, we modelled the habitat suitability for both species under current and future
climatic conditions by means of an Ensemble forecasting approach. We additionally compared the modelled
MAXENT niches of Ae. albopictus and Ae. japonicus regarding temperature and precipitation requirements.

Results: Both species were modelled to find suitable habitat conditions in distinct areas within Europe: Ae.
albopictus within the Mediterranean regions in southern Europe, Ae. japonicus within the more temperate regions
of central Europe. Only in few regions, suitable habitat conditions were projected to overlap for both species.
Whereas Ae. albopictus is projected to be generally promoted by climate change in Europe, the area modelled to
be climatically suitable for Ae. japonicus is projected to decrease under climate change. This projection of range
reduction under climate change relies on the assumption that Ae. japonicus is not able to adapt to warmer climatic
conditions. The modelled MAXENT temperature niches of Ae. japonicus were found to be narrower with an
optimum at lower temperatures compared to the niches of Ae. albopictus.

Conclusions: Species distribution models identifying areas with high habitat suitability can help improving
monitoring programmes for invasive species currently in place. However, as mosquito species are known to be able
to adapt to new environmental conditions within the invasion range quickly, niche evolution of invasive mosquito
species should be closely followed upon in future studies.

Keywords: Asian bush mosquito, Asian tiger mosquito, Climate change, Invasive species, Species distribution
modelling

Background
Climate change is assumed to generally promote the in-
vasive success of introduced species. In addition to find-
ing more suitable conditions, they can indirectly benefit
from changed climatic conditions as some ecosystems
might become less resistant to invasion [1]. Species dis-
tribution models are a useful and commonly applied tool
to project climate change induced range shifts of species

(e.g. [2]). Species distribution models can improve as-
sessments of species’ invasive potential and guide man-
agement actions [3]. This is especially important for
species that function as vectors, which may potentially
pose a threat to human health.
Ecological niche modelling is a commonly used correla-

tive approach to model the habitat suitability for a species
under current and projected future climatic conditions.
Based on a species’ presence/absence information, and en-
vironmental conditions at a particular geographical loca-
tion, species-habitat relationships are estimated [4] by
means of different statistical algorithms, providing data on
relative habitat suitability. Based on the information where
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the species is present (and in addition ideally where the
species is absent) and environmental conditions prevail
there, the species-habitat-relationship is estimated [4] by
means of different statistical algorithms. This modelled
species-habitat relationship (niche function) can then be
projected onto the study area, resulting in a habitat suit-
ability map for the considered species within the consid-
ered area. This projection can be based on the data on
current climatic conditions, thus reflecting the potential
distribution under current climatic conditions. In addition,
data on potential future climatic conditions, like those
provided by the Intergovernmental Panel on Climate
Change (IPCC), can be used, which would represent the
potential future distribution of the considered species.
Projections on habitat suitability under future climatic

conditions may help to assess the invasive potential of
non-native species. Climate warming is assumed to yield
a north eastwards shift and a shift to higher altitudes of
areas with suitable habitat conditions for many species.
Projections on habitat suitability for invasive species
under future climatic conditions may help improving
existing monitoring programmes as well as preventing
negative consequences for ecosystems and human health
in the future.
Aedes albopictus and Ae. japonicus are two of the most

widespread invasive mosquito species worldwide. Native
to Asia, these two species have been spreading rapidly
across the globe with increasing transport of certain
goods and facilitated by human activities such as travel-
ling [5, 6]. Whereas Ae. albopictus originates in the for-
ests of tropical regions of south-east Asia [5–7], Ae.
japonicus has been originally restricted to Japan, north
of the Ryukyu Islands (Hokkaido, Honshu, Shikoku, and
Kyushu) and the Korean Peninsula, where it is common,
even in large cities, but not particularly abundant [8].
Aedes japonicus does not occur in the tropics, but both
species co-occur naturally in Japan and Korea [9].
Aedes albopictus is considered to be one of the world’s

fastest-spreading invasive animal species [10]. Aedes
japonicus has spread throughout North America and
later into central Europe at a rate comparable to that of
Ae. albopictus [8]. The rapid global spread of these spe-
cies is certainly favoured by extrinsic factors such as
globalization and climate change [11]. International as
well as intercontinental trade (e.g. of used tyres that may
act as breeding places) may have facilitated the introduc-
tion of these species [12]. Furthermore, the successful
invasion of Ae. albopictus is assumed to be promoted by
intrinsic factors (i.e. factors that act from within the spe-
cies) such as strong ecological plasticity, which allows
the species to get successfully established in a wide
range of different habitats with different climatic condi-
tions [12]. Both species produce desiccation-resistant
eggs. This trait likely facilitated the transport and

consequently, the successful introduction of Ae. albopic-
tus and Ae. japonicus to many places worldwide [9, 13].
In addition, the eggs of both species can undergo dia-
pause and thus overwinter in temperate climates despite
the adult forms being unable to survive through this
period (e.g. [14–16]).
Aedes albopictus as well as Ae. japonicus are known to

function as competent vectors for a number of serious
diseases [17, 18] including dengue fever, yellow fever,
West Nile fever and Rift Valley fever [6] as well as
Japanese encephalitis [19]. Due to this public health sig-
nificance, the interest in investigating the establishment
and spread of invasive mosquitoes in Europe has been
on the rise for the past few years. Research including
monitoring the current spread of these species, model-
ling the potential future spread and also studies on the
species’ ecology is considered to be particularly import-
ant in order to contain their further spread [6].
In the present study, we focused on the spread of Ae.

albopictus and Ae. japonicus in Europe. Both species are
considered invasive in many countries worldwide, includ-
ing North America and Africa. More recently, they have
also become established in western Europe [13, 20, 21].
Due to ongoing introductions and projected climate
change, both species are predicted to continue their
spread in Europe and will therefore remain the subject of
surveillance and monitoring programmes [22]. As a spe-
cies adapted to warmer climatic conditions, Ae. albopictus
is assumed to be strongly promoted by projected climate
change (e.g. [17, 23]. Compared to Ae. albopictus, Ae.
japonicus is assumed to be adapted to colder tempera-
tures. Thus, one may hypothesize that Ae. japonicus will
not particularly benefit from projected long-term global
warming (or to a lesser extent) compared to Ae. albopic-
tus. However, despite or even because of being able to
withstand winter temperatures, and due to the recorded
rapid spread in Switzerland, Ae. japonicus is projected to
become more widely established in Europe in the follow-
ing years [24].
We here used correlative species distribution model-

ling, based on ten commonly applied niche modelling al-
gorithms (Ensemble forecasting), to project and
compare the modelled habitat suitability for Ae. albopic-
tus and Ae. japonicus in Europe under current and fu-
ture climatic conditions. The first step comprised
modelling the habitat suitability for the two species in
Europe. Due to the assumed different climatic require-
ments, we expected the species to find suitable habitat
conditions in different regions of Europe. We hypothe-
sized that Ae. albopictus would clearly benefit from cli-
mate change resulting in an enlargement of the area
with modelled suitable habitat conditions, but that Ae.
japonicus would do so only to a lesser extent. As envir-
onmental variables we considered six variables covering
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temperature and precipitation conditions (mean
temperature of coldest quarter, mean temperature of
warmest quarter, temperature annual range, annual
mean precipitation, annual precipitation as well as pre-
cipitation in warmest quarter).
To derive more specific information on the species’

ecology from the occurrence records in combination
with environmental variables (temperature and precipi-
tation), the second step was to compare the modelled
MAXENT niches of the two species by means of so-
called one-variable response curves. We expected that
Ae. japonicus would show a smaller temperature niche
with an optimum shifted to colder temperatures com-
pared to Ae. albopictus. Considering Ae. albopictus and
Ae. japonicus requirements of small aquatic habitats for
breeding, we hypothesized that both species would have
similar niches considering precipitation variables with
regard to location and amplitude.

Methods
Occurrence data
Occurrence data are taken from Kraemer MUG et al.
[25] and Koch et al. [17] for Ae. albopictus and from
Schaffner et al. [26]; Huber et al. [27]; Huber et al. [19];
Krebs et al. [28]; Zielke et al. [29]; Melaun et al. [18] and
Zielke et al. [30] for Ae. japonicus. The original coordi-
nates were adjusted to the raster of the environmental
variables (about 10 × 10 km).
The records were adjusted to the raster of the environ-

mental variables. The records for Ae. albopictus date
back to the period between 1980 and 2015 and the re-
cords for Ae. japonicus date back to the period between
2000 and 2015, and cover the area of the currently
known distribution of both species. We modelled the
habitat suitability for both species in Europe considering
the following spatial extent: Latitude, 35°N-79°N; Longi-
tude, 10°W-45°E; and worked at a spatial resolution of
five arc min (~10 km). The maps were built using ESRI
ArcGIS (Release 10.3, www.esri.com).

Environmental data (current and future climatic
conditions)
Here, six climatic variables were taken into account,
including mean temperature of coldest quarter, mean
temperature of warmest quarter, temperature annual
range (maximal temperature of warmest month -
minimal temperature of coldest month), annual mean
precipitation, precipitation in warmest quarter and
precipitation seasonality (coefficient of variation). We
thus accounted for temperature conditions during
summer and winter, summer precipitation and annual
precipitation as well as the variation of these two fac-
tors during the year. We decided to use annual pre-
cipitation instead of winter precipitation as the latter

is assumed to be ecologically irrelevant for both
species. This selection of variables from the 19
bioclimatic variables available from worldclim [31]
(www.worldclim.org/) was based on a correlation ana-
lysis coupled with assumptions according the eco-
logical relevance of the variables for the species. The
considered variables are not strongly inter-correlated
(Spearman correlation coefficient < 0.7, see Additional
file 1: Table S1). Temperature in winter is regarded as
critical for the survival of individuals (of different
stages), summer temperature is assumed to influence
the activity of individuals, temperature range may be
important determining the east-west gradient of spe-
cies in Europe, precipitation is considered crucial as
both mosquito species require small aquatic habitats
for breeding, whose general availability is assumed to
be connected to precipitation conditions. Data on
current climatic conditions were provided by world-
clim. Data on future climatic conditions based on the
fifth IPCC Assessment report (AR5) were taken from
the International Centre for Tropical Agriculture
(CIAT) and The CGIAR Research Program on Cli-
mate Change, Agriculture and Food Security (CCAFS)
[32] (http://ccafs-climate.org/data/).
The IPCC is a scientific intergovernmental body that

produces reports which have the agreement of leading
climate scientists and the consensus of participating gov-
ernments. Based on the IPCC reports a range of emis-
sion scenarios are derived for use in global climate
models that project future climatic conditions under dif-
ferent socio-economic and emission scenarios. Socio-
economic and emission scenarios are considered in cli-
mate research to provide plausible descriptions of how
the future may evolve with respect to a range of vari-
ables including socio-economic change, technological
change, energy and land use and emissions of green-
house gases and air pollutants. They are used as input
for climate model runs and as a basis for assessment of
possible climate impacts and mitigation options and
associated costs. In the IPCC AR5 four so-called
‘Representative Concentration Pathways’ (RCPs) are
considered that represent a broad range of climate
outcomes. The RCPs describe four possible climate
futures, all of which are considered possible depend-
ing on how much greenhouse gases are emitted in
the years to come.
RCP 2.6 is based on the assumption that the max-

imum of global annual greenhouse gas emissions takes
place between 2010 and 2020 with a substantial decline
thereafter. According to the RCP 4.5 and RCP 6.0, global
annual greenhouse gas emissions will rise until 2040 and
2080, respectively, and then decline. In RCP 8.5, the glo-
bal annual greenhouse gas emissions are assumed to rise
throughout the 21st century [33].
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We projected the habitat suitability for Ae. albopictus
and Ae. japonicus for four time periods, including under
current climatic conditions (based on measurements be-
tween 1950 and 2000) and under future climatic condi-
tions (for three future time periods from 2021–2040,
2041–2060 and 2061–2080). We considered four differ-
ent RCPs (5th Assessment report [34]) to account for
uncertainty in data on future climatic conditions.

Ensemble forecasting
Modelling results often show a high variability, which
can be ascribed to the sensitivity of correlative models to
the data and the mathematical functions used to de-
scribe the species-habitat relationship [35]. Comparative
studies using independent presence/absence data for
evaluation (e.g. [36, 37]) could not verify the superiority
of one single algorithm [35] although generating a lot of
knowledge regarding modelling performance [38]. One
way to deal with the uncertainty of SDM algorithms is
the so-called Ensemble forecasting. Ensemble forecasting
denotes the application of several alternative statistical
algorithms [38]. The results of these different models are
then integrated into one ‘consensus’ model, which pro-
vides more robust estimates [35]. Different methods
exist to create the consensus model (see [38]) and here
we chose to use weighted averages.
In order to yield habitat suitability maps for both

mosquito species considered here, we run an Ensemble
forecasting approach based on ten state-of-the-art algo-
rithms (GLM, generalized linear models; GAM, general-
ized additive models; GBM, generalized boosted models;
CTA, classification tree analysis; SRE, surface range en-
velope; ANN, artificial neural networks; FDA, flexible
discriminant analysis; MARS, multivariate adaptive re-
gression splines; RF, random forest; MAXENT, max-
imum entropy approach) implemented in the R package
BIOMOD2 (version 3.3-7; [39]). For a short description
of the used algorithms see [37] and [40].

Modelling performance and variable importance
The AUC-value (i.e. the area under the receiver operat-
ing characteristic curve value) is a threshold independ-
ent measure for modelling performance that ranges
between 0 (low performance) and 1 (high performance).
As a consensus model we considered the mean average
of ten algorithms weighted by the AUC value [38] (re-
quired an AUC value of the single models of over 0.75).
For binary modelling results, we applied the sensitivity
equals specificity threshold [41].
Regarding environmental variables relevant for the po-

tential distribution of the two mosquito species we com-
pared the relative contributions of the six environmental
variables to the MAXENT models for the two species.
In order to calculate the MAXENT permutation variable

importance as a measure of relative variable importance
the values of each variable in turn are randomly per-
muted on training presence and background data. The
model is re-evaluated on the permuted data, and the
resulting drop in training AUC, normalized to percent-
ages is then taken as a measure of relative variable
importance.

MAXENT
In addition to providing habitat suitability maps for the
two mosquito species under current and future climatic
conditions, we aimed to further investigate the modelled
species-habitat relationship with regard to a comparison
of the modelled temperature and precipitation niches of
the two species. For this, we focused on the maximum
entropy niche modelling approach (MAXENT, [42, 43])
for the following reasons: the MAXENT approach is one
of the most commonly employed algorithms to model
species potential ranges (e.g. [44]), it scores well in com-
parative studies (e.g. [37]) and the modelled niche func-
tion is relatively easy to handle from a mathematically
point of view [45]. According to Baldwin [46], the max-
imum entropy approach is relatively insensitive to spatial
errors associated with location data, requires few loca-
tions to construct useful models and performs better
than other presence only modelling algorithms. These
may be especially important issues considering Ae. albo-
pictus and Ae. japonicus as non-native invasive species
in Europe. We used the Maximum entropy approach as
implemented in the freeware MAXENT (version 3.3.3 k
[42, 43]). We used the default setting with 20 replications
but only linear, quadratic and product features (c.f. [45]).
One-variable models were displayed as one-variable-
response-curves using R (version 3.2.1, www.r-project.org)
and compared between the two species. These curves re-
flect the dependence of predicted habitat suitability on
each environmental variable. We only show response
curves for variables for those the one-variable-models
score an AUC value of at least 0.75 for both species.

Results
Ensemble forecasting under current and future climatic
conditions
According to our modelling results, suitable habitat con-
ditions for the two invasive mosquito species Ae. albo-
pictus and Ae. japonicus can currently be found in
distinct areas within Europe (Figs. 1 and 2). Suitable
habitat conditions and thus potential distribution of Ae.
albopictus was projected to be currently restricted to
southern Europe, which can be characterized by
Mediterranean climatic conditions (warm or hot, dry
summers and mild or cool, wet winters). In contrast, Ae.
japonicus is projected to find suitable conditions within
the climatically more temperate regions in central
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Europe. Only in a few regions (the Upper Rhine Valley in
Germany, France and Switzerland, parts of southern
Germany, Switzerland and Slovenia as well as small regions
in northern Italy, Austria and Croatia) both species are pro-
jected to find currently suitable climatic conditions, poten-
tially leading to a co-occurrence in these regions (Fig. 2).
For both species the modelled habitat suitability

(Fig. 1b, d) reflect the observed distribution (Fig. 1a, c)
of both species quite well. The AUC values for the con-
sensus models resulting from the Ensemble forecasts are
high, with 0.972 for Ae. albopictus and 0.999 for Ae.
japonicus. The AUC values for the single models are
given in Additional file 2: Table S2.
Aedes albopictus is modelled to expand its potential

range in Europe north-eastwards under future climatic

conditions (Fig. 3), with large parts of France, the Bene-
lux region and parts of Germany becoming climatically
suitable for the species. Generally, the climatic suitability
will increase area-wide across nearly whole Europe.
These rises are consistent over all four RCP-scenarios.
Under the RCP 2.6, which is associated to the lowest
temperature increase in the face of climate change, the
increase of projected habitat suitability for Ae. albopictus
is comparably lowest, whereas the projected increase of
habitat suitability is highest for the RCP 8.5 which is as-
sociated to the highest temperature increase.
Compared to the increased habitat suitability for Ae.

albopictus, Ae. japonicus is projected to find decreas-
ingly suitable habitats under future climatic conditions
(Fig. 4). Depending on the time period and RCP

Fig. 1 Observed and modelled European distribution for Aedes albopictus and Ae. japonicus. a Occurrence records for Ae. albopictus (n = 336).
b Modelled habitat suitability for Ae. albopictus under current climatic conditions, Ensemble forecasting (AUC = 0.972). c Occurrence records for
Ae. japonicus (n = 178). d Modelled habitat suitability for Ae. japonicus under current climatic conditions, Ensemble forecasting (AUC = 0.999)
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considered, Ae. japonicus is modelled to only find suit-
able habitat conditions in southern Germany and very
small regions in the High Tatras.

Variable importance
Considering the permutation variable importance as a
measure for the variables contribution to the MAXENT
model (Table 1), the mean temperatures of coldest quar-
ter showed for both species the highest values. In second
place are mean temperature of warmest quarter for Ae.
albopictus and annual precipitation for Ae. japonicus.

One-variable response curves (MAXENT)
As depicted in the one-variable response curves (Fig. 5),
the modelled niche function for Ae. japonicus shows a
lower temperature optimum than that of Ae. albopictus;
this is true for the variables mean temperature of the
coldest quarter and mean temperature of the warmest
quarter. Furthermore, Ae. japonicus is modelled to have
a narrower niche considering these variables as well as
for the variables temperature annual range and annual
precipitation. For the latter two variables the modelled
optima are rather similar for the both species. The re-
sponse curves for the variables precipitation of warmest
quarter and precipitation seasonality are not shown in
Fig. 5 as the one-variable models for at least one of the

two considered mosquito species has an AUC value of
less than 0.75 and thus, the one-variable model is of low
predictive power. The AUC values for the one-variable
models for all six variables and the two species are given
in Table 2.

Discussion
Mosquitoes can pose a serious threat to human health
as they function as vectors for serious diseases. Facing
risks from undeliberate introductions of non-native spe-
cies together with range expansions facilitated by chan-
ging temperature regimes, modelling distribution of
vector species is urgently needed. Here, we modelled the
ecological niches and habitat suitability for the two mos-
quito species Ae. albopictus and Ae. japonicus within
their invasive range under current and future climate in
Europe using an Ensemble forecasting approach based
on ten commonly applied niche modelling algorithms.
The results are broadly consistent with previous studies

[17, 18, 23] despite different algorithms, different sets of
explaining variables and different, more recent sets of oc-
currence data. This robustness of modelling indicated the
reliability of modelling results.
The pattern of areas with modelled suitable habitat

conditions as well as the one-variable response curves
reflect the differences in temperature requirements of
both species. Under current climate, Ae. albopictus,
assumed to be adapted to warmer temperatures
(Additional file 3: Table S3), is projected to find suitable
conditions in the Mediterranean region, where generally
higher temperatures prevail. Ae. japonicus, assumed to be
adapted to comparably colder temperatures (Additional
file 3: Table S3), is projected to find suitable habitat condi-
tions in the more temperate regions in central Europe.
These results are also reflected by a narrower modelled
niche for Ae. japonicus with lower temperature optima
compared to Ae. albopictus.

Potential distribution under current climatic conditions
Both species find suitable habitat conditions under
current climate in distinct areas within Europe: Ae. albo-
pictus within the Mediterranean regions in southern
Europe and Ae. japonicus within the more temperate re-
gions of central Europe. Only in a few regions do suit-
able habitat conditions overlap for both species. These
results are in accordance with the currently observed
distribution of the species (Additional file 4: Figure S1).
The first European record for Ae. albopictus dates back
to 1979, when the species was found in Albania. In
1990, Ae. albopictus was recorded for the first time in
Italy. Since then, the species has successfully established
in large parts of the Mediterranean region in southern
Europe [24] (e.g. Italy [47–49], southern France [50] and
Romania [51]). Aedes japonicus was recorded for the

Fig. 2 Area with modelled habitat suitability (Ensemble forecasting) in
Europe for Aedes albopictus and Aedes japonicus and both mosquito
species under current climatic conditions. Sensitivity equals specificity
threshold was applied to yield binary modelling results
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first time in 2000 in France, but was quickly eradicated
[52]. Currently, Ae. japonicus is known from six
European countries [30], including Belgium [26], The
Netherlands [30], and is regarded as established in
Switzerland [26], Austria and Slovenia [29]. Since 2008,
Ae. japonicus has been continuously recorded in
Germany, with potentially three established populations
(in the German federal states North Rhine-Westphalia,
Baden-Württemberg, Rhineland-Palatinate and Bavaria
[18, 29, 53]). Although Ae. albopictus has repeatedly
been trapped during the last few years in southern
Germany (e.g. [22], together with Ae. japonicus [54]), it
seems questionably if those individuals belong to estab-
lished populations. In 2015, co-occurrence of Ae. albopic-
tus and Ae. japonicus was observed in northern Italy [55].

Temperature and precipitation requirements
In addition to projecting the habitat suitability, we com-
pared the modelled niche functions of the two invasive

species by means of one-variable models using MAX-
ENT. As has been suggested by others ([20, 56, 57]), Ae.
albopictus seems to be adapted to warmer climates than
Ae. japonicus. Therefore, we expected patterns of habitat
suitability in Europe reflecting the species’ temperature
requirements (higher temperatures in the south, higher
habitat suitability for Ae. albopictus; lower temperatures
in the north, higher habitat suitability for Ae. japonicus).
This hypothesis is supported by the one-variable re-
sponse curves regarding the two temperature variables.
The response curves for Ae. albopictus show a higher
temperature optimum considering the temperatures of
coldest and warmest quarter, respectively. Aedes japoni-
cus is known to be a cold tolerant mosquito species;
however, it has been shown that higher temperature can
positively affect the development of larvae of Ae. japoni-
cus, at least to some extent, whereas temperatures ex-
ceeding a certain temperature may be inhibitory [8].
Thus, the southernmost limits of the European range for

Fig. 3 Modelled habitat suitability (Ensemble forecasting) for Aedes albopictus under current and future climatic conditions
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Ae. japonicus might be ascribed to limiting high
temperatures.
The optimum of about 25 °C for the mean temperature

of the warmest quarter matches the optimal temperature
for adult longevity under laboratory conditions and field
conditions stated by [58]. Delatte et al. [57] found the
optimal temperature for immature stage development
to be about 30 °C and is thus slightly above the
optimum of 25 °C.
The response curves indicate a narrower temperature

niche for Ae. japonicus compared to Ae. albopictus, which
mirrors the formers much smaller native range. The

geographically larger native range of Ae. albopictus com-
prises a much wider range of temperatures with higher
mean temperatures (Additional file 3: Table S3). It must
be kept in mind, however, that the native range niches of
species may differ strongly from the invasive range niches
(cf. [23]) due to adaptations during the invasion processes.
Considering the modelled precipitation niches the pat-

tern is not as clear. Both species are reliant on the avail-
ability of small aquatic habitats for egg deposition, which
requires a certain amount of precipitation during sum-
mer months. We hypothesized that precipitation re-
quirements would be similar for both species. This
assumption is reflected by both species showing quite
similar niches considering the variable annual precipita-
tion (i.e. similar requirements in terms of amplitude and
optimum of annual precipitation). However, the one
variable response curves do not account for interactions
between variables. Thus, a certain amount of precipita-
tion in a warmer or cooler climate leads to very different
evaporation rates and therefore very different egg laying
habitat compositions. It has been suggested that the role
of human water supply to provide breeding sites for
both species may be even more important than precipi-
tation conditions [49] and it may thus be assumed that
there is no clear relationship between the occurrence of

Fig. 4 Modelled habitat suitability (Ensemble forecasting) for Aedes japonicus under current and future climatic conditions

Table 1 Relative variable importance (MAXENT) in %. The
permutation importance provides estimates of relative
contributions of the environmental variables to the MAXENT
model

Variables Ae. albopictus Ae. japonicus

Mean temperature of warmest quarter 22.9 1.9

Mean temperature of coldest quarter 50.3 42.2

Temperature annual range 7.3 0.2

Precipitation of warmest quarter 6.6 11

Annual precipitation 9.2 39.5

Precipitation seasonality 3.6 5.2
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Ae. albopictus and precipitation. This is in accordance
with the comparably low contribution of the precipita-
tion variables to the MAXENT model for Ae. albopictus.
On the other hand, the relatively high contribution of
the variable annual precipitation to the MAXENT model
for Ae. japonicus which may be explained be the rela-
tively high precipitation amounts within the northern
Alpine foothills (Switzerland), where stable populations
of Ae. japonicus are known (e.g. [19]).

Interspecific concurrence
Aedes albopictus has proven to be a superior competitor
to Ae. japonicus in artificial container habitats, showing
higher overwintering survival and securing more food
resources in larval habitats [20, 59]. More specifically,
Ae. albopictus larvae showed higher survivorship, shorter
developmental time and higher estimated population
growth rate compared to Ae. japonicus in competition
experiments [20]. This can be partly compensated for by
timing of the life-cycle stages of Ae. japonicus. Com-
pared to larvae of Ae. albopictus, larvae of Ae. japonicus
can be found earlier in the year [8]. Furthermore, the
ability to establish earlier in spring and to remain active
for longer in autumn is a characteristic, which, on the

one hand, supports the assumed higher cold tolerance of
the species, and secondly, allows Ae. japonicus to cir-
cumvent intense larval competition or avoid temporal
overlap of larval stages with those of co-occurring spe-
cies in the often highly density-dependent, resource-
limited environment of the larval habitat [8]. However,
compared to Ae. albopictus, Ae. japonicus generally
seems to have a lower intrinsic capacity for population
growth and is considered a weak larval competitor [8].

Fig. 5 One-variable-response-curves for Aedes albopictus (solid line) and Aedes japonicus (dotted line) considering the different environmental
variables (required: AUC value for the one variable model for both species > 0.75, see Table 2)

Table 2 AUC values for the one-variable models, mean average
over 20 replications ± standard deviation. Response curves for
the variables for which the one variable model yields an AUC
value of at least 0.75 for both species are shown in Fig. 5

Variable Ae. albopictus Ae. japonicus

Mean temperature of warmest quarter 0.818 ± 0.002 0.840 ± 0.003

Mean temperature of coldest quarter 0.851 ± 0.001 0.924 ± 0.001

Temperature annual range 0.790 ± 0.001 0.915 ± 0.002

Precipitation of warmest quarter 0.593 ± 0.004 0.901 ± 0.002

Annual precipitation 0.764 ± 0.002 0.864 ± 0.002

Precipitation seasonality 0.554 ± 0.003 0.779 ± 0.002
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Assessment of modelling performance
Two key limitations should be kept in mind when inter-
preting the results of habitat suitability modelling for Ae.
japonicus. First, the assumption that the distribution of
Ae. japonicus in Europe is in equilibrium with its envir-
onmental conditions may be violated due to dispersal
limitation as the species is considered to be currently in
the process of spreading. Secondly, the time period of
occurrence data does not match the time period of en-
vironmental variables. The occurrence records date from
2009 to 2015; however, empirical data on climatic condi-
tions were not available for Europe for this time period,
but only for 1950 up to 2000. Climatic conditions have
changed in the interim.
The modelling of Ae. albopictus does not pose the

same problems as the occurrence records used for mod-
elling also date from 1950 to 2000, thus overlapping with
the climate data. Differences in the patterns of projected
habitat suitability as well as the modelled niche func-
tions between Ae. albopictus and Ae. japonicus might
not only be attributed to differences in the ecology of
the two species but could be ascribed to a certain extent
to different assumptions underlying the modelling pro-
cesses. However, to test whether the same trends still
hold true, the incorporation of more recent climatic data
would be necessary but was not feasible at the moment.
The use of satellite imagery in species distribution

modelling certainly yields valuable information (as re-
cently shown by [60]). However, we here considered cli-
matic effects determine species distribution or habitat
suitability at a coarser spatial scale.

Future distribution
Aedes albopictus is considered to be the most invasive
mosquito species in the world [6, 24]). Against the back-
ground of its vector competence, this species is assumed
to become a major threat to public health in Europe
[24]. According to our results, there is a clear expansion
of the area with modelled habitat suitability for Ae. albo-
pictus in Europe under projected climate change. The
projected range expansion of Ae. albopictus in Europe is
in accordance with the assumption that the species is
adapted to warmer climatic conditions and will be thus
promoted by global warming. In contrast, Ae. japonicus
is assumed to be adapted to temperate climatic condi-
tions [29]. Under future climatic conditions the potential
range of this species (i.e. the area with modelled habitat
suitability) seems to decrease. The projected range re-
duction is probably attributed to increasing temperatures
as previously suggested ([8]). Moreover, Ae. japonicus is
considered a low competing species, and its projected
range restriction induced by climate change may add-
itionally be decreased by further spread of Ae. albopictus
in Europe in the face of climate change [8]. However,

the projected decrease of the potential range for Ae.
japonicus under climate change is based on the assump-
tion that Ae. japonicus is not able to adapt to higher
temperature [8]. Results from current monitoring sug-
gest that Ae. japonicus tends to expand its current Euro-
pean range and will be able to colonise new territories in
central Europe [53, 55], facilitated by human-mediated,
passive transportation [53].
Both species are reliant on the availability of small

aquatic habitats for egg deposition and thus on a certain
amount of precipitation ([59]). The projected reduction
of precipitation in the face of climate change (IPCC,
[61]) is assumed to be less important for the two mos-
quito species compared to the projected raise in
temperature in Europe. However, in the face of climate
change, precipitation could become an important limit-
ing factor driving the southernmost borders of the Euro-
pean ranges of these mosquito species.

Conclusions
Over the last few decades Aedes albopictus and Ae. japo-
nicus have been accidentally introduced into many coun-
tries worldwide, and have shown a rapid and extensive
range expansions beyond their native ranges [8]. Both
species are assumed to be able to adapt to new climatic
conditions outside their native range. Several character-
istics of the species (high ecological plasticity, diverse
larval habitats and desiccation resistance of eggs; [8]) to-
gether with extrinsic factors like increasing tourism and
global trade might further promote their invasion suc-
cess. Due to their vector relevance, further surveillance
of the European spread for both species is necessary, fo-
cusing on regions where habitat suitability is predicted
to be high under future climate scenarios. Although our
models for Ae. albopictus and Ae. japonicus under future
climate can be used for predictions, risk assessments
and monitoring programmes, we still recommend con-
tinuously surveying the establishment and spread of the
two vector species and potentially adjust models, e.g.
considering the potential of niche evolution of mosquito
species.
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