
����������
�������

Citation: Müller, N.; Al-Haj Husain,

N.; Chen, L.; Özcan, M. Adhesion of

Different Resin Cements to Zirconia:

Effect of Incremental versus Bulk

Build Up, Use of Mould and Ageing.

Materials 2022, 15, 2186. https://

doi.org/10.3390/ma15062186

Academic Editor: Francesco Baino

Received: 7 February 2022

Accepted: 13 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Adhesion of Different Resin Cements to Zirconia: Effect of
Incremental versus Bulk Build Up, Use of Mould and Ageing †

Nicolas Müller 1, Nadin Al-Haj Husain 1,2, Liang Chen 3 and Mutlu Özcan 1,*

1 Center of Dental Medicine, Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, University of
Zurich, Plattenstrasse 22, 8032 Zurich, Switzerland; nicolas.mueller@zzm.uzh.ch (N.M.);
nadin.al-haj-husain@zmk.unibe.ch (N.A.-H.H.)

2 Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern,
3010 Bern, Switzerland

3 BISCO Inc., Schaumburg, IL 1100, USA; lchen@bisco.com
* Correspondence: mutluozcan@hotmail.com; Tel.: +41-44-6343251; Fax: +41-44-6344305
† Part of this Study was Presented at the Annual Meeting of Academy of Dental Materials (ADM),

Porto de Galinhas, Brazil, 4–6 October 2018.

Abstract: Bonding to zirconia presents a great challenge, as the clinical guidelines for predictable
adhesion are not sufficiently validated. The aim of this study was to assess the influence of various
bonding methodologies of various resin cements on zirconia, using different aging protocols. Manu-
factured zirconia specimens (N = 300 and n = 20 per group) were randomly assigned to three luting
protocols: 1—in mould incremental build up; 2—in mould incremental build up with mould removal;
3—in mould non-incremental bulk build up. Five dual, photo- and chemical-cure resin cements
were used, namely, Variolink Esthetic (Ivoclar), Tetric (Ivoclar), Panavia (Kuraray), TheraCem (Bisco),
and RelyX UniCem (3M ESPE), and were applied on primed zirconia using photopolymerization
protocols. Thereafter, the specimens were subjected to the following three ageing methods: 1—dry;
2—thermocycling (×5000; 5–55 ◦C); 3—3–6 months of water storage. Using a universal testing
machine, the specimens were loaded under shear, at 1 mm/min crosshead speed. An analysis of
the data was performed using three-way ANOVA and the Bonferroni method. The moulding type,
ageing and luting cement significantly affected the results (p < 0.05). Among all the protocols under
dry conditions, TheraCem (16 ± 3; 11 ± 1; 16 ± 3) showed the best bond strength, while, after
thermocycling, TheraCem (7 ± 2) and Tetric (7 ± 2) performed the best with Protocol 1. In Protocol 2,
RelyX (7 ± 3) presented the highest result, followed by TheraCem (5 ± 3) and Tetric (5 ± 1) (p < 0.05).
Using Protocol 3, RelyX (10 ± 6) showed the highest result, followed by TheraCem (7 ± 2) and
Panavia21 (7 ± 2) (p < 0.05). Six months after water storage, TheraCem presented the highest result
(10 ± 2) in Protocol 1, while, in Protocols 2 and 3, Tetric (10 ± 2; 15 ± 5) presented the highest result,
followed by TheraCem (6 ± 2; 8 ± 3). Adhesion tests using the incremental or bulk method, using
moulds, showed the highest results, but removing the mould, and the subsequent ageing, caused a
decrease in the adhesion of the resin cements tested on zirconia, probably due to water absorption,
with the exclusion of Tetric.

Keywords: adhesion; adhesive cementation; ageing; bond strength; macroshear; test method;
zirconium dioxide

1. Introduction

The demand for full-ceramic restorations has grown in the field of dentistry, resulting
in a decline in the use of conventional metallic materials. Full-ceramic restorations are
highly aesthetic with their tooth-coloured appearance, and they meet the demands of den-
tists and patients. Given their superior biocompatibility [1], outstanding mechanical prop-
erties [2], and excellent performance [3], zirconia-based ceramics are attracting widespread
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popularity in daily clinical practice. This goes hand in hand with the widespread im-
plementation of computer-aided design/computer-aided manufacturing (CAD/CAM)
technologies in the field of dentistry. In most cases, pre-sintered ceramic blocks are used to
mill the restorations, which are only sintered to full density afterwards [4]. Thus, zirconia,
as a dental material, allows the fabrication of a great number of clinical applications, in-
cluding the following: endodontic posts, implant abutments, orthodontic brackets, single
crowns, and fixed dental prostheses (FDPs) [5].

Several situations in the clinic, e.g., when there is not enough retention given by a
short or tapered tooth structure, mandate adhesive bonding by using conventional adhe-
sive or self-adhesive resin cement. Firstly, it has been proven that the fracture resistance
and longevity of ceramic restorations are improved by sealing the internal surface flaws.
Secondly, it offers the advantage of improving marginal adaptation and preventing mi-
croleakage at the restoration’s margin [6]. Additionally, slightly fractured dentures and
crowns demand ceramic repair.

The crucial prerequisite for adequate adhesion is to generate a stable composite–
zirconia bond by the combination of physical microretention and chemical surface acti-
vation [7,8]. However, the composition of high-strength zirconia ceramics is different, as
they lack a silica phase with glassy components that can be etched, resulting in chemical
inertness with a surface that is low in reactivity [9]. In the case of acid-etchable silica-based
ceramics (>15 wt.% glass), etching the surface with hydrofluoric acid (5–9.6%) is a common
method for bonding resin-based materials [10]; however, it is not effective in creating a mi-
croretentive surface on zirconia ceramics, and even leads to degradation in the mechanical
properties [11–13].

To tackle the clinical difficulty of adhering resin cements to zirconia, a plethora of
surface conditioning methods has been introduced recently [7–9]. A routine practice
employed by dental practitioners involves airborne particle abrasion of the zirconia ceramic
surface with silica-coated aluminium oxide (Al2O3) particles to achieve micromechanical
interlocking. Moreover, the embedded silica-coated particles render the surface more
chemically reactive, so that it is prepared for silanization via silane coupling agents. Silanes,
as bifunctional molecules, guarantee adhesion between the ceramic (inorganic) and the
resin (organic) bonding agent, by forming siloxane bonds [14] with the ceramic (inorganic)
part and copolymerizing with the resinous phase. Additionally, the cement wettability and
surface energy of ceramics are improved [15]. This process is referred to as tribo-chemical
coating [9,16–18].

Surface grinding with a fine diamond bur has also been advocated, in order to form
small irregularities on the substrate, allowing the resin composite to flow into the sub-
strate [19]. Despite its advantages, there is a concern that roughening procedures by air
abrasion or grinding may cause flaws in the zirconia. On the one hand, roughening and
air abrasion induce a tetragonal to monoclinic phase transformation, resulting in higher
reliability and flexural strength, while, on the other hand, superficial defects may decrease
the mechanical properties and lead to failure. These two effects are contradictory and need
to be in balance, and several factors (i.e., grit size, pressure, and distance of the nozzle) may
play an important role [20–23]. The available literature seems to be conflicting, although air
abrasion with 30 mm Al2O3 particles with a silica-coating yields the best results [24,25].

Recently, non-invasive alternatives, such as nano-structured alumina coating [26] or
special zirconia primers, based on organophosphate and carboxylic acid monomers [27],
have been propagated to eliminate aggressive conditioning approaches. In addition, the
introduction of primers containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP),
acting as universal primers through a similar hydroxylation-driven chemistry, has received
much attention [28]. Bifunctional phosphate monomers can also be part of the resin cement.
Besides MDP-based cements, several other adhesive cements, with different compositions,
have been tested. More recent evidence highlights the fact that the way of conditioning
the surface, in combination with resin cement selection, significantly influences the bond
strength to zirconia [8].
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Much of the recent work in this field has focused on different surface conditioning
protocols and cement types. However, to the best of the authors’ knowledge, no study
has investigated the influence of the incremental and bulk application of resin cement to
zirconia. Such a methodological factor may affect the adhesion results dramatically. The
cement is enclosed under the intaglio surface, and is simulated in this in vitro using a
mould. Therefore, the objective of this in vitro study was to examine the effect of different
luting techniques (incremental, bulk build up, and the use of mould) on the adhesive
potential of resin cements to zirconia with and without ageing. The null hypotheses were
that the luting method, aging and type of cement would not have a significant influence on
the adhesion of the cements to zirconia.

2. Materials and Methods

The different materials, brands and chemical structures used in this study are listed in
Table 1. Arrangement of laboratory groups based on the luting methods, cement types and
ageing procedures is displayed in Figure 1. Power analysis was performed with statistical
software for the given specimen size (SPSS software, V.20 and G*Power, IBM, Armonk,
NY, USA).

Table 1. The main chemical compositions and brands of the cements and substances used for the
experiments. BPEDMA: bisphenol-A-polyethoxy dimethacrylate, DMA: aliphatic dimethacrylate,
HEMA: 2-hydroxyethyl methacrylate, MDP: 10-methacryloyloxy-decyl-dihydrogenphosphate, F3Yb:
ytterbium trifluoride, UDMA: urethane dimethacrylate.

Material Chemical Composition Manufacturer

Monobond Plus Alcohol solution of silane methacrylate, phosphoric acid
methacrylate and sulphide methacrylate Ivoclar Vivadent, Schaan, Liechtenstein

Oxyguard II Glycerol 50–70 wt.%, polyethylene glycol,
catalysts, accelerators, dyes Kuraray, Osaka, Japan

RelyX Unicem
(REL)

Phosphoric acid methacrylates, dimethacrylates, silanated
fillers, inorganic fillers (72 wt.%), initiators, stabilizers,

rheologic additives
3M ESPE, St. Paul, MN, USA

Tetric
(TET)

F3Yb, Bis-GMA, urethandimethacrylate,
triethylenglycoldimetharcylate Ivoclar Vivadent, Schaan, Lichtenstein

TheraCem
(THC)

Paste A: Portland Cement, Yb with
barium glass, F3Yb, BisGMA

Paste B: MDP, HEMA, tert-butyl perbenzoate
BISCO Inc., Schaumburg, IL, USA

Panavia 21
(PAN)

Paste A: BPEDMA, MDP, DMA, silanated silica filler
silanated colloidal silica

Paste B: DMA, pigments, accelerators
Kuraray, Osaka, Japan

Variolink esthetic
(VAR)

Monomer matrix: UDMA, methacrylates
Inorganic filler: YbF3, spheroid mixed oxide, inorganic

Fillers (38 wt.%: particle size: 0.04–0.2 mm, mean: 0.1 mm)
Ivoclar Vivadent, Schaan, Lichtenstein

2.1. Specimen Preparation

Zirconia specimens (N = 300, n = 20) were cut into slices (12 × 12 × 2 mm3) from
pre-sintered Y-TZP blocks (IPS e.max ZirCAD, Ivoclar Vivadent, Schaan, Lichtenstein)
under water coolant using a precision cutting machine (Struers, Accustom-50, Struers A/S,
Ballerup, Denmark) according to ISO 6872-2008 [29]. They were embedded in epoxy resin
(Condular AG, Wager, Switzerland) exposing one side of the disk for bonding. To remove
any irregularities, the disks were ground finished by the use of silicon carbide papers in the
order of 600, 8000, and 1200 grit (WS flex 18 C, Hermes, Virginia Beach, VA, USA) under
continuous water cooling (Streuers, Willich, Germany) until a homogenous surface was
obtained. The surfaces were ultrasonically cleaned in isopropyl alcohol (Vitasonic II, Vita,
Bad Säckingen, Germany) for 5 min and allowed to dry at room temperature.
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Figure 1. Flowchart outlining experimental arrangement and alignment of groups.

2.2. Luting Methods

The specimens were randomly distributed to one of the following luting protocols
(Figure 2):

Protocol 1: in mould incremental build up;
Protocol 2: in mould incremental build up with subsequent mould removal;
Protocol 3: in mould non-incremental bulk build up.

Figure 2. Illustration of the three application modes: mould filled incrementally, mould removed
after incremental build up, and mould filled in bulk. z: Zirconia surface.

First, a thin layer of silane coupling agent (Monobond Plus, Ivoclar Vivadent, Schaan,
Liechtenstein) was added through a disposable, clean brush each time. It was allowed to
set for 60 s and any remaining excess was removed with pure air. Translucent polyethylene
moulds (inner diameter: 3 mm; height: 4 mm) were fixed with a holder on the conditioned
substrate. For each luting method, five different cements were used, namely, Variolink
Esthetic (Ivoclar); Tetric (Ivoclar); Panavia 21 (Kuraray, Osaka, Japan); TheraCem (Bisco,
Schaumburg, IL, USA); RelyX UniCem (3M ESPE, St. Paul, MN, USA).

The self-adhesive RelyX UniCem and TheraCem cements are dual-cure resin cements.
Tetric and Variolink Esthetic are light and Panavia 21 is a chemical-cure resin cement.

The cements were handled according to the manufacturers’ recommendations at room
temperature and inserted into the polyethylene, according to Protocols 1, 2 and 3. In
Protocols 1 and 2, incremental build-up was employed with each increment having a height
of 1 mm, resulting in four layers.

Each side of the specimens was photo-polymerised for 40 s (Bluephase, light in-
tensity: 1000 mW/cm2), and a glycerine gel (Oxguard II, Kuraray) was placed on the
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ceramic–composite interface of the layer applied last for 3 min, to prevent oxygen inhibi-
tion, and rinsed off afterwards.

The bonded specimens were then randomly assigned to one of the following 3 ageing
subgroups: 1: dry; 2: thermocycling for 5000 cycles between 5 and 55 ◦C with dwelling
time at each temperature of 30 s, resulting in 60 cycles per hour (Willytech, Gräfelfing,
Germany); 3: water storage for 6 months in distilled water. The dry testing group was
included to evaluate the immediate shrinkage effect on the first increment. Dry specimens
were stored for 24 h in dark at 37 ◦C in an incubator (Binder, Fishersci, Switzerland).

2.3. Macroshear Test

The specimens were placed in the jig of the universal testing machine (Z010, Zwick
Roell, Ulm, Germany) and shear force was exerted as near as possible to the adhesive bond
using a cylindrically formed testing rod at a crosshead speed of 0.5 mm/min until failure
occurred, according to ISO/TS 11405 [30]. The stress–strain curve was traced with the
corresponding software program (TestXpert V11.02 Master, Zwick Roell, Ulm, Germany).
Bond strength S (MPa) was calculated using the formula S = A:L, where L is the force at
failure (N) and A is the adhesive area (=7.065 mm2).

2.4. Statistical Analysis

Statistical analysis was performed using SPSS software (IBM, Armonk, NY, USA).
Descriptive statistics, including minimum, maximum, mean values and corresponding 95%
confidence intervals, were computed. Three-way analysis of variance (ANOVA) was used
for comparisons and pairwise comparisons were performed by the Bonferroni method.
p values < 0.05 were considered to be statistically significant in all tests.

3. Results

The type of moulding, the ageing and the chosen luting cement significantly affected
the bond strength results (p < 0.05), as illustrated in Table 2.

Table 2. Effect of cement in each moulding method, with p values showing significant differences
between the mean bond strength values (MPa) of the resin-based cement to the zirconia surface in
Protocols 1–3. For groups’ abbreviations, see Table 1.

Protocol 1 P1-PAN P1-THC P1-VAR P1-TET P1-REL
P1-PAN 0.000 0.005 0.000 n.s.

P1-THC 0.000 0.000 n.s. 0.000

P1-VAR 0.005 0.000 0.001 0.000

P1-TET 0.000 n.s. 0.001 0.000

P1-REL n.s. 0.000 0.000 0.000
Protocol 2 P2-PAN P2-THC P2-VAR P2-TET P2-REL
P2-PAN 0.000 0.000 0.000 n.s.

P2-THC 0.000 0.001 n.s. 0.000

P2-VAR 0.005 0.001 0.000 n.s.

P2-TET 0.000 n.s. 0.000 0.000

P2-REL n.s. 0.000 n.s. 0.000
Protocol 3 P3-PAN P3-THC P3-VAR P3-TET P3-REL
P3-PAN 0.000 n.s. 0.000 n.s.

P3-THC 0.000 0.000 n.s. 0.000

P3-VAR n.s. 0.000 0.000 n.s.

P3-TET 0.000 n.s. 0.000 0.000

P2-REL n.s. 0.000 n.s. 0.000
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The aging method under dry conditions presented in all the protocols applies the
significantly highest bond strength values when the dual-cure resin cement TheraCem
(16 ± 3; 11 ± 1; 16 ± 3) was used, only non-significantly different from Tetric (p > 0.05).

When thermocycling was applied, the dual-cure resin cement TheraCem (7 ± 2) and
the light-curing cement Tetric (7 ± 2) presented the significantly highest results when using
Protocol 1 (p > 0.05), while RelyX (7 ± 3) delivered the best bond strength, followed by
TheraCem (5 ± 3) and Tetric (5 ± 1) when using Protocol 2. In Protocol 3, RelyX (10 ± 6)
presented the significantly highest results, followed by Panavia (7 ± 2) and TheraCem
(7 ± 2) (p < 0.05), as shown in Figure 3.

Figure 3. Mean and standard deviation values (MPa) for the 5 cements (Variolink, Tetric, Panavia
21, TheraCem and RelyX Unicem) for the 3 protocols and ageing methods (dry, thermocycling and
6 months of water storage).

After 6 months of water storage, in Protocol 1, TheraCem showed the significantly
highest results (10 ± 2), and in Protocols 2 and 3, Tetric (10 ± 2; 15 ± 5) showed the
significantly highest result, followed by TheraCem (6 ± 2; 8 ± 3). When incremental
build up using mould was practiced (Protocol 1), the smallest decrease after 6 months of
water storage ageing was observed with TheraCem (p < 0.05). After incremental build up
using mould and subsequent removal of the mould (Protocol 2), the smallest decrease after
6 months of water storage ageing was observed with TheraCem (p < 0.05), and a significant
increase was even observed with Tetric (11%) (p < 0.05). When non-incremental build up
(bulk) (Protocol 3) using mould was performed, after 6 months of water storage, an increase
was also observed with Tetric (50%) (p < 0.05), while the smallest decrease was observed
with Variolink (22%), yet this decrease was not significant (p > 0.05) (Figure 4). All failures
occurred at the adhesion interface and were considered to be adhesive failures.



Materials 2022, 15, 2186 7 of 12

Figure 4. (a–i) In mould incremental build up (Protocol 1): (a) ∆dry—thermocycling, (b) ∆dry—
6 months of water storage, (c) ∆thermocycling—6 months of water storage. (d–f) In mould
incremental build up with subsequent mould removal (Protocol 2): (d) ∆dry—thermocycling,
(e) ∆dry—6 months of water storage, (f) ∆thermocycling—6 months of water storage. (g–i) In
mould non-incremental bulk build up: (g) ∆dry—thermocycling, (h) ∆dry—6 months of water
storage, (i) ∆thermocycling—6 months of water storage.

4. Discussion

This study was conducted in order to investigate the effect of different luting tech-
niques (incremental, bulk build up, and use of mould) on the adhesion of resin cements to
zirconia, with and without ageing. Based on the results of this study, since the moulding
type, luting cement and ageing significantly affected the results, the null hypotheses could
be rejected.

As the established bonds between an adherent and a substrate are submitted to a
combination of both shear and tensile torque forces during chewing in service, different
testing methodologies—namely, macrotensile, microtensile, macroshear and microshear
tests—have been proposed to measure the bond strength values between dental ceramics
and resin-based materials. Regardless of the procedure, it is mandatory that the most stress
is forced on the bonding interface zone [31], which should range from 3 mm2 to 1 mm2 in
macro and micro-testing arrangements, respectively [32]. The universal way of ranking
the adhesive performance of adhesive resin cements is performed using moulds, and by
filling them incrementally, depending on the height of the mould. Although it may not
completely reflect the thin cement film under restoration, the first layer of increment is, in
fact, decisive on the adhesive strength of the cement. There are attempts to bond ceramic
to ceramic with a thin film of cement, which may be more clinically relevant. However,
surface conditioning method onto both ceramic surfaces interferes with the outcome, and,
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thus, may not be completely clinically representative. Therefore, considering all systematic
reviews and meta-analyses in the field, we chose to use the mould technique. Several
adhesion studies in dentistry, with a similar methodology, have stated that some bond
strength tests do not adequately stress the interfacial area [33,34]. Since micro-test methods
cover a diminished bonded field with more homogenous stress distribution, they are likely
to deliver significantly higher bond strength data than macro-test methods, eventually
leading to false ranking of the examined materials [35]. Moreover, micro-tensile tests are
also prone to pre-test failures during the cutting of bonded interfaces in high-strength
ceramics [33]. In contrast, it is assumed that microshear tests are a more reliable alternative
for testing bond strength in small areas. However, the viscosity of the luting cements tested
would not show the necessary rheology to apply them in small tubes. Thus, in this study,
a macroshear test was used to evaluate the bond strength values, which is also the most
frequently applied test method as a simple and repeatable testing option [8]. According
to an ISO standard, a widely accepted threshold for adequate shear bond strength is
5 MPa [36], and shear bond strength under 13 MPa should be considered critically [8].

Since there is some speculation that air abrasion methods may create possible damage
to ZrO2 ceramics, some companies have started to advertise special zirconate primers, based
on organophosphate/carboxylic acid monomers, as a different option to the established
mechanical pre-treatments [37]. These zirconate primers might bond with the hydroxyl
groups on the zirconium dioxide surface. Enhanced bonding to resin has been reported,
but a significant decrease was observed after thermocycling [38]. Bifunctional phosphate
monomers, containing 10-methacryloyloxydecyl phosphate monomers (MDP), adhere to
oxides of ZrO2 ceramics by generating a direct bond between the ceramic surface and
the resin [39]. Manufacturers advise that these MDP-based products be used without any
physical or chemical pre-treatment, even if it is controversially considered that the addition
of mechanical surface conditioning and/or silane coupling agents may deliver improved
adhesion [40,41]. Thus, in this study, all the specimen surfaces were only pre-treated with
Monobond Plus, a primer containing MDP and silane bi-functional silane molecules, to
evaluate the true bonding potential of the tested cements, without any physical surface pre-
treatment. Several studies indicated favourable adhesion of MDP-based cements, known
for their chemical interaction potential, and the results in this study are in accordance with
those of previous studies [7,8]. In dry conditions, TheraCem produced the highest bond
strength values in all the luting protocols (1–3), as an MDP-based cement. The chemical-
cure resin cement Panavia 21, one of the most frequently used resin cements in dentistry,
showed the second highest bond strength values in Protocols 1 and 3. However, when
the mould was removed subsequently after build up in Protocol 2, Panavia 21 performed
worse, probably due to water uptake. In general, incremental or bulk application of the
resin cement using the mould (Protocols 1 and 3) delivered significantly (p < 0.05) higher
bond strength values than when the mould was removed (Protocol 2).

In direct composite restoration, incremental build up has been generally recommended,
in order to reduce polymerisation shrinkage and its associated stress [42]. However,
bulk-fill composite materials have gained more attention lately in the dental community.
Interestingly, in this study, when the cements were bulk filled in Protocol 3, the dual-cure
resin cement TheraCem and the chemical-cure Panavia 21 performed similarly, in terms of
bond strength values, compared to when they were built up incrementally in Protocol 1.
This finding implies that bulk filling using mould might be a suitable and simple solution.
This option prevents the replacement of the whole ceramic reconstruction, and the lifetime
can be prolonged in a more conservative way.

To estimate the long-term behaviour in clinics, the bonded joints are exposed to
different ageing conditions. The dry specimen testing represents the early failures imme-
diately after cementation, when the cement is not exposed to aging of any water uptake.
While thermocycling represents in vitro hydrothermal ageing, water storage mimics ageing
by water uptake and, consequently, hydrolytic degradation. Thermocycling may simu-
late the worst-case ageing scenario, with its temperature changes leading to repetitive
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contraction–expansion stresses at the cut surface. The 6 months of water storage serves
to expose the cement to water sorption, excluding possible temperature changes [43]. At
least 5000 cycles are advised for metal–resin adhesion tests, according to the ISO norm [36].
More studies are necessary to carry out some standardization of the ageing protocol. While
most of the studies on ceramic–resin adhesion involved different thermocycling times, the
common consensus was that thermocycling decreased the bond strength when zirconia did
not receive any mechanical pre-treatment [7]. After ×5000 thermocycling, the self-adhesive
dual-cure resin cement RelyX presented the smallest decrease in Protocol 2 (p > 0.05) and
Protocol 3 (p < 0.05). The superior results of RelyX are in line with the observations of
a previous study [14]. In Protocol 1, the self-adhesive dual-cure resin cement TheraCem
performed the best, both after ×5000 thermocycling and after 6 months of water storage.

The performance of MDP-based cements after ageing has been discussed controver-
sially. On the one hand, hydrolytic degradation weakens the chemical hydroxyl bindings
formed between the MDP monomer and the zirconia ceramic surface [44,45]. On the other
hand, when zirconia was pre-treated with a tribo-chemical coating, and an MDP-containing
primer/cement was used, hardly any ageing effect was found [7,8,46]. However, silane
molecules react under chemical reactions, forming hydroxyl bonds, which also takes place
under ageing conditions. Thus, a more hydrolytically and/or thermally stable siloxane
bond between the resin-based adhesive and the silica-coated ceramic surface is established.
In short, the advantages of using an MDP monomer support the lower efficiency of the
surface modification in dry conditions, and the silica-coated surface benefits from the
hydrothermal stability of the MDP monomer after ageing [47].

Interestingly, after 6 months of water storage, the bond strength values for the light-
curing resin cement Tetric did not decrease, but increased significantly, in Protocol 3
(p < 0.05), and not significantly in Protocol 2 (p > 0.05). Generally, adhesion with cements
containing UDMA, TEGDMA or Bis-GMA is impaired after ageing [48], and this phe-
nomenon was also demonstrated by Variolink in this study. Depending on the composition,
the bond becomes weaker, not only due to water uptake, but as a result of increased hy-
drolysis. However, longer water storage periods need to be administered to investigate
this effect.

Today, clinicians are still constantly faced with the dilemma of whether to follow the
cement manufacturers’ instructions during the cementing of zirconia, or to modify the
instructions by following a different surface conditioning protocol. There is still scarce
knowledge as to whether air abrasion has a harmful effect on the fatigue strength of zirconia.
Furthermore, from a clinical point of view, sufficient bond strength is difficult to define.
Considering the high values obtained in this study, it might not be necessary to aim for
even higher bond strength values, as the retention decrease in zirconia reconstructions
is reported to be a seldom event, according to clinical studies for crowns and FDPs [49].
However, for resin-bonded FDPs, retention solely relies on adhesion, and the information
obtained in this study may be useful for clinical protocols.

The results of this study can apply to all kinds of adhesion protocols. The clinical
survival of resin-bonded FDPs benefits more from the results of these studies, as they lack
mechanical retention compared to full-coverage FDPs. Yet, the methodology employed
during bonding resin-based materials may also affect the outcomes. In this study, the
materials were either not exposed to water, or stored only in water, whereas, in the oral
environment, adhesive interfaces are exposed to saliva and other acidic agents, which were
simulated in this study and can, therefore, be considered as one of the limitations of the
study. It also has to be noted that the cement thickness between the restoration surface and
enamel/dentin is certainly much thinner than each increment applied in the mould in this
study. This could also be considered as a limitation of not only this study, but all in vitro
adhesion studies, which could be addressed in future studies with a different mould design.

Nonetheless, there is room for continued development, and more studies are necessary
to better elucidate the effect of ageing on both methacrylate and MDP-based resin cements.
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5. Conclusions

From this in vitro study, the following could be concluded:

1. The adhesion of the tested resin cements to zirconia was influenced by the cement
type, luting protocol and ageing.

2. In dry conditions, the MDP-based cement TheraCem performed the best in all the
adhesion protocols.

3. After ageing, a reduction in bond strength was observed among most cement types, as
a result of hydrolytic degradation. As an exception, Tetric showed an increase in bond
strength, possibly due to further polymerization and a higher degree of conversion.

4. Considering the higher bond strength values overall, MDP-based cements may adhere
to a zirconium surface more reliably by using a universal primer based on MDP
and MPS, and this can be suggested as an option for bonding to zirconia without
air abrasion.

Author Contributions: Conceptualization: N.M., N.A.-H.H., L.C. and M.Ö.; Data curation: N.M.,
N.A.-H.H., L.C. and M.Ö.; Formal analysis: N.M., N.A.-H.H., L.C. and M.Ö.; Funding acquisi-
tion: N.M., L.C. and M.Ö.; Investigation: N.M., N.A.-H.H., L.C. and M.Ö.; Methodology: N.M.,
N.A.-H.H., L.C. and M.Ö.; Project administration: N.M., L.C. and M.Ö.; Resources: N.M., L.C. and
M.Ö.; Software: L.C. and M.Ö.; Supervision: N.M. and M.Ö.; Writing—review & editing: L.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No data reported.

Acknowledgments: The authors would like to acknowledge Albert Trottmann, University of Zurich,
Center of Dental Medicine, Division of Dental Biomaterials, Zürich, Switzerland, for his assistance
with the specimen preparation and BISCO Inc., Schaumburg, USA for generous provision of the
materials.

Conflicts of Interest: The authors did not have any commercial interest in any of the materials used
in this study.

References
1. Ichikawa, Y.; Akagawa, Y.; Nikai, H.; Tsuru, H. Tissue compatibility and stability of a new zirconia ceramic in vivo. J. Prosthet.

Dent. 1992, 68, 322–326. [CrossRef]
2. Guazzato, M.; Albakry, M.; Ringer, S.; Swain, M. Strength, fracture toughness and microstructure of a selection of all-ceramic

materials. Part II. Zirconia-based dental ceramics. Dent. Mater. 2004, 20, 449–456. [CrossRef] [PubMed]
3. Sailer, I.; Fehér, A.; Filser, F.; Gauckler, L.J.; Lüthy, H.; Hämmerle, C.H.F. Five-year clinical results of zirconia frameworks for

posterior fixed partial dentures. Int. J. Prosthodont. 2007, 20, 383–388. [PubMed]
4. Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations.

Br. Dent. J. 2008, 204, 505–511. [CrossRef] [PubMed]
5. Denry, I.; Kelly, J. Emerging Ceramic-based Materials for Dentistry. J. Dent. Res. 2014, 93, 1235–1242. [CrossRef]
6. Albert, F.E.; El-Mowafy, O.M. Marginal adaptation and microleakage of Procera AllCeram crowns with four cements. Int. J.

Prosthodont. 2004, 17, 529–535. [CrossRef]
7. Inokoshi, M.; De Munck, J.; Minakuchi, S.; Van Meerbeek, B. Meta-analysis of Bonding Effectiveness to Zirconia Ceramics. J. Dent.

Res. 2014, 93, 329–334. [CrossRef]
8. Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes.

Dent. 2015, 17, 7–26. [CrossRef]
9. Thompson, J.Y.; Stoner, B.R.; Piascik, J.R.; Smith, R. Adhesion/cementation to zirconia and other non-silicate ceramics: Where are

we now? Dent. Mater. 2011, 27, 71–82. [CrossRef]
10. Aida, M.; Hayakawa, T.; Mizukawa, K. Adhesion of composite to porcelain with various surface conditions. J. Prosthet. Dent.

1995, 73, 464–470. [CrossRef]
11. Özcan, M.; Vallittu, P.K. Effect of surface conditioning methods on the bond strength of luting cement to ceramics. Dent. Mater.

2003, 19, 725–731. [CrossRef]

http://doi.org/10.1016/0022-3913(92)90338-B
http://doi.org/10.1016/j.dental.2003.05.002
http://www.ncbi.nlm.nih.gov/pubmed/15081551
http://www.ncbi.nlm.nih.gov/pubmed/17695869
http://doi.org/10.1038/sj.bdj.2008.350
http://www.ncbi.nlm.nih.gov/pubmed/18469768
http://doi.org/10.1177/0022034514553627
http://doi.org/10.1016/j.prosdent.2005.02.008
http://doi.org/10.1177/0022034514524228
http://doi.org/10.5167/uzh-115762
http://doi.org/10.1016/j.dental.2010.10.022
http://doi.org/10.1016/S0022-3913(05)80076-9
http://doi.org/10.1016/S0109-5641(03)00019-8


Materials 2022, 15, 2186 11 of 12

12. Della Bona, A.; Donassollo, T.A.; Demarco, F.F.; Barrett, A.A.; Mecholsky, J.J. Characterization and surface treatment effects on
topography of a glass-infiltrated alumina/zirconia-reinforced ceramic. Dent. Mater. 2007, 23, 769–775. [CrossRef] [PubMed]

13. Pozzobon, J.L.; Pereira, G.K.R.; Wandscher, V.F.; Dorneles, L.S.; Valandro, L.F. Mechanical behavior of yttria-stabilized tetragonal
zirconia polycrystalline ceramic after different zirconia surface treatments. Mater. Sci. Eng. C 2017, 77, 828–835. [CrossRef]
[PubMed]

14. Matinlinna, J.P.; Heikkinen, T.; Ozcan, M.; Lassila, L.V.J.; Vallittu, P.K. Evaluation of resin adhesion to zirconia ceramic using some
organosilanes. Dent. Mater. 2006, 22, 824–831. [CrossRef] [PubMed]

15. Marsden, J.G. Organofunctional Silane Coupling Agents. In Handbook of Adhesives; Springer: Berlin/Heidelberg, Germany, 1990;
pp. 536–548.

16. Özcan, M. The use of chairside silica coating for different dental applications: A clinical report. J. Prosthet. Dent. 2002, 87, 469–472.
[CrossRef] [PubMed]

17. Paschoalino, V.M.; Paschoalino, B.J.; Özcan, M.; de Carvalho, R.L.A.; De Carvalho, R.F.; Husain, N.A.-H.; Leite, F.P.P. Effect of
different air-abrasion protocols on topography, surface wettability and adhesion of MDP monomer-based resin cement to zirconia.
J. Adhes. Sci. Technol. 2019, 33, 1948–1958. [CrossRef]
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