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INTRODUCTION

It is well established that the structure and function of a protein are highly depend-

ent on the pH of its surrounding environment. The pKa of a titratable residue, which is

heavily influenced by interactions with neighboring residues within a protein, governs

the protonation state of that residue for a given solution pH. Changes in protonation

state within a protein manifest as alterations to the charge distribution of the titratable

residue, influencing the electrostatics of the protein environment. Protonation equilibria

are thus closely linked with protein conformation, evidence of which is the sensitivity

of proteins to denaturation at extreme pH.

The interplay between protonation state and protein conformation is not accounted

for in conventional molecular dynamics (MD) simulations. Currently, these simulations

employ fixed, predetermined protonation states for titratable residues, which are gener-

ally chosen according to the pKa value of the respective residue when isolated in solu-

tion. This method of protonation state assignment can be a severe approximation, as

the pKa values of titratable residues are frequently shifted from that of the isolated resi-

due in solution. Furthermore, protonation states are not constant, but rather exist in

equilibria, subject to the changing electrostatic environment surrounding the titratable

group. Therefore, incorporating pH as an input variable in MD simulations is highly

desirable, as it would allow a more accurate study of pH-coupled protein dynamics,

such as ligand binding and protein folding.

Over the past few decades, a number of theoretical methods have been developed to

try to accurately determine the protonation states of titratable residues in proteins. One

class of methods utilizes static protein structures and employs a Poisson–Boltzmann

approach for the calculation of electrostatics.1–3 However, the use of static structures is

thought to be a major contributor to discrepancies observed in the calculation of pKa

shifts, as the conformational changes in the protein induced by change in residue pro-

tonation state are not taken into account. More recently, these methods have been

improved by including descriptions of conformational variability, with adaptations to

account for dielectric heterogeneity4,5 and inclusion of conformational flexibility.6–9

Notably, Warshel and coworkers were the first to employ MD methods to improve cal-

culation of pKa values in proteins, with their electrostatic protein dipoles Langevin

dipoles (PDLD) model.10 Other groups have incorporated MD and QM/MM methods
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ABSTRACT

A constant pH molecular dy-

namics method has been

used in the blind prediction

of pKa values of titratable

residues in wild type and

mutated structures of the

Staphylococcal nuclease

(SNase) protein. The pre-

dicted values have been sub-

sequently compared to ex-

perimental values provided

by the laboratory of Garcı́a-

Moreno. CpHMD performs

well in predicting the pKa of

solvent-exposed residues. For

residues in the protein inte-

rior, the CpHMD method

encounters some difficulties

in reaching convergence and

predicting the pKa values for

residues having strong inter-

actions with neighboring

residues. These results show

the need to accurately and

sufficiently sample confor-

mational space in order to

obtain pKa values consistent

with experimental results.
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coupled with free energy perturbation techniques for pKa

calculations.11–13 A drawback of these techniques is

their high reliance on the resolution of the input struc-

ture, which renders these methods incapable of calculat-

ing pKa shifts where protonation is accompanied by large

conformational change.

Another class of methods incorporates the important

coupling of conformation and protonation state through

the use of computational simulations that employ pH as

an external thermodynamic parameter.14–26 These meth-

ods are often described as either continuous or discrete

constant pH methods, contingent on how titratable pro-

tons are considered within the simulation. The former

treats protonation state as a continuous titration parame-

ter that advances simultaneously with the atomic coordi-

nates of the system.19–21 Originally, the implementation

of this method used a mean-field approximation, and

protonation sites could exist as fractionally occupied.

More recently, Lee et al., have developed methods to

overcome issues with fractional protonation states, using

k-dynamics with an artificial titration barrier to discour-

age fractional protonation.22 Extensions to the work of

Lee et al., have incorporated proton tautomerism23 and

enhanced sampling methods to improve convergence.24

Discrete constant pH methods avoid non-physical

intermediate charge states. These methods use MD simu-

lations for conformational sampling, while sampling dif-

ferent discrete protonation states with periodic Monte

Carlo (MC) steps interspersed throughout the MD trajec-

tory.14–18 The methods employed in this article utilize

the constant pH MD (CpHMD) method, originally

developed by Mongan et al.,14 which uses generalized

Born (GB) implicit solvent. Differences among these

methods arise from choice of solvation model and proto-

cols for updating protonation states within the simula-

tion. Although these methods have achieved good results

for small protein systems, they can be computationally

expensive, and long convergence times have been

reported for systems with multiple titration sites. In an

attempt to overcome these issues of convergence, use of

enhanced sampling methods coupled with constant pH

MD, such as constant pH accelerated MD (CpHaMD)25

and constant pH replica-exchange MD (REX-CPHMD)26

have been investigated. Results from simulations employ-

ing these methods indicate the increased sampling pro-

vides improvement over the conventional method.

The previous paragraphs provide only a brief summary

of the computational methods available for pKa prediction.

Further details of these and other methods can be found in

the literature, and several reviews have been published.27–

29 In this study, the successes and deficiencies of the

CpHMD method have been investigated in the blind pre-

diction of pKa values of titratable residues of the WT and

mutant forms of the Staphylococcal nuclease (SNase)

enzyme based upon comparison to experimental results

released after submission to the pKa cooperative30 by Gar-

cı́a-Moreno and coworkers.31–37 Particular attention is

paid to the differences in electrostatics and, consequently,

acid/base properties of exterior and interior residues.

THEORY

Constant pH molecular dynamics—Theory
background

CpHMD employs MD with GB implicit solvent.14

Within the simulation, the MD simulation is periodically

halted, and a MC step is taken, randomly considering a

titratable residue for change in protonation. The transi-

tion energy corresponding to this MC step is evaluated

according to Eq. (1), which calculates pKa with respect to

a reference

DG ¼ kBTðpH� pKa;ref Þln10þ DGelec � DGelec;ref ð1Þ

compound for the residue of interest. Reference com-

pounds are the isolated titratable residues solvated in

water (reference pKa values are 3.8 for ASP, 4.3 for GLU,

6.8 for HIS, 9.6 for TYR, and 10.5 for LYS).14,38,39 In

Eq. (1), kB is the Boltzmann constant, T is the tempera-

ture, pH is the specified solvent pH, pKa,ref is the pKa of

the reference compound, DGelec is the electrostatic energy

change for protonation state change of the titratable resi-

due, and DGelec,ref is the corresponding electrostatic tran-

sition energy for the reference compound. The same GB

electrostatics employed in the MD is used for calculating

this transition energy, with acceptance of the change in

protonation determined by the Metropolis criterion. If

the MC move is accepted, the protonation state of the

residue will change to the new state, and MD is contin-

ued. If not, the simulation will continue with the residue

remaining in the unchanged protonation state. CpHMD

has been successfully applied in the pKa prediction of ti-

tratable residues in the Hen Egg White Lysozyme

(HEWL) enzyme.14

Titration curve construction and pKa

calculation

The predicted pKa values are calculated from perform-

ing CpHMD simulations over a range of solution pH

values. Assuming the system is ergodic, we assume frac-

tional protonation is given by the amount of time a par-

ticular titratable residue spends in its protonated state.15

Thus the fraction of deprotonated species, s, for a residue

at a specific pH value can be used to predict the pKa

from a Hill plot [Eq. (2)].16,20,22,40 Fits to this curve

s ¼ 1

1þ 10n pKa�pHð Þ ð2Þ

allow for estimation of both the pKa value as a midpoint

of titration, as well as the Hill coefficient, n, which
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describes the cooperativity of various sites with respect to

titration.41 Illustrated in Reference 40, for example, the

usefulness of the Hill equation resides in its ability to

provide a good prediction of the midpoint pKa value,

even when the fit is inaccurate at the tails of the titration

curve.40

METHODS

Test system: Staphylococcal nuclease

Staphylococcal nuclease (SNase) is a highly charged

protein, which has generated difficulty in obtaining accu-

rate structure-based pKa predictions.42 The structures of

the wild-type and mutant proteins of the SNase system

are provided for this study by the lab of Garcia-Moreno

et al., who measured the pKa shifts of the titratable resi-

dues using NMR spectroscopy.31–37 Along with other

computational groups, we have computed blind pKa pre-

dictions for residues of wild-type SNase (PDB ID: 1STN

or 1SNC), the SNase mutant D1PHS (PDB ID: 3bdc),

and various mutants from the D1PHS parent protein

(referred to as calculated results in this study). D1PHS

is unique in that it is a hyperstable, acid-resistant SNase

mutant with five substitutions (G50F, V51N, P117G,

H124L, and S128A) and a deletion of residues 44–

49.31,32 Garcia-Moreno directed this effort, holding

experimental pKa determinations from those making pre-

dictions and picking residues of interest for pKa predic-

tion (hereafter referred to as experimental results in this

study). In total, approximately 93 structures of the wild-

type (WT) and mutant SNase have been provided.30

Owing to time constraints, however, our CpHMD pKa

predictions have not been carried out on the entire set of

provided structures, the subset of which were studied

and submitted as blind predictions shown in Table I.

CpHMD simulations

The standard CpHMD method has been implemented

in AMBER10 molecular dynamics program. All simula-

tions are conducted with the AMBER99SB force field43

and the GB solvent model igb52,44–46 using a 30 Å cut-

off value for nonbonded interactions and computation of

effective Born radii calculations. Similar to experimental

conditions, salt concentrations are set to either 0.1 or

1.0M. The SHAKE algorithm constrains all bonds involv-

ing hydrogen with a time step of 2 fs,47 and temperature

is maintained at 300 K using the Berendsen temperature

coupling method with a time constant of 2 ps.48 A pe-

riod of 10 fs of MD separates the MC trials. With these

parameters, a 10 ns CpHMD simulation takes approxi-

mately 72 h using 16 Xeon X5650 2.67GHz processors.

All simulations begin from the crystal structure coordi-

nates of the WT and D1PHS SNase systems provided by

Garcia-Moreno et al., from which specific titratable

residues were chosen for the blind prediction study

(Table I). For the blind predictions performed on SNase

systems where a single ASP or GLU residue has been

highlighted as the residue of interest, CpHMD simula-

tions of 10 ns in length have been performed in the solu-

tion pH range 2.0–7.0 at 0.5 pH unit intervals, titrating

only acidic residues. For these simulations, HIS residues

are allowed to titrate from pH 4.5 to pH 7.0. In systems

where a LYS or TYR is highlighted as the residue of in-

terest, simulations have been carried out in the pH range

7–10.5, where HIS, LYS, and TYR residues are set to

titrate. The exclusion of HIS residues from the most

acidic simulations is justified, as the pKa of the HIS refer-

ence is around 6–7.39 In most cases, it is safe to assume

all ASP and GLU residues are deprotonated above pH 7

and all LYS and TYR are protonated below pH 7, allow-

ing exclusion of these residues from titration in these re-

spective pH regions. Models for the terminal residues

have not yet been developed for this system, so these res-

Table I
Predicted and Experimental Values for Various Residues from the WT

SNase, D1PHS, and D1PHS Mutant Proteins30,31

Protein Residue
Experimental

pKa
Predicted

pKa
(Pred.2Exp)
pKa offset

(Pred.2Model)
pKa offset

WT HIS8 6.52 5.67 � 0.04 20.85 21.1
HIS46 5.86 6.8 � 0.3 0.7 0.0
HIS121 5.30 7.0 � 0.1 1.7 0.2
HIS124 5.73 6.0 � 0.1 0.3 20.8

D1PHS ASP19 2.21 4.1 � 1.1 0.9 0.3
ASP21 6.54 – – –
ASP40 3.87 3.1 � 0.1 20.8 0.7
ASP77 <2.2 3.6 � 0.2 >1.1 20.2
ASP83 <2.2 2 � 8 2 22
ASP95 2.16 3.6 � 0.1 1.4 20.2
GLU10 2.82 4.4 � 0.2 1.6 0.1
GLU43 4.32 1 � 5 20.9 23
GLU52 3.93 4.3 � 0.2 0.4 0.0
GLU57 3.49 4.3 � 0.1 0.8 0.0
GLU67 3.76 4.39 � 0.03 0.6 0.09
GLU73 3.31 4.2 � 0.1 0.9 20.1
GLU75 3.26 4.0 � 0.1 0.7 20.3
GLU101 3.81 3.5 � 0.2 20.3 20.8
GLU122 3.89 3.8 � 0.1 20.1 20.5
GLU129 3.75 4.28 � 0.04 0.6 20.02
GLU135 3.76 4.2 � 0.1 0.4 20.1

F34E GLU34 7.30 5.9 � 0.1 21.4 1.6
F34K LYS34 7.10 2 � 5 25 23
G20D ASP20 <4.0 2 � 2 22 22
G20E GLU20 <4.5 4.1 � 0.3 – 20.2
G20K LYS20 >10.4 8.6 � 0.2 <21.8 21.8
L25D ASP25 6.80 4.8 � 0.3 22.0 1.0
L36D ASP36 7.90 5 � 3 23 1
L37D ASP37 <4.0 – – –
V23D ASP23 6.8 3 � 2 24 21
V23E GLU23 7.1 6.4 � 0.1 20.7 2.1
V23K LYS23 7.40 7.3 � 0.6 20.1 23.1

The difference between experimental and model compound pKa values for

D1PHS mutants. Model compound pKa values: 3.8 (ASP), 4.3 (GLU), 6.8 (HIS),

and 10.4 (LYS).14,38,39

Constant pH Molecular Dynamics

PROTEINS 3383



idues are set to their most likely protonation states at

neutral pH, with the N-terminus protonated and the

C-terminus deprotonated. All non-titrating residues are

set to their expected protonation states.

Simulations conducted after publishing of
experimental results

To understand why some predictions fail to reproduce

the experimental results, further CpHMD simulations

have been conducted, as indicated in the proceeding sec-

tions. In particular, the pH range at which simulations

were originally performed is extended to account for resi-

dues that deviate the most from their reference value. In

cases where convergence has been determined to be prob-

lematic, extended simulations (>10 ns) do not appear to

improve predictions (results not shown).

RESULTS

Titration curves

Titration curves are obtained from CpHMD simula-

tions for 32 titratable residues of the WT, D1PHS, and

mutant D1PHS SNase systems. The experimental pKa

values for the WT protein were published prior to the

predictions, but those for the mutant proteins were with-

held until blind predictions were made (Table I). From

Eq. (2), pKa values are calculated along with the standard

errors of regression for curve fits to the Hill equation in

Eq. (2) (Table I).49 In the instances of ASP21 and L37D,

pKa values cannot be computed due to the lack of transi-

tions between protonated and deprotonated forms.

A representative plot of calculated pKa over time is

given in Figure 1 for both a surface residue for which the

CpHMD predicts pKa accurately (D1PHS, GLU52) and

the D1PHS mutant L36D, for which the pKa prediction

of the interior residue ASP36 deviates by more than three

pKa units from the experimental result. In the former

case, the pKa converges rapidly, whereas ASP36 in

D1PHS L36D is indicated to not achieve convergence

over the duration of the simulations.

In assessing the convergence of a system, it is interest-

ing to observe the trend in the number of transitions

between protonated and deprotonated states as a func-

tion of pH. In systems that are well converged (e.g.,

D1PHS, GLU52), the greatest number of transitions

between deprotonated and protonated states within the

CpHMD scheme are found for the simulation conducted

at a pH nearest to the calculated pKa value. Simulations

conducted at pH values far from the predicted pKa en-

counter fewer transitions between protonation states, as

is to be expected from the acceptance criteria defined in

Eq. (1). This is not the case for certain systems (e.g.,

D1PHS L36D), where convergence is a problem. Thus

the presence of a clear distribution of transitions across

the different pH values simulated, peaked at the pH

nearest the predicted pKa, may be an indicator of how

well converged the system is.

Experimental validation

Following the blind predictions, Garcı́a-Moreno and

coworkers have released experimental results for compari-

son to predicted pKa values (Table I).30 In summary,

CpHMD simulations calculate the pKa values of 17 resi-

dues to within 1 pKa unit of the experimental value, 9

residues within 2 units, 1 residue within 3 units, and 2

residues within 4 units. Residues in the D1PHS protein

chosen for analysis are surface residues. All of these resi-

dues remain solvent-exposed throughout the CpHMD

simulation and are generally well predicted with respect

to experiment (Table I). From Figure 2, it is clear that

the predictions with the largest deviation from the exper-

imental values are for D1PHS variants that have residues

Figure 1
Plots of predicted pKa over the duration of CpHMD simulations for (a) D1PHS GLU52 (experimental pKa 5 3.93)31 and (b) D1PHS L36D

(experimental pKa 5 7.90).35 The number of protonation state transitions (T) are given in the figure legend for each system.
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located within the hydrophobic interior of the protein

(e.g., L37D, L36D). These residues have also been found

experimentally to have the largest shifts in pKa from their

reference values (Table I). Errors with respect to the ex-

perimental pKa are shown in Table I, with predictions

within ranges of experimental pKa considered to have

zero error.

As described in Table I, CpHMD simulations have cor-

rectly predicted the experimental trends for the majority

of these buried residues, three within 1 pKa unit of the

experimental result (G20E, V23E and V23K). The simula-

tions predict the pKa values of F34E/K, L25D, L36D, and

V23E/K to be shifted from their model values in the

direction of favoring the neutral residue at physiological

pH; although, for some of these residues, the shift in the

predicted pKa is not as large as that found experimentally

(Table I).

DISCUSSION

Residues with pKa predictions greater than
1 pKa unit from experimental

Since the release of experimental results, further simu-

lations have been carried out to investigate why our

methods predict pKa values that deviate more than 1 pKa

unit from experimental results. For this article, we have

chosen a selection of residues that illustrate problems

with the application of the CpHMD method to these

specific systems.

D1PHS: ASP21

In the D1PHS mutant, the residue ASP21 is a notable

exception to the good performance of CpHMD in pre-

dicting pKa values of surface residues. This problem

arises from a lack of transitions between protonated and

deprotonated states. In this case, longer simulations fail

to alleviate the problem, likely due to the existence of a

strong, charged hydrogen bond interaction between

ASP19 and ASP21 preventing changes in protonation

state from occurring. Consistent with our results, Garcı́a-

Moreno and coworkers have needed to apply two-site

binding isotherms to properly describe the experimental

titration of these interacting residues and have also noted

the difficulty in predicting the pKa for ASP21 computa-

tionally.31 Similar problems arise in the simulation of

L37D, indicating that sampling of protonation states is

critical to the performance of the CpHMD method. Use

of enhanced sampling techniques to allow the system to

sample other protonation states may be necessary for

accurate pKa predictions in conventional simulations

where strong interactions persist.

D1PHS G20K

For the mutant D1PHS G20K, the CpHMD method

predicts a pKa of 8.6, nearly two pKa units lower than

the experimental value (>10.4).33 This lysine residue suf-

ficiently sampled protonation space, encountering more

than 600 transitions over the duration of each simula-

tion. The trajectories of these simulations incur large

motions indicative of protein instability. The root mean

square distances (RMSD) with respect to the starting

structure for these simulations do not converge at any

solution pH, largely influenced by the winding and heli-

cal motion of the last 20 residues of C-terminus (Fig. 3).

To further probe this conformational change, we per-

formed conventional MD simulations with set protona-

tion states computed by the program PRO pKa
50 for pH

7–10 at intervals of 0.5. The conventional MD simula-

tions similarly suffer from protein instability near neutral

pH (pH 7 and pH 8), although take longer to encounter

it than CpHMD simulations. At higher pH, the terminal

helix in the G20K protein does not incur the same

motion observed at neutral pH and in CpHMD simula-

tions. These simulations show the sensitivity of the G20K

protein toward change in protonation state, and in order

to achieve results closer to experiment with the CpHMD

method, it may be necessary to spatially constrain the

termini. These findings indicate that although increased

sampling is desirable and may be achieved in certain sys-

tems, it is important that the correct conformational

space is sampled to attain an accurate prediction of pKa.

In further probing the problems involving predicting

the pKa for G20K, it is noteworthy that other mutations

at site 20 generate similar instabilities (e.g., G20D and

G20E). Having an acidic residue at site 20, however, does

not affect the pKa prediction to the same extent. Visual

analysis of trajectories for the G20D protein reveals that

hydrogen bonds from Thr-29 persist throughout the sim-

Figure 2
Plot of predicted versus experimental pKa values for WT SNase (l),

D1PHS (x, exterior residues), and D1PHS mutants (D, internal
residues).31–37 The line y 5 x represents accurate prediction of the

experimental pKa.

Constant pH Molecular Dynamics
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ulations, likely lowering its pKa (Table I). Similarly, G20E

forms transient hydrogen bonds with Thr-29. All

mutated residues at site 20 sample conformational space

that is solvent-exposed, in addition to time spent buried

in the protein interior. While this explains the propen-

sities for G20D and G20E to exist in their charged states,

it fails to explain the shift in pKa for G20K.

D1PHS F34E

CpHMD simulations performed on the D1PHS F34E

mutant consistently obtain a predicted pKa (5.7) lower

than experiment (7.30).32 The stability of this particular

mutant shows great sensitivity to the pH of the simula-

tion, with large conformational changes occurring at

acidic pH (Fig. 4). Nevertheless, the pKa values calculated

at neutral pH—closer to the pKa of the residue—still

underestimate the experimental pKa despite undergoing a

large number of transitions between protonated and

deprotonated states. Upon visualization of this structure,

it is notable that the carboxylate of GLU34 forms salt

bridges with an adjacent arginine residue (ARG81),

which causes this residue to favor its deprotonated state.

The simulations may not sample enough conformational

space owing to the persistence of this salt bridge, there-

fore leading to a predicted pKa value lower than the ex-

perimental result. Enhanced sampling techniques may

provide the means to allow the system to escape this

GLU34-ARG81 salt bridge and give a more representative

prediction of pKa.

D1PHS L36D

The mutant L36D suffers from sampling problems,

both of conformational and protonation space (Fig. 1).

While at certain pH values CpHMD simulations correctly

predict the pKa, which experimentally is found to be

7.90,36 there is no clear trend in pKa prediction for sim-

ulations conducted at different levels of pH (Fig. 1).

From visualization of the various trajectories, it is sug-

gested that ASP36 may form a strong hydrogen bond

with ASP21 in the MD simulations, stabilizing the depro-

tonated form. This scenario is seen at pH 4.5, where the

simulation more accurately predicts a pKa of 7.4. In

other cases, ASP36 becomes buried in the hydrophobic

interior of the protein, again leading to insufficient sam-

pling of different protonation states. It is therefore likely

that L36D needs to better sample conformational space

in order to more effectively predict the pKa of ASP36.

Analysis of CpHMD performance

It is clear the CpHMD method performs better at pre-

dicting the pKa values of solvent-exposed residues, which

possess pKa values closer to their reference compounds

(Table I). This is evident from the calculation of the root

mean square error (RMSE) of predicted pKa values,

measured against the experimental work of Garcı́a-Mor-

eno to quantify this result, showing that residues on the

surface of D1PHS deviate from experiment with an

RMSE of 1.23, whereas the RMSE for interior residues of

the various D1PHS mutants is 2.42 (Table II).31 Most

residues found at the surface of the protein encounter an

increased number of transitions between protonated and

deprotonated forms, and tend to converge relatively

Figure 3
Conformational change encountered by the D1PHS G20K protein at

the start (copper) and end (purple) of CpHMD simulation performed

at pH 8.5.

Figure 4
RMSD as a function of MD time step for the D1PHS mutant F34E

protein at varying pH values.
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quickly (�6–8 ns). The counterexample to this trend is

ASP21, which likely fails to transition due to sampling

problems derived from the persistence of its hydrogen

bond with ASP19.

The importance of selecting a suitable pH range for ti-

tration and difficulties in achieving proper sampling of

conformational space are illustrated in some pKa predic-

tions of interior residues for the various D1PHS

mutants. Given that many internal residues are found

experimentally to have pKa values shifted considerably

from their reference pKa, it is thus important to set up

simulations over a wide pH range to conduct the titra-

tion. For example, in the case of L36D, simulations were

performed at acidic pH under the assumption that the

pKa of the aspartic acid would exist closer to its reference

value of 3.8. In fact, experimental results show this resi-

due to titrate at a pKa of 7.80. The selection of the pH

range is also important for the stability of the system

when performing CpHMD simulations, as illustrated by

D1PHS F34E.

Analyses of computed pKa over time show internal res-

idues to be far less converged compared to surface resi-

dues, making the prediction of accurate pKa values more

challenging. Although the CpHMD method applied in

this study usually predicts the direction of the pKa shift

from the reference compounds correctly, there is still

room for improvement in accurately predicting pKa for

internal residues.

Residues buried within the protein environment expe-

rience dielectric environments quite different from those

at the surface of the protein, with their pKa properties

very susceptible to the nature of the residues in their vi-

cinity and thus more difficult to treat computation-

ally.31,42 This difficulty is illustrated by the D1PHS

L36D and F34E proteins, where strong hydrogen bonds

or salt bridges involving these titratable residues affect

their protonation equilibria. Simulations of L36D do not

contain any transitions between deprotonated and proto-

nated forms owing to the persistence of an interaction

between the ASP36 and ASP21 residues. For residues

such as this, the use of an enhanced sampling method,

such as accelerated MD, may assist in the sampling of

relevant conformations and thus protonation states. The

requirement for increased sampling is also highlighted in

instances where salt bridges persist throughout the simu-

lation, as in the case of ARG81-GLU34 in the F34E mu-

tant protein. The CpHMD method severely under-pre-

dicts the pKa of this glutamate, suggesting it spends more

time in its deprotonated form than experiment pre-

dicts.31 It is possible, although not proven in our studies,

that the strength of salt bridges sampled in our CpHMD

method is overestimated under the GB implicit solvation,

thus leading to error in predicting protonation state.51

Although not specifically quantified in this study,

errors likely exist in CpHMD simulations due to the use

of implicit solvation and conventional (non-polarizable)

force fields. With regards to implicit solvation, issues

regarding global protein movements would likely be

dampened by the presence of explicit solvent molecules.

Despite this generally accepted point, we believe CpHMD

simulations employing implicit solvation still merit fur-

ther study due to the simplicity of protonation changes

and transition energy calculations. With regards to force

fields, polarizable force fields would likely better capture

the sensitivity of neighboring groups to changes in the

protonation state. The topic of force field effects on con-

stant pH MD simulations is further investigated by

others in this issue.52

Although there exist problems with both implicit sol-

vation and conventional force fields, the CpHMD

method has been successful in predicting the pKa of a

significant number of residues from the test set from

Garcı́a-Moreno. This study has highlighted areas that

may add significant improvement in the pKa prediction

capability of the method, such as enhanced conforma-

tional sampling and implementation of an improved sol-

vation model. Future work will focus on testing other

solvation models and the implementation of different

accelerated molecular dynamics techniques, with the goal

of achieving better sampling of physically meaningful

conformations and protonation states.
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