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Breast Cancer Consensus Subtypes: A system for subtyping
breast cancer tumors based on gene expression
Christina Horr 1 and Steven A. Buechler 1,2✉

Breast cancer is heterogeneous in prognoses and drug responses. To organize breast cancers by gene expression independent of
statistical methodology, we identified the Breast Cancer Consensus Subtypes (BCCS) as the consensus groupings of six different
subtyping methods. Our classification software identified seven BCCS subtypes in a study cohort of publicly available data (n=
5950) including METABRIC, TCGA-BRCA, and data assayed by Affymetrix arrays. All samples were fresh-frozen from primary tumors.
The estrogen receptor-positive (ER+) BCCS subtypes were: PCS1 (18%) good prognosis, stromal infiltration; PCS2 (15%) poor
prognosis, highly proliferative; PCS3 (13%) poor prognosis, highly proliferative, activated IFN-gamma signaling, cytotoxic
lymphocyte infiltration, high tumor mutation burden; PCS4 (18%) good prognosis, hormone response genes highly expressed. The
ER− BCCS subtypes were: NCS1 (11%) basal; NCS2 (10%) elevated androgen response; NCS3 (5%) cytotoxic lymphocyte infiltration;
unclassified tumors (9%). HER2+ tumors were heterogeneous with respect to BCCS.
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INTRODUCTION
Gene expression-based signatures and subtyping systems are
widely recognized as valuable methods for disease stratification in
breast cancer. Several signatures1–4 are in clinical use for prognosis
and treatment selection for estrogen receptor-positive (ER+) breast
cancer. The intrinsic subtypes5, also known as the PAM50 subtypes,
are commonly used to describe molecular features of tumors in
addition to hormone receptor and HER2 status. Several groups
have developed subtype systems specific to the clinically
important triple-negative breast cancers (TNBC); i.e., tumors that
are estrogen receptor-negative (ER−), progesterone receptor-
negative (PR−), and HER2- (TNBC)6–8. Lehmann et al. identified
six subtypes, Burstein et al. identified four subtypes, and Jézéquel
et al. presented three subtypes. The clinical translation and utility
of these systems could be hampered by these discordant results,
likely due to diverse algorithms and patient cohorts.
The colorectal cancer community also faced the problem of

multiple validated gene expression-based subtyping systems. In
the absence of a gold-standard method, the Colorectal Cancer
Subtyping Consortium (CRCSC), published the consensus mole-
cular subtypes (CMS) of colorectal cancer9. The CRCSC used
network cluster analysis to form subtypes that drew on informa-
tion from six independent subtype systems. In a sense, two
samples were classified into the same consensus molecular
subtype if the six systems largely agreed that they should be
classified together. This methodology had the effect of minimizing
bias due to the clustering method or training cohort.
Current subtyping results for breast cancer are also limited in

their abilities to inform how non-TNBC tumors respond to
treatments. For example, results have shown differing sensitivity
to therapeutics depending on the concentration of tumor-
infiltrating lymphocytes (TILs) in HER2+ tumors10–13, evidence of
the heterogeneity of HER2+ tumors. Moreover, current subtyping
methods for ER+ breast cancers have not identified differential
sensitivity to CDK4/6 inhibitors.

In this study, we developed a gene expression-based subtype
system for breast cancer by adapting the methods leading to the
colorectal cancer CMS subtypes. We chose to subtype breast
cancers overall, rather than restricting attention to TNBC tumors,
to avoid unnecessarily restricting the scope of the work. Following
the derivation of the Breast Cancer Consensus Subtypes (BCCS)
and a computer application to generate the subtypes, we
identified BCCS in cohorts based on three different gene
expression platforms and analyzed the cohort-independent
biological and clinical features of the subtypes.

RESULTS
Study cohorts
The BCCS subtypes were studied in the cohorts METABRIC (n=
1992), Affymetrix (n= 2923), and BRCA (n= 1035), with gene
expression based on Illumina bead array, Affymetrix microarray,
and RNA-sequencing, respectively (see the “Methods” section,
Supplementary Table 1). All samples were from primary tumors
and fresh-frozen tissue. METABRIC was partitioned into METABRIC-
A (n= 997), and METABRIC-B (n= 995) using the discovery-
validation partition of Curtis et al.14. BCCS subtypes were trained
in METABRIC-A and their features were explored in all three
cohorts (Fig. 1).

Discovery of consensus training subtypes
The consensus subtyping method (see the “Methods” section) was
first applied to the METABRIC-A cohort, which includes both ER+
and ER− samples. Six gene filtering and subtyping methods (A–F)
were selected to mirror those used in consensus molecular
subtyping of colorectal cancers9 (see the “Methods” section).
Application of the consensus subtyping method (Fig. 2a) resulted
in subsets T1–T5 of METABRIC-A, called the BC Consensus Training
Subtypes, with unclassified samples labeled T0. The subtypes T1,
T2 consisted predominately of ER− samples, while T3–T5
consisted predominately of ER+ samples (Supplementary Table
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2). Because these clusters largely separated ER+ and ER− samples
(accuracy= 0.96), a fortiori, we explored the potential to identify
additional heterogeneity by first separating samples by ER status,
and then repeating the consensus subtyping method separately
for ER− samples and ER+ samples.
Consensus subtyping applied to the METABRIC ER− samples (n

= 474, Fig. 2b) resulted in subtypes NT1 (n= 193), NT2 (n= 183),
NT3 (n= 73), called the ER− Consensus Training Subtypes, with
unclassified samples NT0 (n= 25). (All ER− samples in METABRIC
were used to provide a sufficiently large training set.) Consensus
subtyping applied to the METABRIC ER+ samples (n= 1518, Fig.
2c), resulted in clusters PT1 (n= 440), PT2 (n= 316), PT3 (n= 354),
and PT4 (n= 351), called the ER+ Consensus Training Subtypes,
with unclassified samples PT0 (n= 57).

Derivation of BCCSclassifier, a computer application to
generate BCCS in whole-transcriptome datasets
It would be impractical to apply the consensus subtyping process
used above in an arbitrary cohort, and the method cannot be
applied to a single new sample. To resolve these problems,
computer applications were trained to the BC, ER+ and ER−
Consensus Training Subtypes, using the Multi-kTSP generalization
of kTSP (see the “Methods” section). Predictors of T1–T5 were
defined on a discovery set of 75% of the METABRIC-A cohort and
evaluated in the complementary test set (25% of samples) as
predictors of T1–T5. Accuracy of these predictors reached a
plateau of 92% in the test set using a predictor based on 500 kTSP
models. This application was called BCCSclassifier(ER+/−). The
sets of samples predicted to be in T1–T5 by BCCSclassifier(ER+/−)
in any cohort were called Breast Consensus Subtype 1–5
(BCS1–BCS5), respectively.
This process was repeated to define a predictor of PT1–PT4 in

the METABRIC ER+ samples. Using 750 predictors achieved an
accuracy of 83% in a test subset of 25% of the samples. The
subtypes this application [BCCSclassifer(ER+)] predicted to be in
PT1–PT4 in a sample set were called estrogen-receptor Positive
Consensus Subtype 1–4 (PCS1–PCS4), respectively. We similarly
derived the application BCCSclassifer(ER−) which computed
Negative Consensus Subtype 1–3 (NCS1–NCS3) by training to

NT1–NT3. Samples unclassified by these applications were labeled
“tie”.
The BCS, PCS, and NCS subtype assignments for all samples in

METABRIC, Affymetrix, and BRCA cohorts are delineated in
Supplementary Data 1 with distributions in Supplementary Table
3. Of the pairs clustered together by BCS, 92.4% had the same ER
status; i.e., BCS separated samples by ER status, a fortiori. Because
subtyping ER+, respectively ER−, tumors into PCS1–4, respectively
NCS1–3, was more refined than BCS1–5, the further analysis
focused on PCS1–4, and NCS1–3. Collectively, we called PCS1–4
and NCS1–3 the BCCS.

Test of the robustness of subtypes to alternative method of
derivation
The six methods employed in the derivation of the BCCS subtypes
produced subtypes that potentially varied in the number of
subtypes and may have disagreed in classifications (Fig. 2). The
consensus subtyping method aims to cluster a pair of samples
only when multiple systems using different methods clustered
them together, and in this sense generates clusters that are less
dependent on subtyping method than a single system. To test the
degree of robustness of the BCCS subtypes, we repeated the
derivation for the ER+ subtypes, the most complex case, using an
alternative set of subtyping systems (see the “Methods” section).
The alternative six methods produced systems with 6, 3, 4, 5, 4,
and 6 subtypes. However, application of the consensus subtyping
method resulted in four subtypes that reproduced PCS1–4 in
METABRIC ER+ with accuracy= 0.92 and kappa= 0.90, providing
evidence that the BCCS classifications are robust to changes in the
clustering method.

Distributions of clinico-pathological traits and
PAM50 subtypes in the BCCS subtypes
As an initial exploration of the features of the BCCS subtypes, we
computed the proportions of samples in each subtype having
selected clinico-pathological traits for METABRIC and BRCA
(Supplementary Table 4). (Clinical data was unavailable for many
patients in Affymetrix cohort.) Among the ER+ samples in

Fig. 1 Project workflow. The analysis workflow for the project is diagramed, describing both the results and the novel methods applied.
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METABRIC, the proportion of grade 3 tumors in PCS2 and PCS3
was 0.51 and 0.69, respectively, which was significantly higher (p
= 3 × 10−48) than the proportions in PCS1 (0.23) and PCS4 (0.20),
combined. Similarly, PR− ER+ tumors were more likely to be in
PCS2 and PCS3 than PCS1 and PCS4 (p < 0.0001 for all

comparisons). The BCCS subtypes did not exhibit notable
differences in proportions of LN+ tumors, tumors at least 2 cm
in size, or patients over 50. The relationship between BCCS and
HER2 status is discussed in depth below.
The BCCS subtypes for ER+ samples varied significantly in

distant metastasis-free survival estimates in METABRIC (p= 6 ×
10−11, Supplementary Fig. 1A) and Affymetrix cohort (p= 5 ×
10−16, Supplementary Fig. 2A). In both cohorts, each of PCS2 and
PCS3 had poorer prognosis than PCS1 and PCS4 (p < 0.001 for all
Cox proportional hazards models), and prognosis was not
significantly different between PCS2 and PCS3 (p= 0.06 in
METABRIC, p= 0.2 in Affymetrix). Prognosis for the BCCS ER−
subtypes varied slightly for METABRIC (p= 0.02, Supplementary
Fig. 1B), and not significantly for Affymetrix (p= 0.72, Supple-
mentary Fig. 2B).
Lobular carcinomas were disproportionately found in PCS1

(124/238 in METABRIC, 130/197 in BRCA; see Supplementary Table
4 for prevalence in all BCCS) and mucinous carcinomas were
disproportionately found in PCS4 (23/46 in METABRIC, 13/16
in BRCA).
The interaction between BCCS and PAM50 subtypes was

tabulated for METABRIC and BRCA (Table 1). Of note, the majority
of Luminal B samples were in PCS2 or PCS3, the majority of
Luminal A were in PCS1 or PCS2, and most Normal were in PCS1.
NCS2 samples were largely Her2 or Normal, while NCS3 samples
were from Basal or Her2. These results provided evidence that the
BCCS subtypes could not be derived from the PAM50 subtypes
and clinico-pathological covariates.

Features of gene expression in BCCS subtypes by gene set
enrichment analysis (GSEA) and analysis of specific genes
GSEA was used to uncover subtype-specific biological activity.
Specifically, enrichment for each Hallmark v7 gene set was tested
between each pair of PCS1–4 and NCS1–3 in all three study
cohorts (Fig. 3). Multiple gene sets related to cancer development
and progression were significantly enriched between subtypes in
all three study cohorts. The ER+ subtypes with the poorest
prognosis, namely PCS2 and PCS3, were enriched in MYC targets
(V2) compared to PCS1 and PCS4, and also E2F targets and G2M
checkpoint compared to PCS4. From these results, we conclude
that tumors in both PCS2 and PCS3 were, on average, highly
proliferative15. However, significant differences between PCS2 and

Fig. 2 Networks of subtypes produced by six different methods.
The networks are displayed for a METABRIC-A, b METABRIC ER−,
c METABRIC ER+. The nodes are colored and labeled according to
the particular subtyping method. An edge between nodes indicates
that the corresponding subtypes had a significant number of
samples in common. Dashed circles indicate the nodes (subtypes)
that were clustered together by the MCL network clustering
method. a Application of methods A–F resulted in subtype systems
with 3, 5, 5, 6, 3, 3 subtypes, respectively. The three subtypes
identified by Method A were labeled A1–A3, and similarly for other
methods. A network was formed having nodes these 25 subtypes.
Markov clustering of this network resulted in five clusters of
subtypes (identified with dashed ovals), plus the singleton D3
(n= 31). For each cluster of subtypes, a subset of METABRIC-A
(labeled T1–T5) that formed the core samples of the cluster was
identified, with remaining samples in T0 (n= 92, 9.2%). b Methods
A–F applied to this domain resulted in 4, 4, 4, 3, 3, 3 subtypes,
respectively. Markov cluster analysis of the network of 21 subtypes
identified 3 clusters of subtypes, with three unclustered subtypes.
Core samples assigned to each cluster formed NT1–3 with
unclassified samples comprising NT0. c In METABRIC ER+ samples,
Methods A–F resulted in 5, 4, 6, 8, 3, 3 clusters, respectively. Markov
cluster analysis applied to the network of 29 clusters resulted in four
clusters that grouped 9, 5, 8, and 7 nodes, respectively. Core sample
assignment to these clusters created subtypes PT1–4 and unclassi-
fied samples as PT0.

C. Horr and S.A. Buechler

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2021)   136 



PCS3 were also observed. Compared to PCS2, PCS3 was enriched
in interferon-gamma (IFN-γ) response, IL6-JAK-STAT3 signaling,
complement, apoptosis, P53 pathway, and other pathways related
to immune response and hypoxia, while PCS2 was enriched in
estrogen response compared to PCS3.
The two good prognosis ER+ subtypes, namely PCS1 and PCS4,

also varied in gene set enrichment compared to other subtypes.
Compared to PCS2-4, PCS1 was enriched in TGF-β signaling,
angiogenesis, coagulation, and other pathways reflecting stromal
cell infiltration. PCS4 was enriched in MYC targets (V2) compared
to PCS1.
Turning to the ER− subtypes, NCS1 was enriched in E2F targets,

G2M checkpoint and MYC targets compared to NCS2 and NCS3,
typical of basal-like tumors; NCS2 was enriched in androgen
response and estrogen response compared to NCS1 and NCS3;
and NCS3 was enriched in IFN-γ response, IL6-JAK-STAT3
signaling, complement, and other immune response gene sets
compared to NCS1–2. Since all tumors in these comparisons were
ER−, we examined expression levels of ESR1, PGR, AR, and
estrogen response genes most significantly varying with respect
to BCCS (Supplementary Fig. 3). While expression levels of ESR1
and PGR were comparably low in all of NCS1–3, expression levels
of AR, CA12, TFF3, and XBP1 were significantly higher in NCS2
than NCS1 and NCS3 (p < 10−80 for all tests).
Mean expression levels of hormone response genes also varied

across subtypes of ER+ tumors (Supplementary Fig. 3). In
particular, mean expression of ESR1 in PCS4 was significantly
higher than in each other subtype in all cohorts (p < 0.01 for all
comparisons). Of note, the mean expression of ESR1 was also
significantly lower in each of PCS1 and PCS3 than PCS2 (p < 10−12

for all comparisons). Also, PCS3 samples in BRCA were more likely
to be <90% positive for ER by immunohistochemistry (p= 2.1 ×
10−8), PCS4 samples were more likely to be ≥ 90% positive (p=
1.5 × 10−10).
The sensitivity of a tumor to immune checkpoint inhibitors (ICI)

depends on the levels of checkpoint inhibitor proteins in the

tumor, as well as other features of immune activity16. In METABRIC
and BRCA, expression levels of the checkpoint regulatory genes
IDO1, CTLA4, PD-1 (PDCD1), and PD-L1 (CD274) were all
significantly higher in NCS3 compared to other samples (p <
1.5 × 10−3 for all tests), and significantly higher in PCS3 compared
to other ER+ samples (p < 10−11 for all tests, see Fig. 4a for
METABRIC). An 18-gene immune signature was previously shown
to predict response to pembrolizumab16 in multiple tumor types,
including TNBC. Values of this immune signature were highest in
NCS3 in METABRIC overall (p= 1.4 × 10−31), and highest in PCS3
compared to other ER+ METABRIC tumors (p= 1.5 × 10−63, Fig.
4b).

Relationships between BCCS subtypes and HER2 status
The intrinsic subtype system (PAM50) defined the Her2-enriched
subtype to represent all HER2+ tumors. In contrast, HER2+ tumors
were found in multiple BCCS subtypes in METABRIC and BRCA
(Supplementary Table 5). In METABRIC ER+ the distribution of
tumors with HER2 gain was: PCS1 (16%), PCS2 (33%), PCS3 (42%),
PCS4 (9%). Previously, the enrichment levels in biological path-
ways between the BCCS subtypes were analyzed with GSEA. To
test the possible dependence of these features on HER2 status we
repeated GSEA analysis separately for HER2+ and HER2− tumors
in METABRIC for those subtypes with a sufficient number of
tumors of each type, specifically, PCS1–3. Results showed
(Supplementary Fig. 4) that for most gene sets, the degree of
enrichment between subtypes was the same in HER2+ and HER2
− tumors. For example, HER2+ tumors in PCS3 were enriched in
IFN-γ response compared to HER2+ tumors in PCS2, and HER2+
PCS2 tumors were enriched in estrogen response compared to
HER2+ PCS3 tumors. The same relationships held for HER2− PCS2
and PCS3 tumors. Thus, the BCCS subtypes articulated hetero-
geneity in HER2+ tumors and HER2− tumors alike.
While relationships between BCCS subtypes did not significantly

vary by HER2 status, features of samples within a subtype did vary
by HER2 status. Application of GSEA showed that within each of
PCS1, PCS2 and PCS3, HER2+ tumors were enriched for, e.g., MYC
targets, and mTOR signaling in comparison to HER2− tumors,
providing further evidence that HER2 status and BCCS provide
independent information on tumor biology.
A subtype of androgen-receptor-positive, luminal-like tumors

(LAR) has previously been identified in TNBC6–8, as well as AR+, ER
−, HER2+ breast cancers17. The subtype NCS2 was enriched in
androgen response and included both TNBC and HER2+ samples.

Degrees of immune and stromal cell infiltration, and tumor
cellularity in BCCS subtypes
TILs in breast cancers have been associated with response to
chemotherapy and targeted therapy for HER2+ breast cancer. The
distributions of the infiltration levels of immune and stromal cell
populations computed by MCPcounter (see the “Methods”
section), were assessed with respect to the BCCS subtype
(Supplementary Fig. 5). Analysis of BCCS subtypes in METABRIC
for selected populations (Fig. 5) showed that NCS3 had
significantly greater infiltration of cytotoxic lymphocytes (p=
7.4 × 10−29) and natural killer cells (p= 3.5 × 10−29) compared to
all other tumors. With respect to ER+ tumors, PCS3 exhibited
significantly greater infiltration of cytotoxic lymphocytes (p=
6.3 × 10−44) and natural killer cells (p= 3.3 × 10−29) compared to
other ER+ tumors. Mean infiltration of fibroblasts was greatest
overall in PCS1 (p= 6 × 10−100), and greatest in NCS3 (p= 2.6 ×
10−8) among ER− tumors. Endothelial cell infiltration was greatest
in NCS3 or PCS1 in all three cohorts. Distributions for selected cell
populations for Affymetrix and BRCA were similar (Supplementary
Fig. 6).
Tumors with low or moderate cellularity in METABRIC were

disproportionately found in PCS1 (Supplementary Table 6, p=

Table 1. Distribution of samples classified by both BCCS and
PAM50 subtypes for METABRIC and BRCA cohorts.

METABRIC (n= 1992)

Basal Her2 LumA LumB Normal NCa

NCS1 190 0 0 0 3 0

NCS2 38 126 4 0 20 0

NCS3 61 16 0 0 15 0

PCS1 8 5 296 31 121 1

PCS2 1 45 114 185 11 2

PCS3 30 42 47 182 17 1

PCS4 0 4 233 89 11 1

tie 3 2 27 5 4 1

BRCA (n= 1035)

NCS1 139 0 0 0 1 0

NCS2 11 46 11 3 9 0

NCS3 11 1 0 0 4 0

PCS1 2 4 271 9 19 1

PCS2 0 3 22 52 2 8

PCS3 16 18 14 66 1 0

PCS4 0 1 158 38 0 2

tie 2 3 58 27 1 1

aNot classified.
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7.7 × 10−21). This relationship was supported by the ASCAT tumor
purity distribution in BRCA (Methods, Supplementary Fig. 7, p=
2.0 × 10−39).

Relationships between BCCS subtypes and alterations of DNA
Patterns of copy number alterations, mutations of specific genes,
tumor mutation burden, and DNA methylation were assessed for
correlation with BCCS. The integrative clusters14 (IntClust 1–10)
grouped samples in METABRIC-A by patterns of copy number
changes. The distribution of BCCS subtypes within these clusters
showed several significant correlations (Fig. 6a). IntClust 3,
characterized by gain in 1q, was enriched in PCS1 (p= 5 ×
10−24); IntClust 8 (1q gain, 16q loss) was enriched in PCS4 (p= 1 ×
10−32); IntClust 10, a high genomic instability group typical of
basal tumors (5 loss/8q gain/10p gain/12p gain), was enriched in
NCS1 (p= 1 × 10−115); IntClust 5, associated with ERBB2 amplifica-
tion, was enriched in NCS2, PCS2 and PCS3 (p= 1 × 10−18);
IntClust 6 (8p12 loss) and IntClust 7 (16q loss, 8q gain) were
enriched in PCS2 (p= 2 × 10−11, p= 2 × 10−6, respectively). For

chromosome arms most altered in integrative clusters, we
selected as representative cytobands those from the chromosome
arm most significantly altered in METABRIC-A. Copy number
changes for representative cytobands in BRCA were consistent
with these patterns (Supplementary Table 7).
Mutation status for a selected set of genes (n= 173) has been

assessed for METABRIC samples (see the “Methods” section). There
were eight genes mutated in at least 20% of samples in some
BCCS subtypes in METABRIC (Fig. 6b). The mutation frequencies by
BCCS subtype were also computed for these genes in BRCA (Fig.
6c). Mutation rates for TP53 were greatest in NCS1 (0.67 in
METABRIC, 0.79 in BRCA), and greatest among ER+ tumors in PCS3
(0.52 in METABRIC, 0.50 in BRCA). In the other poor prognosis ER+
subtype, PCS2, TP53 mutation rate was significantly lower (0.22 in
METABRIC, p= 5 × 10−16; 0.24 in BRCA, p= 0.0004). PCS1 exhib-
ited the greatest mutation rates for PIK3CA (0.69 in METABRIC,
0.46 in BRCA), CDH1 (0.20 in METABRIC, 0.23 in BRCA), and
MAP3K1 (0.24 in METABRIC, 0.1 in BRCA). Of note, mutations in
CDH1 have been associated with lobular breast cancer18, which is
most frequent in PCS1.

Fig. 3 Gene set enrichment by GSEA for pairs of BCCS subtypes. Enrichment for each Hallmark v7 gene set was tested between each pair of
PCS1–4 and NCS1–3 and all three study cohorts using GSEA. A gene set was considered enriched between a pair of subtypes if the adjusted p-
value was < 0.05 in all three cohorts. A GSEA test for enrichment in A versus (v) B reported the normalized enrichment score (NES); NES was
positive if expression was enriched in A compared to B, and NES was negative if expression was enriched in B compared to A. A Hallmark gene
set is omitted if it was not significantly enriched in any test. A tile is colored green (respectively, goldenrod) for the given pair and gene set, if
in all three study cohorts, the adjusted p-value was < 0.05 and NES was positive (respectively, negative); a tile is gray if the adjusted p-value
was ≥ 0.05 in some cohort.
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The degree of genomic instability, as represented by tumor
mutation burden (TMB, see the “Methods” section), varied
significantly by BCCS subtypes in BRCA (Supplementary Fig. 8, p
= 1.5 × 10−37). Of note, among ER+ tumors, TMB was significantly
elevated (p= 1 × 10−16) in PCS3, and TMB was not significantly
different across NCS1, NCS2, and PCS3 (p= 0.18). Given the
elevated immune activity in NCS3 the low level of TMB was
surprising, however, this could be an aberration due to the small
number of NCS3 samples in BRCA (n= 16).
Methylation in the promoter of ESR1 has been associated with

resistance to hormone therapy19. Methylation Beta values for
cg15626350 in the ESR1 promoter varied significantly across BCCS
subtypes in BRCA overall (p= 2.0 × 10−52, Fig. 7a) and restricted to
ER+ tumors (p= 2.2 × 10−43). Beta values of methylation sites
were also screened for their abilities to predict membership of
individual BCCS subtypes (see the “Methods” section). The most
significant predictions were for PCS1, NCS1, and NCS2; Fig. 7b–d
displays the distributions for selected methylation sites. Promoter
methylation of BCL2 (cg24408313) predicted membership in PCS1
with AUC 0.81 among ER+ tumors; loss of promoter methylation
of TFF3 (cg04806409) predicted membership in NCS2 with AUC
0.92 among ER− tumors; and loss of promoter methylation in
GFAP (cg21944455) predicted membership in NCS1 among ER−
tumors with AUC 0.93. These results on the promoter methylation
of ESR1 and TFF3 were concordant with those on their expression
levels (Supplementary Fig. 3). Together these results showed
significant variation in patterns of methylation across BCCS
subtypes.

Comparison of BCCS to TNBC subtyping systems
The relationships between BCCS subtypes for TNBC tumors and
prior subtyping systems for TNBC, specifically TNBCtype6 and the
Burstein subtypes7 were analyzed. The Burstein subtypes were
derived from GSE76275 (see the “Methods” section). BCCS
subtypes were computed for these samples using BCCSclassifier
(ER−). The refinement of TNBCtype subtypes to the 4
TNBCtype4 subtypes20 was computed using the TNBCtype tool

(see the “Methods” section). While GSE76275 reported 198 samples
as TNBC, the TNBCtype tool computed subtypes only for the
157 samples it assessed as estrogen-receptor negative by ESR1
expression level.
Tabulation of the BCCS subtypes NCS1, NCS2, and NCS3 and the

Burstein subtypes (Supplementary Table 8) showed 71% agree-
ment between NCS2 and LAR, and 62% agreement between NCS3
and MES, while BLIS and BLIA largely refined NCS1. In fact, 83% of
the pairs of samples clustered together by Burstein subtypes, were
also clustered together by BCCS. The TNBCtype4 system also
refined NCS1–3 in the sense that 77% of pairs of samples clustered
together by TNBCtype4 were clustered together by BCCS. The
Burstein subtypes and TNBCtype4 subtypes (Supplementary Table
9) showed a lesser degree of concordance. Within NCS1, only 19%
of pairs were clustered by both Burstein subtypes and TNBCtype4.
These results showed that both Burstein subtypes and TNBCtype4
refined BCCS, but did so in different ways.

Differential expression of genes involved in response to
CDK4/6 inhibitors
The CDK4/6 inhibitor class of drugs has been found to improve
survival in metastatic ER+ breast cancer patients21–25 and is being
evaluated as adjuvant treatment for early breast cancer patients26.
Although single-gene biomarkers for CDK4/6 inhibitor sensitivity
have not been identified, a positive response to this class of drugs
has been associated with high expression of CCND1, moderate
expression of the targets CDK4 and CDK6, and low expression of
the inhibitor CDKN2A26,27. The RBSig genomic signature was
developed to predict patients likely to be resistant to CDK4/6
inhibitors28. The ER+ patients most likely to be considered for
adjuvant systemic therapy would be the poor prognosis patients
in PCS2 and PCS3. We found that mean expression of CCND1 was
significantly higher in PCS2 than in the remaining ER+ tumors (p
< 10−53 in all cohorts) and RBSig score was significantly higher in
PCS3 than PCS2 (p < 10−50 in all cohorts, see Fig. 8 for METABRIC
results). In METABRIC ER+ samples, only 1/29 samples with a
mutation in RB1 were in PCS1, but the remaining 28 were not

Fig. 4 Distribution by BCCS subtypes for immune regulatory genes, and 18-gene immune signature. a Distributions are plotted by BCCS
subtypes of METABRIC for the immune regulatory genes IDO1, CTLA4, PD-1 (PDCD1) and PD-L1 (CD274). b The distributions are plotted by
BCCS subtypes of METABRIC of the 18-gene immune signature. Higher values of the score predicted greater sensitivity to pembrolizumab in a
previous study. The midline in a boxplot indicates the median, the upper and lower edges indicate the quartiles, and the whisker lines 1.5
times the interquartile range.
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disproportionately represented in PCS2–4 (p= 0.5). As expected,
the RBSig score was significantly higher in RB1 mutated samples
than RB1 wild-type samples (p= 1.7 × 10−10). Results in BRCA
were similar.

DISCUSSION
Herein, we developed the Breast Cancer Consensus Subtype
(BCCS) system based on whole-transcriptome data from fresh-
frozen primary tumor samples. The derivation method was
designed to reduce bias due to the clustering method or
expression assay technology. The BCCS subtypes (four ER+, three
ER−) exhibited differences in tumor biology as assessed by gene
expression, patterns of DNA alteration, and immune and stromal
cell infiltration. Features specific to some subtypes have been
associated with treatment outcomes in other studies, but the
clinical utility of BCCS remains to be established.
The most novel feature of the BCCS subtype system was the

partition of poor prognosis ER+ tumors into two subtypes, PCS2,
and PCS3. Both subtypes were enriched for pathways associated
with a high proliferation rate, however, PCS3 (18% of ER+ tumors)
was elevated in IFN-γ-signaling and cytotoxic lymphocyte infiltra-
tion compared to PCS2. These characteristics of PCS3 were
previously identified in a set of tumors resistant to aromatase
inhibitors29. Of note, methylation in the promoter of ESR1, which is

being investigated as an indicator of hormone therapy resis-
tance30, was significantly more common in PCS3 than PCS2.
Staining intensity for PD-L1 protein has been used to select

metastatic cancer patients for treatment by ICI, however,
treatment response in PD-L1+ tumors of multiple cancer types
has been uneven31. Analysis of clinical trials for TNBC have shown
improved response for PD-L1+ tumors with high TIL counts and
infiltrates by CD8+ T-cells32. We have shown that in addition to
high PD-L1 expression, NCS3 and PCS3 tumors had elevated IFN-γ-
signaling and cytotoxic lymphocyte infiltration. PCS3 tumors also
had high TMB, which has indicated a positive response to ICI in
multiple cancer types33. These multiple indicators suggest that
NCS3 and PCS3 tumors may be responsive to ICI, although data on
ICI response is unavailable.
In addition to two poor prognoses ER+ tumors, BCCS presented

two good prognoses ER+ subtypes, PCS1 and PCS4, that exhibited
significantly different features with respect to gene expression,
mutation frequency, copy number changes, tumor cellularity, and
promoter methylation of ESR1. Of note, tumors with low cellularity
and high stromal cell infiltration were most likely in PCS1. Single-
cell analysis of TNBC samples showed that the TNBCtype subtypes
with low cellularity (IM and MSL) were largely determined by gene
expression from stromal and immune cell infiltrates20. This led
investigators to conclude that IM and MSL were not distinct tumor
subtypes, eliminating them from TNBCtype. In the case of PCS1,

Fig. 5 Distribution by BCCS subtypes of measures of infiltration of selected immune and stromal cell populations. This figure plots the
distributions by METABRIC BCCS subtypes for the degrees of infiltration by cells of selected populations, specifically, cytotoxic lymphocytes,
NK cells, fibroblasts, and endothelial cells. The degree of infiltration by a cell population was assessed with the median-centered MCPcounter
population means. The midline in a boxplot indicates the median, the upper and lower edges indicate the quartiles, and the whisker lines are
1.5 times the interquartile range.
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however, the majority of samples had PIK3CA mutations, exhibited
gain in 1q, and many had promoter methylation for ESR1. These
are features of tumor cells distinct from those of other subtypes,
providing evidence that PCS1 is a distinct tumor subtype.
We chose to analyze ER+ and ER− samples separately because

subtyping of all tumor samples (BCS1–5) separated them by ER
status, a fortiori. This was not the case for HER2 status; HER2+
tumors were heterogeneous with respect to BCCS (Supplementary
Table 5), having significant representation in PCS1–3 and NCS2–3.
In fact, the differences in biological activity between PCS1–3
revealed by GSEA largely held in HER2+ and HER2− tumors alike
(Supplementary Fig. 4). Previously, heterogeneity of HER2+
tumors with respect to TIL counts has been associated with
differential treatment response10–13,34. The BCCS subtypes
described heterogeneity in HER2+ tumors with respect to
numerous traits beyond lymphocytic infiltration.
Among the limitations of BCCS, we note that all cohort samples

were from primary tumors. The biology of metastases, especially in
relation to the microenvironment, could be significantly different.
Analyses of metastases will need to be carried out as an
independent study. Also, gene expression in the study cohorts
was obtained by whole-transcriptome assay of fresh-frozen tissue.
Clinical application of BCCS will require an analytically validated
test that uses formalin-fixed paraffin-embedded (FFPE) tissue and
a specific assay technology, which is beyond the scope of this
initial study.
A further limitation of the BCCSclassifier is that it is necessary to

determine the ER status of a tumor prior to classification. For some
patients with a low percentage of ER-positive staining, the ER
status may be uncertain35, leading to uncertainty in the BCCS
classification. Secondly, some tumors may have a mixed subtype;
i.e., features of multiple subtypes. This could be due to intra-
tumoral heterogeneity, as occurs in colon cancer36. The use of
continuous scores to estimate the prevalence of a BCCS subtype

among the cells in a tumor would reduce the impacts of these
limitations, as previously published for colorectal cancers37. The
derivation of continuous scores for BCCS prediction is beyond the
scope of this paper.
In conclusion, we developed BCCS using whole-transcriptome

data from fresh-frozen primary tumor samples, having biological
and clinical features independent of cohort and gene expression
assay platform. Among ER+ tumors, BCCS identified two poor
prognosis subtypes, which differed in the degree of immune
activity, and two good prognosis subtypes with one high in
stromal infiltration and the second elevated in hormone response.
The BCCS subtypes described significant heterogeneity in HER2+
tumors. Clinical application of BCCS will require an analytically
valid assay applicable to FFPE tissue and evidence that subtypes
predict responses to treatments.

METHODS
Study cohorts
The BCCS were discovered and analyzed using the following three publicly
available whole-genome transcription datasets.
METABRIC cohort (n= 1992). The METABRIC patient cohort was formed

from 1992 primary breast cancer patients14. Clinico-pathological traits
(Supplementary Table 1) were supplemented with data on distant
metastasis-free survival (DMFS) provided by METABRIC investigators
(unpublished). Gene expression values for tumor samples from METABRIC
patients, measured with IlluminaHuman-v3 beadarray, were obtained from
European Genome-phenome Archive (EGAD00010000210, EGAD00
010000211). Data for DNA copy number alterations were obtained from
EGAD00010000213 and EGAD00010000215. Mutation data for a selected
set of 173 genes for METABRIC samples were obtained from cBioPortal38.
We partitioned METABRIC into two cohorts, METABRIC-A (n= 997) and
METABRIC-B (n= 995) consisting of the previously published14 discovery
and validation cohorts. To denote estrogen receptor status we used the
status determined by gene expression as reported by the authors.
Affymetrix cohort (n= 2923). This cohort was formed by merging

clinico-pathological data (Supplementary Table 1) and gene expression
data (assessed with the hgu133a array) from the following cohorts (the
number of samples in in parentheses): GSE25065 (198), GSE256055 (310),
GSE20194 (278), GSE20271 (177), GSE1456 (159), GSE22093 (103),
GSE23988 (61), GSE42822 (90), GSE3494 (251), GSE7390 (198), GSE12093
(136), GSE6532 (178), GSE2034 (286), GSE11121 (200), GSE17705 (298). Raw
CEL file data was normalized with fRMA (frozen RMA)39 and corrected for
batch effects with ComBat using the SVA R package.
BRCA cohort (n= 1035). Clinico-pathological data for the TCGA-BRCA

cohort40 (BRCA) was obtained from NCI Genomic Data Commons (GDC,
https://gdc.cancer.gov) and Broad Institute GDAC Firehose (https://gdac.
broadinstitute.org) and summarized in Supplementary Table 1.
PAM50 subtype assignments were obtained from the TCGAbiolinks R
package. The BAM files produced by RNA-sequencing were obtained from
GDC and aligned to the Ensembl v90 genome using Rsubread41. Transcript
per million (TPM) expression measures were computed with the Rsubread
feature counts algorithm42. Unless otherwise noted, log2(TPM+ 1) was
used as the expression value of a gene for a sample in this cohort. For
GSEA, described below, gene expression measures were computed using
the DESeq2 R package43, as recommended by GSEA authors. Estrogen
receptor status was determined by IHC. Somatic mutation data for BRCA
was obtained from LinkedOmics (http://www.linkedomics.org/data_
download/TCGA-BRCA/). Tumor mutation burden was computed using
the maftools R package44. DNA methylation data for BRCA samples were
downloaded from GDC. Methylation data from the Illumina Human
Methylation 450 arrays were restricted to the probes in common with the
Illumina Human Methylation 27 array. Tumor purity (aberrant cell fraction)
has been used as a measure of tumor cellularity. Tumor purity computed
with ASCAT45 was obtained from COSMIC (https://cancer.sanger.ac.uk/
cosmic/).

Compliance with ethical requirements
Data acquired in the METABRIC study were obtained under the ethical
requirements of the relevant institutions and the study group14. The
collection of human data for TCGA-BRCA was carried out under the
requirements of the TCGA Network40. All other data used in this study were

Fig. 6 Distribution of copy number changes and somatic
mutations by BCCS subtype. The distribution by BCCS subtype of
Integrative Cluster of copy number alterations in METABRIC-A is
displayed in (a). Distribution by BCCS subtype of somatic mutations
of AHNAK2, CDH1, GATA3, MAP3K1, MUC16, PIK3CA, SYNE1, TP53 is
displayed for b METABRIC and c BRCA.
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obtained from the Gene Expression Omnibus and subject to the National
Center for Biotechnology Information requirement that appropriate
consent/permission had been obtained to submit data to a public
repository. All ethical requirements from the use of the above human
data were followed in this study.

Representation of gene expression
In this study, analysis was restricted to genes, as represented by
ENTREZIDs, whose expression was measured in each of the above three
cohorts. In the METABRIC cohort, we associate with each such gene the
Illumina probe annotated to this gene with maximal interquartile range in
the METABRIC-A cohort. The expression of the gene for a sample in
METABRIC is then reported as the expression level of the selected probe. In
the Affymetrix cohort, the jetset R package was used to select a probe to
represent a gene. We further restricted to the ENTREZIDs associated with a
unique gene in the BRCA gene count data from Ensembl v90. In the end,
for each of a set of 11,569 ENTREZIDs and each sample in any of the three
study cohorts, there is a unique expression value of the ENTREZID for the
sample.

Consensus subtyping method
The consensus subtyping method, as it was applied to create the CMS of
colorectal cancer9, consists of the steps: (1) creating multiple subtyping
systems using a variety of methods, (2) clustering the network of all
possible subtypes, (3) for each clustered set of subtypes, identifying
samples frequently assigned to the cluster’s subtypes, so-called core
samples. These steps, as applied in this study, are described in the
following subsections. This method was applied in the METABRIC-A cohort

for subtyping all breast cancer samples, the METABRIC ER− samples for
subtypes specific to ER- breast cancer, and the METABRIC ER+ samples for
subtypes specific to ER+ breast cancer.

Independent subtyping methods
Six independent methods (A–F) were applied to the training domain to
create different subtyping systems. Each of the six methods involved
filtering the genes considered, applying an unsupervised clustering
method to the filtered gene expression dataset, and selecting an optimal
number of clusters (summarized in Supplementary Table 10).
Methods A–C were executed using the ConsensusClusterPlus R

package46, with different gene filtering methods and unsupervised
clustering methods. ConsensusClusterPlus uses resampling to increase
the robustness of the resulting clusters, allowing resampling on the genes,
the samples, or both. The package also enables the selection of an optimal
number of clusters using several quality metrics. ConsensusClusterPlus
produces a consensus matrix that measures the fraction of times the
sample pair determined by row and column indices were clustered
together in the resampled classifiers. Such a matrix exists for each possible
number of clusters. To select an optimal number of clusters, Consensu-
sClusterPlus provides three analyses of the consensus matrix for each
number k of clusters. First, a heatmap plot of the matrix illustrates the
degree of coherence of the k clusters. Second, the cumulative distribution
function (CDF) of the consensus matrix for k clusters is a more quantitative
measure of cluster coherence. An optimal number of clusters by this metric
is the value at which the area under the corresponding CDF has reached a
plateau. Finally, ConsensusClusterPlus produces a “delta plot” to show the
amount of change in area under the CDF between k and k+ 1 clusters. In
all methods we considered the range of 2–8 clusters.

Fig. 7 Distribution of methylation levels for selected genes by BCCS subtypes in BRCA. Methylation Beta values are displayed for promoter
regions of ESR1 (cg15626350), BCL2 (cg24408313), TFF3 (cg04806409), and GFAP (cg21944455). The midline in a boxplot indicates the median,
the upper and lower edges indicate the quartiles, and the whisker lines are 1.5 times the interquartile range.
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Method A. In this method, the set of genes was filtered to those with
median absolute deviation (MAD) >0.5. (The median absolute deviation of
a vector of numbers v= v1,…,vm is median(|vi–median(v)|).) The clustering
method selected was hierarchical clustering with average linkage and
distance 1−Pearson correlation of the vectors of gene expression values.
Clustering was executed with ConsensusClusterPlus, resampling 90% of
the genes 1000 times, and considering 2–8 clusters.

Method B. For Method B, the genes were ranked by variance and the
highest ranked 15% were selected for the distance measure. The clustering
method selected was hierarchical clustering with ward linkage and
distance 1−Pearson correlation of the vectors of gene expression values.
Clustering was executed with ConsensusClusterPlus, resampling 90% of
the samples 1000 times and considering 2–8 clusters.

Method C. In this method, from among the genes having variance test p-
value < 0.01, select those with the highest 10% coefficients of variation.
The clustering method was the same as in Method B; i.e., hierarchical
clustering with ward linkage. Clustering was executed with Consensu-
sClusterPlus, resampling 90% of both samples and genes 1000 times,
considering 2–8 clusters.
In Methods A–C the clustering was carried out in the framework of the

ConsensusClusterPlus package. For Method D, we used Partition Around
Medoids (PAM)47 and for E and F we used nonnegative matrix factorization48.

Method D. The set of genes was filtered to those with the highest 5% of
interquartile ranges. Clustering was performed by the Partition Around
Medoids (PAM) method, testing 2–8 possible clusters. The gap statistic49

was used to select the optimal number of clusters. These steps were
carried out using functions from the cluster R package50.

Method E. Possible sets of genes were tested by restricting to those with
standard deviation >0.5, 0.8, 1, or 1.1 for the expression values in the
training domain. Clustering was performed for each expression dataset
with non-negative matrix factorization as implemented in the NMF R
package51. The NMF procedure was run 30 times, testing 2 through 8
possible clusters. The number of clusters and set of genes was selected
using heatmap and cophenetic coefficient diagnostic plots.

Method F. The set of genes was filtered to those with an interquartile
range >1.2. Otherwise, Method F agreed with Method E.

Network analysis of subtype association
This analysis followed the process described in Guinney et al.9. In our study,
the above six methods were applied to the training domain of samples
(METABRIC-A, METABRIC ER+, METABRIC ER−), for each of the three
subtyping projects. Application of the above six methods to the training
domain resulted in a set of k total subtypes, with a different k for each of
the three projects. A pair of subtypes were considered significantly
connected if a hypergeometric test for over-representation of samples in
the intersection of the subtypes had Benjamini–Hochberg adjusted p-
value < 0.001. A graph network was defined with nodes these k subtypes,
and with an edge between a pair of nodes if they were significantly
connected. To cluster such a network, resulting in groups of associated
subtypes, Markov cluster analysis was applied with the MCL R package52.
To assess confidence in the robustness of such an association, the MCL
cluster algorithm was repeated 1000 times, each iteration sampling 80% of
the samples. A k × k matrix was defined with each entry the frequency that
the pair of subtypes were in the same cluster over the 1000 applications of
MCL. These frequencies were compared to the cluster assignments by MCL
applied to the network of all samples to measure the stability of a
subtype’s cluster assignment. Specifically, for a subtype assigned to a
cluster, the stability score of the subtype was the average frequency for all
pairs formed by this subtype and other subtypes in the cluster. Clustering
performance was evaluated with weighted silhouette width using the
WeightedCluster R package, using the stability scores as weights.
An application of MCL can result in varying numbers of clusters

depending on the inflation factor parameter. MCL was applied for inflation
factors from 1 to 10, in increments of 0.25. The MCL result with the lowest
inflation factor at which the resulting weighted silhouette width reaches a
maximal plateau was chosen, under the constraint that no cluster had
fewer than 50 core samples (see the next subsection).

Identification of core subtype samples
The preceding process resulted in clusters of subtypes. Each cluster gives
rise to a subtype of the training domain as follows. For such a sample x in
the training domain and a cluster C consisting of subtypes s1,…,sk, a
hypergeometric test for over-representation of x as a member of the si’s
was performed. Then x was a core sample of C if the hypergeometric test
had a p-value < 0.05. The core samples of all clusters formed the Consensus
Training Subtypes for the subtyping project.

Fig. 8 Distribution by BCCS subtypes in METABRIC for expression of genes related to CDK4/6 inhibitor activity, and the RBSig signature.
a This figure plots distributions by BCCS subtypes in METABRIC of the expression levels of CCND1, CDK4, CDK6, and CDKN2A, which have
been associated with CDK4/6 inhibitor activity. b This plots the degree of variation in values of the RBSig score by BCCS subtype of METABRIC.
The RBSig score was created to measure the likelihood of resistance to CDK4/6 inhibitors. The midline in a boxplot indicates the median, the
upper and lower edges indicate the quartiles, and the whisker lines are 1.5 times the interquartile range.
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BCCSclassifier subtyping algorithm
The above consensus subtyping method is too lengthy to repeat in
practical applications, and cannot be applied as a single-sample classifier.
Instead, a computer application to generate subtypes on an arbitrary
whole-transcriptome dataset was trained on the Consensus Training
Subtypes of the training domain. The training domain was further
partitioned randomly into discovery set (75%) and test set (25%).
Candidate classification applications were developed on the discovery
set, and the optimal performer on the test set was selected.
The core of this application is a set of prediction models derived with

kTSP53. A kTSP classifier contains a set of pairs of genes, and for a sample
to be classified, it tests which gene in each pair has the highest expression
and makes a classification decision based on the results of these tests. A
single kTSP classifier decides whether a sample is more appropriately
classified into subtype A or subtype B. To generalize the method to an
arbitrary number of subtypes, C1,…,Cn, a kTSP classifier is defined for each
pair of subtypes. Then, to classify a new sample, the kTSP classifiers for all
pairs are evaluated, and the sample is classified into the subtype that is
most frequently predicted, if one exists, and is labeled a “tie” if none exists.
Here, kTSP predictors were derived using the ktspair R package.
In typical applications, kTSP classifiers reach optimal performance with

fewer than 10 pairs of genes. To add information from other genes we
used a resampling method to derive what we have called a Multi-kTSP
classifier. Specifically, we formed a family of m subsets of genes, for some
predetermined number m, each consisting of randomly sampled 75% of
the overall set of candidate genes. For each of m sets of genes, we derived
an optimal kTSP classifier from this set of genes. The Multi-kTSP classifier
consisted of the resulting set of m kTSP classifiers. To classify a new
sample, we evaluated each of the m predictors, and assigned the sample
to the most frequently predicted subtype, or “tie” if there wasn’t a unique
maximum. We created such predictors by selecting genes from among the
most highly varying 1500 genes, and creating 250, 500, or 750 kTSP models
in the discovery subset of training domain. We selected the minimal
number of models for which accuracy in the test set as a predictor of the
Consensus Training Subtypes reached a plateau.

Alternative subtyping methods
To test the robustness of the subtyping method we selected an alternative
set of six methods for re-subtyping the ER+ METABRIC dataset. The six
methods varied in how the set of genes was filtered, how distance
between samples was computed from expression data, and the method of
clustering (Supplementary Table 11). Only methods that produced
3–8 subtypes with more than 50 samples were adopted. Of note, fuzzy
clustering (Method III) was used by Jézéquel et al.8, non-negative matrix
factorization (Method II) was used by Burstein et al.7, and k-means and
consensus clustering (similar to Method I) was used by Lehmann et al.6.

Gene set enrichment analysis
GSEA54 was performed on each cohort using the fgsea R package. As a
measure of significance, we used an adjusted p-value, as reported by the
package. Enrichment of each of the Hallmark v7 gene sets (https://www.
gsea-msigdb.org/gsea/msigdb/collections.jsp) was tested. For analysis of
BRCA, gene expression values normalized by DESeq2 were used43, as
recommended by the GSEA authors.

Microenvironment Cell Populations counter (MCPcounter)
The MCPcounter system55, implemented as an R package (http://github.
com/ebecht/MCPcounter), was used to quantify the abundance of
populations of immune and stromal cells in a tumor sample. For each
population of cells, and each sample, MCPcounter computes the mean of
expression levels of a population-specific set of genes for this sample.
These population means were used as a measure of the infiltration of the
cell population in this sample. To create measures on a uniform scale,
population means were median centered.

Analysis of BCCS with DNA methylation
Differential methylation of specific sites with respect to BCCS subtypes was
tested in BRCA. Specifically, for each subtype and array probe we applied
the Kruskal–Wallis tested to the probe’s Beta values and membership in
the subtype, and then ranked the probes by significance.

TNBC samples and subtypes
Subtype systems for TNBC were analyzed in the GSE76275 TNBC cohort
(n= 198). This dataset was formed from GSE76275 samples reported by
the authors as triple negative7. Gene expression values were computed by
fRMA applied to raw CEL files from Affymetrix hgu133plus2 arrays. The six
subtypes of TNBC developed by Lehmann et al.6 were subsequently
computed with the TNBCtype algorithm56. We applied this algorithm
through the web interface (https://cbc.app.vumc.org/tnbc/).
TNBCtype4 subtype of a sample was computed from the six subtype
probabilities20.

Statistical methods
All statistical analyses were performed using R (http://www.r-project.org)
version 4.0 and Bioconductor packages (http://bioconductor.org) version
3.13. Kaplan–Meier survival models were plotted with the survminer R
package. The result of a statistical test was considered significant if the p-
value was < 0.05 unless an exception was explicitly stated. Hypergeometric
tests were performed with the dhyper and phyper functions. To compare
the mean values of a continuous variable between subsets we used the
non-parametric Kruskal–Wallis test (two-sided). Accuracy and Cohen’s
kappa statistic were used to assess the significance of a discrete predictor
of subtypes. The midline in a boxplot indicates the median, the upper and
lower edges indicate the quartiles, and the whisker lines are 1.5 times the
interquartile range. The ability of a continuous score to predict member-
ship in a subtype was assessed with the receiver operator characteristic
(ROC) curve. The area under the ROC curve (AUC) gives a numerical
measure of a score’s predictive significance. The quality of the prediction is
better than random if AUC is >0.5 and improves as AUC increases up to 1.
The plotROC R package was used for these computations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The Affymetrix study cohort was formed from samples from the following cohorts
which can be found at National Center for Biotechnology Information, U.S. National
Library of Medicine (https://www.ncbi.nlm.nih.gov/gds/): GSE25065, GSE256055,
GSE20194, GSE20271, GSE1456, GSE22093, GSE23988, GSE42822, GSE3494,
GSE7390, GSE12093, GSE6532, GSE2034, GSE11121, GSE17705. Data for additional
TNBC samples were obtained from GSE76275. Data for the TCGA-BRCA project is
available as follows: gene expression data from NCI Genomic Data Commons (GDC,
https://gdc.cancer.gov); clinical and pathological data from GDC, Broad Institute
GDAC Firehose (https://gdac.broadinstitute.org), and TCGAbiolinks R package
(https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html); somatic
mutation data from LinkedOmics (http://www.linkedomics.org/data_download/
TCGA-BRCA/). Gene expression and copy number data for METABRIC are available
from European Genome-phenome Archive (https://ega-archive.org) as
EGAD00010000210, EGAD00010000211, EGAD00010000213, EGAD00010000215.
Mutation data for selected genes from METABRIC can be obtained from cBioPortal
(https://www.cbioportal.org). The BCCS subtype assignments for all study samples are
available as Supplementary Data 1. Data on assignments of samples into training and
validation sets can be obtained by reasonable request from the corresponding
author.

CODE AVAILABILITY
BCCSclassifier software is available as an R package from https://github.com/
sbuechler/BCCSclassifier. It is distributed under a Creative Commons license that
permits free unrestricted use for non-commercial purposes.
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