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Abstract: An association between obesity and carpal tunnel syndrome is found in many epidemiologi-
cal studies. Therefore, there is a need to evaluate the physiopathological links that could explain the
association between these two entities. Ectopic adipose tissue is responsible for metabolic syndrome
and inflammation, and is a major risk factor for diabetes and cardiovascular diseases. Taking these
elements into consideration, we conducted an extensive literature revision of the subject, considering
as ectopic fat-related mechanisms the following: (a) the direct compression and the association with
the metabolic syndrome of the fat deposition around the wrist, (b) the insulin resistance, dyslipidemia,
inflammatory, and oxidative mechanisms related to the central deposition of the fat, (c) the impaired
muscle contraction and metabolism related to myosteatosis. Each section presents the cellular pathways
which are modified by the ectopic deposition of the adipose tissue and the impact in the pathogeny of
the carpal tunnel syndrome. In conclusion, the experimental and clinical data support the epidemio-
logical findings. Efforts to reduce the obesity epidemics will improve not only cardio-metabolic health
but will reduce the burden of the disability-free life expectancy due to the carpal tunnel syndrome.
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1. Introduction

Carpal tunnel syndrome (CTS) is one of the most frequent nerve entrapment syndromes,
affecting 2.7/1000 of the general population [1]. It is caused by the compression of the median
nerve at the wrist level. Both sensory and motor fibers are affected. Clinically, it manifests with
hand pain, paresthesias of the palmar aspect of the thumb, index and middle fingers, and radial
half of the ring finger and weakness of the thumb abduction and opposition with a reduction
in the grip strength and in the overall hand function [2,3]. The acute form is associated with
trauma, coagulopathies, and infections linked to burns [4]. The chronic form, which is the more
frequent one, is classified as idiopathic and secondary [5]. The idiopathic form is more frequent in
women between 40 and 60 years old [6]. According to Chammas et al., the secondary CTS is the
result of the reduction of the carpal tunnel area due to abnormalities of the container (shape and
positions of the bones, joint abnormalities such as arthritis, synovitis or acromegaly), of the content
(inflammatory or metabolic disorders, abnormal fluid distribution, abnormal supernumerary
muscle, tumors located inside the tunnel), or the variation of pressure inside the channel during
repetitive movements [7]. Obesity is mentioned as a contributor to the content enlargement.

Using as search key words “carpal tunnel syndrome” AND “obesity OR waist circum-
ference OR metabolic syndrome” we analyzed 209 human studies from the PubMed Data
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base, written in English. After the exclusion of reviews, case presentations and articles that
showed that they were not specifically dedicated to CTS, 76 abstracts were screened, and
the most relevant articles covering the epidemiology of this association were synthetized in
Table S1 (see Supplementary Materials). The other articles were used to find arguments for
the biological grounds of the association. After evaluating the articles and mentioning the
references to experimental studies, those articles were also revised.

As any epidemiological research has to be substantiated by the identification of the
biological mechanisms, this review aims to describe the current knowledge about the
pathological links between obesity and CTS.

The discovery of the links between obesity and CTS is not only of theoretical interest.
The ectopic fat tissue was proven to be a flexible deposit; interventions, such as physical
activity and diet, have a significant benefit and, if properly managed, could reduce the
burden of the CTS [5].

2. General Considerations about the Pathophysiology of the Carpal Tunnel Syndrome

The carpal tunnel has approximately 18–20 mm in width, 8–9 mm in depth, and
12–13 mm in length [8]. Anthropometric measurement showed that the width of the CT is
correlated to the width of the palm; females have smaller CT, but the proportion of the CT
components is also reduced and the ratio between the volume and the inner components
was similar in both genders in flexion and extension [9].

As mentioned above, the CTS is classified as idiopathic and secondary. The CTS results
from a combination of mechanical (compression and elongation of the nerve) and vascular
factors (weakening the microcirculation and edema) [10]. Concerning the mechanical factors,
the repetitive movements in extreme wrist flexion, particularly in conjunction with high force
and non-neutral forearm pronation-supination are the key factors to increase the carpal tunnel
pressure [11]. They are less important in the idiopathic form, which has most frequently a
bilateral clinical expression but is the most important etiological factor in the occupational-
related CTS. The vascular factors refer to the modifications in the microcirculation independent
of the mechanical compression, such as the capillary fenestration and permeability or the
impairment of the endothelial function encountered in pregnancy-associated CTS, metabolic
syndrome (MetS), smoking, arterial-venous fistula, or hypothyroidism.

A different approach to the etiological factors is the theory of the double crush syn-
drome. The double crush syndrome refers to the compression of the median nerve in two
different sites: proximal, at the cervical spine, and distal, at the wrist, or the coexistence of
a systemic disease (diabetes, hypothyroidism) with a local compression [12]. In either a
cervical lesion or a metabolic disturbance, the primary insult of the axons predisposes the
peripheral nerve to more rapid deterioration during, for example, repetitive movements
of the wrist. In a specialist survey, the theory of double compression was supported only
by 58% [13]. However, an expert consensus agreed that the main underlying patholog-
ical mechanisms for the double crash syndrome are the following: the impaired axonal
transport at one level which increases the distal mechanosensitivity, the Na channel up
regulation and K channel down regulation distal and proximal from the initial lesions,
the inflammation in the dorsal root ganglia after peripheral injury and the neuroma-in-
continuity formation during the regeneration of the axon [13]. It is notably in this survey
that even the experts who did not support the statement that a primary nerve disorder
predisposes to a secondary nerve disorder by dual compression agreed on the mechanisms
of the double crush syndrome attributed to general disorders.

Indirect proof of the existence of the double crush syndrome comes from the combined
therapeutic approach. Initial communication about a better outcome if cervical decompres-
sion is added to the local surgical treatment had not become a common practice, although it is
advisable to search and treat all possible lesions based on a risk-benefit assessment [12,14]. As
for the metabolic causes as a contributor to the double crush syndrome, a meta-analysis of the
functional and symptoms improvements after surgery in diabetes and non-diabetes patients
found no significant differences [15]. This result does not exclude the significance of good
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diabetes control in preventing neuropathy, because surgery is indicated only after a long-term
evolution when the disease is severe and there is a high probability of permanent damage.

Obesity is defined by excessive fat mass, but the white adipose tissue, the major
component of the adipose tissue in adults, is far from being homogenous, and the purely
quantitative definition has been complemented by terms such as “healthy” and “unhealthy”
adipose tissue [16,17]. The unhealthy adipose tissue is characterized by vascular rarefac-
tion and mitochondrial dysfunction associated with high reactive oxygen species (ROS)
formation, inflammatory cells infiltration, fibrosis, and hypoxia, modifications that occur
primarily in unhealthy expansion [18]. The subcutaneous fat is considered the reference
for the physiological role of energy deposit of the adipose tissue; all other localizations
(either visceral or muscular) are considered predominantly as an unhealthy expansion. The
central deposition of obesity is the main component of metabolic syndrome (MetS) and is
associated with higher cardiovascular, diabetes, cancer, and overall mortality [19,20]. The
visceral adipose cells secrete IL-6 and plasminogen activator inhibitor 1, has an unbalanced
adipokine profile, with higher leptin and resistin and lower adiponectin, and a different
pattern of proteins [16,21–24]. Visceral fat has fewer insulin receptors and higher lipoly-
tic activity, contributing more to dyslipidemia [24]. The pathological links between the
abnormal adipose tissue and CTS are presented in Figure 1.

In muscle, lipids might accumulate inside the myocytes (intramyocellular) and be-
tween muscle fibers (extramyocellular or intermuscular) in adipocytes underneath the
deep fascia of muscle [25]. The intramyocellular lipids were found both in highly trained
athletes and in insulin resistance patients, therefore their significance is interpreted in
context: they might represent an extra fuel to comply with the higher needs or abnormal
high storage contributing to the development of muscle insulin resistance [25]. Concerning
the intermuscular fat, there is more consensus about its association with insulin resistance,
even if there is still debate if this abnormal coaccumulation is the cause or the consequence
of insulin resistance [26,27]. A putative mechanism of intermuscular accumulation of lipids
in hyperinsulinemic conditions is the increased expression of lipoprotein lipase under the
insulin signal [28]. The intramuscular adipose tissue has more similarities with the visceral
tissue than with the subcutaneous fat such as increased inflammatory markers [29,30].
Besides its relationship with the metabolic syndrome, the intramuscular fat also has a
specific local effect on muscle contraction, which should be discussed further in this article.
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The all-over deposition increased the wrist circumference and was well correlated with
the wrist or wrist to hip circumferences, two anthropometric indicators of MetS [31,32]. It
is interesting to note that the MetS was maintained even if the wrist circumference was
measured in different modes: the first study evaluated the external wrist circumference, with
a tape measure positioned over the Lister tubercle of the distal radius and the distal ulna; the
second one used MRI to measure the internal wrist circumference, considering the transversal
profile of the wrist surrounding the bones and ligaments and excluding the adipose tissue [33].
The MRI measurement was emphasized to reflect better the anabolic effect of the insulin on
the bone tissue and could be a materialization of the relation of the wrist circumference with
MetS and hyperinsulinemia. Indeed, in overweight and obese persons, insulin resistance
was associated with a higher level of procollagen type 1 amino propeptide, a marker of bone
formation [33]. The positive relation between wrist circumference and MetS parameters
was confirmed in several clinical studies, in which relation with low adiponectin/leptin
ratio, HDL-cholesterol, triglycerides, and systolic blood pressure or insulin resistance was
found [34–36]. Even more, in a longitudinal study, wrist circumference was predictive of the
transition from the healthy obese phenotype to the unhealthy phenotype [37].

Lipomatous lesions are circumscribed abnormal fat-containing structures. They are
less frequent than MetS. They can arise within the soft tissues, bone, neurovascular struc-
tures, and synovium [38].

Lipomatosis of the median nerve is a rare, benign condition characterized by infiltra-
tion with mature fat cells and fibrous connective tissue between nerve fascicles and the
epineurium and the perineurium [39]. According to their origin and localization, Marek
et al. have classified the lipomatosis lesions of the nerve as intraneural lipomas, extraneural
lipomas (outside the epineurium), and lipomatosis of a nerve [40]. The last one is associated
with distal nerve-territory overgrowth, affecting the soft tissue and the bony structures.
The term fibro lipoma was designated for the benign tumor that develops from fibroblasts
and adipocytes of the epineurium [41]. No matter the origin, inside the narrow carpal
tunnel, all these benign tumors compress the nerve and lead to CTS. They should be distinct
from the subcutaneous lipomas, which are benign fatty tissue tumors [42]. Lipomas are
rather frequent in humans but fortunately, they rarely involve the peripheral nerves. Few
cases affecting the median nerve were described in the literature, with lipomas localized
at the wrist [40–43]. Direct compression by infiltration of the carpal tunnel was reported
or through the local vascular flow, impairment is the putative pathological mechanism.
The double crash mechanism was the explanation for the clinical benefit observed after the
surgical resection of the lipoma [42,43].

4. Insulin Resistance, Dyslipidemia, Inflammatory and Oxidative Mechanisms Related
to the Central Deposition of the Fat

Central obesity refers to the excessive abdominal fat that builds up around visceral
organs and has a negative heath impact. It is the key element of MetS, the common patho-
logical feature in diabetes and cardiovascular disease [1,44,45]. Central obesity has more
important health consequences than the body mass index in general and CTS in particu-
lar [44,45]. Apparently, central androgenic obesity does not fit the female predominance of
CTS [4,46]. This gender distribution was initially explained by the smaller cross-sectional
area of the carpal tunnel in women and the fluid retention caused by estrogens [47,48].
From the perspective of this review, we have to underline the fact that the age range corre-
sponds to the maximal annual incidence of CTS in both sexes between 40–60 years. Taking
that into consideration we have to underline the fact that the prevalence of the Mets was
found to be higher in women than in men in that age range [49,50]. Even more, a recent
analysis confirmed the current trend of the increasing prevalence of MetS in women [51].

The visceral deposition of the adipose tissue has major implications on insulin resis-
tance [23,29,30]. Related to the etiopathology of the CTS, insulin resistance directly affects
the peripheral nervous system and indirectly through the vascular and muscle and tendons
impairment (Figure 2) [52–55].
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Figure 2. Insulin resistance and polyneuropathy. Insulin resistance is characterized by hyper-
glycemia, increased non-esterified fatty acid (NEFA) and dyslipidemia (low circulating HDL particles
and high LDL). At cellular levels, the oxidative stress and the inflammation contribute to the de-
struction of Schwann cells, axons and endothelial cells. AGE= advanced glycation end products;
HDL = high density lipoprotein; oxLDLc = oxidized low density lipoprotein; NEFA = non esterified
fatty acids; Nf-kB = nuclear factor kappa B; RAGE = receptors for advanced glycation end products;
ROS= reactive oxygen species; Green line = direct effect; red line = inhibition.

The excessive visceral deposition also refers to the liver. As a result, non-alcoholic fatty
liver disease (NAFLD) was added to the list of diseases associated with MetS. Steatosis and
insulin resistance influence each other. On one side, peripheral insulin resistance increases
the lipid accumulation in hepatocytes, while on the other side, the lipid accumulation in
hepatocytes contributes to the hepatic insulin resistance, aggravating the glycemic home-
ostasis [56] Distal symmetric neuropathy was reported in type I and type II diabetes with
NAFLD [57,58]. Although encountered in diabetic patients with earlier stages of NAFLD,
the peripheral polyneuropathy seems to pursue, not to precede, the onset of diabetes [58,59]
In a large Korean study, the independent association between neuropathy and NAFLD
in T2DM was not found or it was associated only with the last stages of fibrosis [60,61].
Hepatic insulin resistance has a role in the development of peripheral neuropathies. Further
studies should clarify if there are other specific hepatic contributions besides the glucose
and lipid metabolism control linking NAFLD to peripheral polyneuropathies.

4.1. Effects of Hyperglycemia on Nerve Impairment

The presence of MetS almost doubles the chance of peripheral neuropathy [52]. In
this study, the relation between MetS and neuropathy was independent of the presence of
diabetes but closely related to the waist circumference and triglyceridemia. Thus, searching
for and correcting MetS components was proposed for any idiopathic neuropathy [53].

Other researchers found that peripheral neuropathy was only associated with insulin
resistance and independent of MetS [54]. Indirect proof of a long subclinical evolution of
neuropathy is the finding of a reduced sensory nerve action potential amplitude in the
median nerve in 70% of patients at the first diagnosis of type 2 diabetes mellitus (T2DM) [55].

The neuropathy induced by hyperglycemia combines axonopathy with Schwannopa-
thy features. The decrease in the Na+-K+ pump activity alters the axonal function [62]. The
reduced trans-axonal ionic gradient and ionic currents influence neuronal transmission
and conduction velocity. The Swann cell’s dysfunction is responsible for the morphological
changes in the myelin sheath, the disruption of the neural support, and the impaired
repairment of damaged nerves [63].

Several mechanisms explain these modifications. The high intracellular glucose activates
other catabolic processes than glycolysis, such as the polyol pathway. The polyol pathway
starts with the transformation of glucose into sorbitol, catalyzed by aldolase reductase. This
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reaction utilizes a hydrogen group donated by NADPH. Sorbitol is then converted into fructose
via sorbitol dehydrogenase and donates a hydrogen group to NAD+, maintaining the redox
balance. The second reaction does not occur in cells missing sorbitol dehydrogenase, such as
the Schwann cells [64]. As consequence, these cells will acquire an unbalanced NADPH/NAD
equilibrium and accumulate reactive oxygen species (ROS). These supplementary ROS are
added to the already existing high level of ROS produced by the mitochondria exposed to
high levels of intracellular glucose and the activation of the RAGE inside the neurons. The
first organelles damaged by ROS are mitochondria. Therefore, the axons, which have a large
mitochondrial pool and depend on the local energy production, are the most susceptible neuron
part to the ROS effects [65]. Besides oxidative stress, sorbitol is an osmotic compound that
attracts water into the cell and produces cellular edema. It has been shown that the activation of
the polyol pathway induces oxidative stress, edema, and de-differentiate the Schwann cells, a
process that is reversed by an inhibitor of the sorbitol formation [66].

4.2. Effects of Dyslipidemia on Nerve Impairment

There is also a significant contribution of dyslipidemia to peripheral nerves deteriora-
tion, even if the clinical association is less consistent. Some authors found an association
between hypertriglyceridemia and subclinical motor and sensory axonopathy, expressed
by the delay in distal latencies and decrease in conduction velocities [67,68]. Others have
found this association only in those with uncontrolled glycemia or did not find any relation
with triglycerides (TG) [69,70]. A systematic review concluded that the association is,
however, valid in the subgroup of T2DM [71].

These apparently conflicting results might reflect the independent analysis of one-
by-one components (e.g., TG) of the complex lipid transport system in disregard of the
dynamic exchange in lipid content between the lipoprotein particles and the direct and
reverse cholesterol movement. TG is an important marker of how much cholesterol is
delivered to the peripheral cells but should be considered in relation to the activity of
cholesteryl-ester transfer protein, which transfers TG and cholesterol esters to LDL particles,
or with the activity of the lipoprotein lipase, which transforms the TG rich LDL particles
into small-LDL particles [72]. The reverse transport should be taken into account as well,
particularly for the low HDL-c in MetS. Experimental data show that reduction of TG
and of the non-esterified fatty acid (NEFA) without normalization of glycemia is able to
ameliorate the peripheral neuropathy [73]. Even more, the high level of circulating NEFA
increases the superoxide production in human Schwann and endothelial cells [73]. The
glycated albumin, which is more abundant in insulin resistance states, facilitates the NEFA
penetration of the blood–nerve barrier [74].

The HDL molecule, which is generally in lower concentrations in plasma from patients
with MetS, is not only the carrier for the reverse cholesterol transport, but has also anti-
inflammatory and antioxidant properties [75]. In fact, systemic low grade inflammation
is a characteristic of the MetS and is mainly part of the abnormal secretory pattern of the
“unhealthy” adipocytes.

In the inflammatory context of MetS, the small low-density lipoprotein cholesterol
(LDL-C) is more frequently oxidized [76]. Besides the well-known effects on endothelium,
the oxidized LDL (oxLDL) could also link to the oxLDL receptor in neurons. During
periods of high-fat diet-induced dyslipidemia, the oxLDL receptor in the dorsal root
ganglia neurons of mice is activated and contributes to oxidative stress. Even more, in
this experiment, the oxLDL effect was additive to the one derived from the hyperglycemic
status [77]. The oxidative milieu favors the formation of oxysterols from cholesterol. The
oxysterols induce the caspase 8 pathway and apoptosis of the neurons [78].

Peripheral neurons also express liver X receptors (LXR α/β) (NR1H3 and NR1H2), a
cholesterol sensor that works as a transcription factor to control the lipid metabolism [79].
Gavini et al. showed that the LXR reduces the proliferation of the Schwann cells in obesity. The
effect was directly related to the downregulation of neurogenin 1 by saturated fatty acids [80].
The same group found also that activation of LXR can reduce pain in diet-induced obesity. In
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the presence of a powerful agonist of LXR, the lipid content of the macrophages from peripheral
nerves was reduced with a consequent decline in inflammation and the slower progression of the
nerve lesions [81]. All the above suggest that LXR could explain symptoms of obesity-associated
CTS, and should be investigated for their therapeutically potential.

A confounder in the relation between dyslipidemia and CTS that must be taken into
account in epidemiological studies is hypothyroidism, as on one side, CTS is more frequent
in patients with this medical condition, and on the other side, dyslipdemia, hyperinsulinemia
and large waist circumference are present even in mild hypothyroidism [82]. In some studies,
the body mass index (BMI) was the link between hypothyroidism and CTS [83,84]. Even in
euthyroidism, the TSH level in the upper range significantly increases the chances of MetS [85].

The thyroid hormones are essential for lipid metabolism. In hypothyroidism, there is an
imbalance between cholesterol synthesis and clearance. There are at least three mechanisms
by which the clearance of the LDL is reduced due to the diminished synthesis of the LDL-
receptor, decreased hepatic cholesterol uptake, and biliary excretion [86]. On the other side,
the oxidation of the LDL-receptor increases, favoring inflammation and oxidative stress as
described above [80]. The lipoprotein lipase activity is also impaired in hypothyroidism with
a reduction in the TG clearance and an increase in the circulating VLDL particles [87]. The
synthesis of endogenous cholesterol is not increased but the amount of available cholesterol
in the liver is maintained or is even higher because the cholesterol absorption is increased
and beta-oxidation in hepatocytes is decreased; the overall effect is a higher VLDL output
from the liver [88]. TSH increases the activity of the hormone-sensitive lipase and the
adipocyte lipolysis, mobilizing more fatty acids in the circulation [89]. The HDL synthesis
and maturation are also affected, as thyroid hormones promote the synthesis of apoA1 and
the efflux of cholesterol from macrophages via the ATP-binding cassette A1 [90]. Overall,
hypothyroidism increases TG, LDL, and VLDL and reduces the reverse transport and the
excretion of cholesterol [91]. To the already-described effects of the dislipidemia on the peripheral
nerves, hypothyroidism adds the deposition of pseudo mucinous substances on the median
nerve sheath and the decrease in the cross-sectional area of the carpal tunnel [84,92]. The latest
effect was reversed by thyroxin treatment.

Fat is also a deposit for neurotoxic occupational hazards, and accumulation of these
toxicants might delay their excretion. One of the best characterized peripheral neurotoxins
with adipose tissue tropism is n-hexane [93]. The chronic n-hexane exposure initiates
the formation of lysine adducts with cytoskeletal proteins; the changes in the protein
structure interfere with the insertion of newly synthesized neurofilaments into the axonal
cytoskeleton and the microtubule-binding and leads to the atrophy of the nerve, sensory
and motor impairment [94,95].

Taken together, these general neural dysfunction mechanisms could be included in
the expanded understanding of the double crash syndrome, defined as the coexistence of a
local compression with a systemic cause of neuropathy [96].

4.3. Vascular Effects

The median nerve is affected by ischemia, secondary to the vascular remodeling or
through compression of the nerve inside an abnormal narrow tunnel. Both mechanisms
might be the consequences of vascular modifications that characterize MetS.

The microcirculation dysfunction is a well-known effect of T2DM and the high preva-
lence of the subclinical neuropathy at diagnosis is a solid argument for the deleterious
effects of the long-term preexisting insulin resistance.

Inside the endothelial cells, the insulin resistance generates an imbalance between the
phosphatidylinositol-3-kinase (PI3-k) and the mitogen-activated protein kinase (MAPK)
pathways which results in impaired vasodilatation, a procoagulant status, the NADPH-
oxidase activation, and ROS production, smooth muscle cells proliferation, augmented
response to catecholamines and endothelial dysfunction [97–99]. In CTS, the arterioloscle-
rosis of the small arteries of flexor tenosynovium was observed. The narrowing of the
arteriolar lumen was due to the intimal hyperplasia related to the higher expression of
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matrix-metalloproteinases 2 (MMP-2) [100]. A similar vascular remodeling can be induced
by insulin resistance. It has been demonstrated that diet-induced insulin resistance in rats
increases MMP-2 arteriolar activity, a process that was reversed by doxycycline, a blocker
of the activity site of MMP-2 [101].

In a hyperglycemic status, the advanced glycation end products (AGE) are formed in
high amounts, the specific but not the only ligand of the advanced glycation end products
receptor (RAGE). Experimental data showed that “advanced oxidation protein products”,
food-derived advanced glycated end products, calgranulin, amphoterin, and amyloid-b-
peptide released during metabolic or oxidative cellular stress, are also able to activate RAGE.
The RAGE-induced signal activates nuclear factor-kB (Nf-KB), the early growth peptide
1, and the NADPH-oxidase and yields oxidative stress, inflammatory, and prothrombotic
species in atherosclerosis-prone vessels [97].

Hyperglycemia also influences lipid metabolism. The irreversible glycation of the
LDL-C enhances its oxidative and inflammatory potential on the vascular cells [102].
Dyslipidemia generated by the enhanced lipolysis in adipocytes and de novo lipid synthesis
in the hepatocytes increases the formation of the asymmetrical dimethylarginine (ADMA).
ADMA inhibits the NO-synthetase, reducing the formation of nitric oxide (NO) and the
vascular homeostasis [103]. Indeed, the ADMA was elevated in plasma from patients with
MetS compared to controls [104].

MetS and hypothyroidism also share some common pathological mechanisms refer-
ring to vascular impairments such as the abnormal NO and vascular endothelial growth
factor (VEGF) production [105]. A meta-analysis showed that VEGF-A is associated with
diabetes, while VEGF-B and C are associated with MetS and its components [106]. In vitro,
the VEGF transcription is stimulated by TSH [107]. The members of the VEGF family have
pleiotropic effects in vessels; they increase the permeability, which leads to edema and
further narrowing of the CT space, stimulate the multiplication of the endothelial cells
with intimal thickening, the development of collateral branches, and the neovascularisa-
tion [100,108]. The neovascularization in sub-synovial connective tissue supports the high
proliferation and thickening of the tendon sheet, further contributing to the narrowing of
the tunnel, which is more pronounced in diabetes CTS than in patients without T2DM [109].
The process seems to be influenced by the polymorphisms of the VEGF gene, as reflected by
the more frequent neuropathy in patients with T2DM and D allele of the VEGF gene [110].
Leptin, an adipokine secreted in high levels by the visceral fat, has synergic effects with
VEGF, on the capillary fenestration and permeability [111,112].

The higher incidence of CTS in smokers and the relationship with MetS needs some
specific comments. The odds ratio of CTS in smokers is 4.862 (95% CI, 3.991–5.925) and
many studies revealed an association between smoking and central obesity, even if there is
not a unanimous agreement [113–117]. Both body weight variation and nicotine addiction
have genetic components [118,119]. In a large sample of current, former, and never smokers,
investigators using the Genome-wide Complex Trait Analysis found a positive relationship
between genetic factors influencing smoking habit and BMI [120]. In this study, common
genetic variants predisposing to the intensity of smoking behavior and an increased BMI
were identified. The influence of gender on this association is also inconsistent, with studies
in which smoking influence predominated in women and others in which it was restricted
only to men [116,121]. Although both smoking and female sex are well-known risk factors
for CTS the interaction of these two is neglected, as it is for other pathologies [122,123]. At
least from the biological perspective, prospective studies to capture the potential synergic
effect of these risk factors are needed.

In what concerns the pathological mechanism, smoking has multiple negative effects on
the vascular system. Active smokers have thicker arterial walls, lower flow-mediated dilatation,
and response to nitroglycerine [124]. Nicotine activates the sympathetic nervous system, and
the production of ROS and nitrogen species increases lipolysis in white adipose tissue and
contributes to insulin resistance in muscle cells [125]. Nicotine also reduces the antioxidant
enzymes (superoxide dismutase) and the activity of endothelial nitric oxide synthase, altering
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the endothelial function [126]. Experimental data show a slow recovery after an ischemia-
reperfusion injury related to smoking. [127]. In healthy non-smokers, a 30 min passive exposure
to smoking decreases the rate of oxygen consumption and the reperfusion after vascular
occlusion and the capillary blood flow is significantly decreased [128,129]. In experiments
conducted on the extensor digitorum longus, the chronic adaptation to hypoxia related to the
blockade of hemoglobin with carbon monoxide and vasoconstriction, diminished the volume of
the muscle fibers II, and increased the fiber oxidative enzyme activity [130].

The relation between MetS, cardiovascular disease, and CTS is endorsed also by
epidemiological data. Hypertensive patients aged 30–44 years from a Finnish population-
based survey, had an OR of 3.4, (95% CI 1.6–7.4) for CTS; the association with cardiac
arrhythmia was even stronger (OR 10.2, 95% CI 2.7–38.4) [131]. The relation between high
blood pressure and CTS was maintained after adjustment to gender, BMI, and occupational
risk factors, expressed in the strain index [132]. It is also of interest that CTS might predict
future risk of coronary heart disease cardiac failure, atrial fibrillation, atrioventricular
heart block, and pacemaker implantation [133,134]. Most probably due to the shared risk
factors (dyslipidemia, impaired metabolism, and inflammation) and the effects of MetS
on the microvascular structure which lead to a reduction in the endoneurial blood flow,
oxygenation, and hypoxia of the median nerve.

5. The Impaired Muscle Contraction and Metabolism Related to Myosteatosis
5.1. Effects on Muscles and Tendons

There is a noticeably high prevalence of musculoskeletal disorders in T2DM. Depend-
ing on the criteria used to define the musculoskeletal problems, this prevalence varies
between 58.15−82.6% [135,136]. The flexor tendons of the hand have the maximum sensi-
tivity to the deleterious effects of diabetes which might explain the 14% prevalence of CTS
in diabetes [137,138]. The prevalence reaches 30% if polyneuropathy is present [138]. Fat
mass and fat: muscle mass ratio is positively associated with musculoskeletal pain; persons
with MetS (no matter the BMI) have more symptoms than those without MetS [139].

There are several explanations for this association. Specifically for the CTS, the altered
mechanics of the hand increases the pressure inside the carpal tunnel. The median nerve
flow is impaired when the intra-canal pressure exceeds 20–30 mmHg, which is 6–8 higher
than the normal pressure. During certain forced movements of the hand, the lumbrical
muscles enter the distal segment of the tunnel, while the flexor digitorum superficialis
might enter into the proximal segment [140]. The handgrip endurance and strength showed
a positive correlation with BMI and with central obesity [141–143]. The higher handgrip
strength and hand endurance allow for longer periods of maintaining flexion or extension
of the hand and increases the pressure through muscle slide inside the tunnel.

Systemic modifications related to MetS also contribute to the abnormality of the CT
components. In hyperglycemia, the AGE products bound to collagen alter the collagen
structure and disposal of the tendons and change the extracellular matrix [144,145]. These
modifications reduce the tendon stiffness and generate an earlier response to load and a
delay in repair. In an experimental model, Studentsova V et al. demonstrated a decreased
flexion angle of the metatarsophalangeal and an increased gliding resistance in obese mice
who lost insulin sensitivity [146].

Cultured tenocytes from high-fat diet mice accumulate oxLDL in the extracellular
matrix. It has been shown that the oxLDL initially increases the proliferation of human
tendon fibroblasts and afterward decreases the tendon content in collagen, generating
tendinopathy prone to tendon rupture [147]. Combined with the impaired tendon repair in
obesity these alterations will favor the contraction of the CT area [148].

The skeletal muscle structure is modified in obesity; there are fewer slow fibers (type
I) and more type IIb, fast, glycolytic–dependent ones, the fatty acid oxidation is reduced
and there is a loss of functional mass [149–151]. All these structural and functional changes
converge to low fatigue resistance [151]. The obesity effects on skeletal muscle have
been comprehensively revised elsewhere [152]. Briefly, the reduction of the 5′-adenosine
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monophosphate-activated protein kinase, mediated by insulin resistance and adiponectin
depletion together with the reduced activity of peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC-1a) and the myocyte enhancer factor 2 are the main contributors of
the switch towards the fast glycolytic types of fibers.

The ability of the muscle cells to oxidize fatty acids was assessed in muscle biopsies
from lean, obese, and from obese persons who lost significant weight. The expression
of several genes involved in lipid oxidation (pyruvate dehydrogenase kinase 4, carnitine
palmitoyltransferase I) and the activity of the PGC-1a were also determined. The results of
this study showed that lipid oxidation modified by obesity was not improved by weight
loss unless it was not doubled by endurance exercise training [150].

In MetS, the muscle loss could be related to the sex hormone-binding globulin
(SHGB), the principal plasma transporter of testosterone, oestradiol, and dihydrotestos-
teron. Low SHGB was found in central obesity and T2DM in epidemiological and genetic
research [153,154]. Low SHGB level was associated with an increase in myostatin, a member
of the transforming growth factor b and the major negative regulator of postnatal skeletal
muscle growth and an important inhibitor of muscle cells regeneration via the satellite cells [155].
Following the mechanical stress usually encountered in the etiology of the CTS, the deficit in
myofibrils requirement could be a relevant pathological link between MetS and CTS.

The myostatin level in obese persons was also inversely correlated with adiponectin [156].
Adiponectin is an adipokine secreted mainly in the subcutaneous fat. Subjects with higher
visceral fat and lower serum adiponectin have a significantly higher risk for the development of
MetS [157]. The effects of adiponectin on the skeletal muscle are both structural and functional.
When high levels are present, high capillary density and type I fibers and low density of fiber II
muscle fibers, and insulin sensitivity are recorded [158]. Adiponectin improves the contraction
ability through regulation of Ca++ handling inside the muscle fibers in studies with adiponectin
knockout mice [159]. In different studies, low adiponectin was directly or indirectly the handgrip
strength. In the second study, the correlation became positive only if muscle strength was divided
by body weight, showing that BMI is a significant influencer of this relation [160,161]. In the
attempt to harmonize these findings, some authors proposed a physiological range of adiponectin
as beneficial for muscle function, with a negative impact of either the low or the high levels, but
this assumption needs to be demonstrated [162].

5.2. Myosteatosis

Myosteatosis represents the infiltration of fat in the muscular tissue. There are two
main sites of this deposition: inside the myocytes (the intramyocellular lipid, IMCL) and
within the fascia surrounding skeletal muscle (lipid infiltration or the infiltrating muscle
adipose tissue, IMAT) between muscle groups. Aging, corticoid treatment, leptin deficiency,
underuse, and sex steroid deficiency are risk factors for myosteatosis [163]. Myosteatosis is
an ectopic fat deposition and insulin resistance is a consequence [164]. Insulin resistance
is correlated to the amount of lipid content inside the muscle groups. A more significant
IMAT was noticed in diabetic patients with similar lean mass [165].

The infiltration of muscles with lipids is an effect but also a cause of insulin resistance
in obesity. The high fatty acid delivery to the muscle and low fatty acid oxidation increases
the myocellular diacylglycerol content, activating the theta isoform of protein kinase C,
which phosphorylates the insulin receptor substrate 1 (IRS-1). This specific phosphorylation
of the insulin receptor decreases the activity of phosphatidylinositol 3-kinase and the GLUT-
4 transport [166]. Of notice, the uptake of glucose and glucose oxidation is reduced in
myofibrils of obese individuals, before the T2DM diagnostic criteria are met [167].

Fatty acid oxidation is part of a complex reprogramming of muscle metabolism. The
activity of carnitine palmitoyltransferase (CPT-1), the carrier of lipids inside the mithocondria,
and other mitochondrial processes are reduced. [168]. The impaired catabolism favors the
accumulation of toxic lipids intermediates and activates the caspases, promoting apoptosis. This
mechanism was described in transgenic mice with high expression of lipoprotein lipase and
substantiates the deficit in contractility of the skeletal muscles [169]. This could also explain the
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reduction in type I fibers, which tend to accumulate more IMCL than the fast-switch oxidative
ones [170]. Even in cases in which the number of type I fibers was not reduced, the shortening
and maximal velocity of these fibers were negatively influenced by the IMCL [171].

Satellite cells are a pool of heterogeneous stem cells to replace the deteriorated muscle
cells after microtrauma or strenuous exercise [172]. In the context of the repetitive, forceful
movements of the hand which predispose to the CTS, the satellite cells biology could
play a role in the ectopic fat deposition, as some of them might differentiate towards
preadipocytes. Hyperglycemic or ROS abundant environment, as encountered in MetS, favors
this differentiation [173,174]. Suppression of the differentiation to preadipocytes is possible
in vitro and represents a potential therapeutical development for myosteatosis [175,176].

The interfibrillar deposit is represented by adipocytes infiltrating between muscle
fibers. In large epidemiological studies, MetS was directly associated with sarcopenia [176].
Clinical data showed that IMAT affects the force of muscle contraction, initially attributed
to the change in number, length, and metabolism of the muscle fibers [164]. Further analysis
revealed that muscle force also depends on spatial arrangements (the pennation angle)
relative to the direction of action and that obesity increases the volume and the pennation
angle [177]. While sarcopenia is mainly an attribute of older age, the modifications of the
pennation angle seem to be more pronounced in younger adults [178]. A study on the rota-
tor cuff syndrome provided arguments for the effects of an excess IMAT on the pennation
angle of the contractile fibers. The unfavorable disposal of the myofibrils determined by
the IMAT resulted in a reduction in force production [179]. The lumbricals 1–2 are usually
unipennate, while lumbricals 3–4 are bipennate. During the finger flexion, lumbrical mus-
cles move into the CT. The higher the angle of the flexion, the deeper the penetration of
the lumbricals inside the tunnel is and the subsequent increase in pressure [180]. Even if
there are no studies specifically related to the modifications of lumbricals in obesity, it is
plausible, based on the data from other skeletal muscles, that this mechanism contributes
to enhanced compression and accelerates the evolution of the CTS.

Another element that leads to impaired contraction is muscle stiffness. Fatty models
of muscle were stiffer and generate lower specific forces independent of the lengths of
the fiber. Fat is stiffness than muscle and develops resistance to muscle shortening and
transverse bulging during contraction [181]. The magnitude of the effect depends on the
distribution of the fat inside the muscle mass, with the dispersed distribution being more
capable of reduction of the muscle force than a single fat clamp fat [181].

Myosteatosis begins early in sedentary lifestyle. An argument was provided from the
analysis of biopsies collected from healthy young subjects, before and after 3 days of muscle
deconditioning. Compared to normal activity, 3 days of inactivity, upregulated perilipin,
the marker of the intracellular lipid drops, and also the fatty acid-binding protein 4 in
muscle tissue. High expression of genes involved in adipogenesis and fibrogenesis were
also noted [182]. Comparative studies in twins with different levels of physical activity
showed significant differences in the IMAT area accompanying metabolic modifications
of the oxidative phosphorylation and lipid metabolism [183]. There are also suggestive
data about the initiation of a neurodegenerative process during a couple of days of bed rest,
with high expression of a neural cell adhesion molecule in the muscle fibers and affects the
neural conduction [184,185].

6. Conclusions

In this review, we have described mechanisms that link CTS and the abnormal distribution
of adiposity to illustrate the biology behind the epidemiological association. Gathering these
data provided a comprehensive picture of the various mechanisms initiated by the abnormal
deposition and function of the adipose tissue and the CTS. Even if this association between obesity
and CTS is well established, to the best of our knowledge, this is the first attempt to synthetize
the literature published about the physiopathological foundation of these epidemiological results.

Local mechanical factors, systemic inflammatory and oxidative stress, dyslipidemia,
and cross-talk between muscle and adipocyte tissue contribute to nerve compression,
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ischemia, and degeneration. The comprehensive literature, both experimental and clinical,
adds arguments about another negative effect of obesity, namely the musculoskeletal
impairment and, in particular, the CTS. Efforts to reduce the obesity epidemics will improve
not only cardio-metabolic health but will reduce the burden of the disability-free life
expectancy due to musculoskeletal issues.
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