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The habenula (Hb) is a small, evolutionarily conserved epithalamic structure implicated

in functions such as reward and mood regulation. Prior imaging work suggests that

Hb’s structural and functional properties may relate to treatment response in depression

and other mood disorders. We used multimodal MRI techniques to investigate the

potential involvement of Hb in response to subcallosal cingulate area deep brain

stimulation (SCC-DBS) for treatment-resistant mood disorders. Using an automated

segmentation technique, we compared Hb volume at baseline and at a subsequent

post-operative timepoint (4.4 ± 3.0 years after surgery) in a cohort of 32 patients who

received SCC-DBS. Clinical response to treatment (≥50% decrease in HAMD-17 from

baseline to 12 months post-operation) was significantly associated with longitudinal

Hb volume change: responders tended to have increased Hb volume over time,

while non-responders showed decreased Hb volume (t = 2.4, p = 0.021). We

additionally used functional MRI (fMRI) in a subcohort of SCC-DBS patients (n = 12)

to investigate immediate within-patient changes in Hb functional connectivity associated

with SCC-DBS stimulation. Active DBS was significantly associated with increased Hb

connectivity to several prefrontal and corticolimbic regions (TFCE-adjusted pBonferroni

< 0.0001), many of which have been previously implicated in the neurocircuitry of

depression. Taken together, our results suggest that Hb may play an important role in

the antidepressant effect of SCC-DBS.

Keywords: habenula, depression, deep brain stimulation, neuroimaging, neuromodulation, treatment biomarker

INTRODUCTION

The habenula (Hb) is a small, bilateral, and highly evolutionarily preserved structure situated in the
epithalamus (1, 2). Known to play a key role in the regulation of brainstemmonoaminergic systems,
Hb is broadly implicated in reward processing, social interaction, behavioral adaptation, circadian
rhythm, and sensory integration (2–11). It has also been linked to several neuropsychiatric
disorders, particularly depression and other mood disorders (3, 7, 9, 12–19). Animal studies
have shown that both Hb activity and metrics of reward processing and motivational behavior
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are altered in models of depression (2, 5, 20, 21). Volumetric
studies in humans have likewise detected altered habenula
volume in individuals with depression, bipolar disorder,
schizophrenia, and autism spectrum disorder (12, 19, 22, 23).

There is also evidence to suggest that Hb plays a role in
subserving treatment response in mood disorders. For instance,
Hb volume changes have been observed in bipolar disorder
(BD) and major depressive disorder (MDD) patients who
received pharmacotherapy but not in medication-naïve patients
(23). Other studies report response-related changes in Hb
functional connectivity in MDD, patients following treatment
with electroconvulsive therapy (24) or ketamine (24, 25).
Baseline structural and functional Hb connectivity patterns have
moreover been shown to predict response (75% sensitivity; 72%
specificity) to inpatient treatment in a large MDD cohort (26).

Deep brain stimulation (DBS) is a neuromodulatory technique
that employs surgically implanted electrodes to deliver carefully
titrated electrical pulses to a specific brain region to modulate
brain activity (27, 28). DBS targeting the subcallosal cingulate
area (SCC-DBS) is a promising treatment for a variety of
psychiatric disorders, including MDD, BD, and anorexia nervosa
(AN) (29–39). Evidence from positron emission tomography
studies indicates that SCC-DBS not only affects the focal target
region but alters activity across distributed circuits in the brain
(29, 30, 36). In this study, we employed multimodal MRI
techniques to investigate Hb involvement in clinical response to
SCC-DBS. Given the putative involvement of Hb in response to
antidepressant pharmacotherapy and ECT, we looked at baseline
and longitudinal Hb volume in a SCC-DBS cohort, exploring how
these variables might relate to clinical outcome. Additionally, in
a subcohort of SCC-DBS patients with post-operative functional
imaging, we explored how Hb functional connectivity is acutely
modified by stimulation.

METHODS

Design and Patients
This study involved analysis of both retrospectively and
prospectively acquired imaging data in psychiatric patients—
diagnosed with either major depressive disorder (MDD), bipolar
disorder (BD), or anorexia nervosa (AN)—who underwent SCC-
DBS therapy for management of depressive symptoms. The
eligibility criteria, electrode implantation methods, and post-
operative device programming procedure have been previously
described (30, 31, 35, 36). All patients received high frequency
(130Hz) stimulation with conventional pulse width settings (60–
90 µs). The amplitude/voltage of stimulation and configuration
of active electrode contacts were individualized for each patient.

The retrospective component of this study, conducted
following institutional research ethics board approval (University
Health Network ID: #15-9777), involved review of clinical charts
and available structural MR imaging. In keeping with prior
retrospective DBS imaging work conducted at our institution
(40), we included all patients for whom sufficient clinical data
[baseline pre-operative and 12-month follow-up scores on the
17-item Hamilton rating scale for depression (HAMD-17)] and
structural MR imaging (pre-operative high-quality scans with

complete brain coverage) were available, as long as they had
not previously undergone other neurosurgical interventions or
received confounding pre- or post-DBS neurological diagnoses.
Immediate and—where available—later post-operative structural
MR images meeting the aforementioned standards were also
collected. This permitted longitudinal analysis of post-DBS brain
volume changes in patients for whom ≥2 post-operative scans
were available.

The prospective component of this study was conducted
with institutional REB approval (University Health Network
ID: #14-8255) as part of a publicly registered clinical trial
(ClinicalTrials.gov ID: NCT03153670). Here, SCC-DBS patients
who were implanted with specific hardware and who were
actively using their devices were recruited for functional MRI
(fMRI) scanning.

HAMD-17 scores were employed as an index of depression
symptom severity. For each patient, percentage improvement
from baseline at the 12-month timepoint was computed. In
accordance with prior studies, patients with ≥ 50% HAMD-17
reduction were categorized as “responders” (29, 30, 35, 41).

MRI Acquisition
T1-weighted structural MR imaging (Supplementary Table 1)
was obtained in all SCC-DBS patients prior to and immediately
following DBS implantation to guide surgical planning and
confirm electrode placement, respectively (Figure 1A).
Additional post-operative structural images were obtained
at various later timepoints for clinical purposes or as part of
prospective fMRI scanning (see below).

Building on extensive institutional safety testing (43, 44) and
prior fMRI scanning in a large cohort of DBS patients (45, 46),
we also prospectively obtained 3 Tesla fMRI scans in a subset
of SCC-DBS patients following electrode implantation (1.5–13.5
years post-implantation). Only patients who were fully implanted
with specific Medtronic DBS hardware (3387 quadripolar
leads, 37601 Activa PC, or 37612 Activa RC implantable
pulse generators, and 37086 or 7482 extension wires) were
considered to be eligible for scanning. The full fMRI paradigm
employed here has been described previously (47). Briefly, resting
state fMRI (rsfMRI) sequences (Supplementary Table 2) were
acquired for each patient while their DBS device was turned on at
clinically defined “optimal” settings (DBS-ON) and while it was
turned off (DBS-OFF). These sequences, along with a structural
scan to facilitate image registration, were acquired in a singleMRI
session. After changing an individual’s DBS settings, we observed
a 5-min washout period before beginning the rsfMRI scan.

Habenular Segmentation and Volumetric
Analysis
Using the minc-bpipe preprocessing pipeline (https://github.
com/CoBrALab/minc-bpipe-library), all structural MR images
were iteratively corrected for non-uniformity, skull-stripped,
and rigidly aligned to Montreal Neurological Institute space
(MNI 152 ICBM 2009b NLIN asymmetric) without resampling.
Subsequently, the bilateral Hb (Figure 1B) was segmented
on every image using the automated Multiple Automatically
Generated Templates (MAGeT) brain segmentation algorithm
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FIGURE 1 | SCC-DBS and the habenula. (A) Sagittal and coronal structural

T1-weighted MRI slices from an exemplar patient showing the position of the

implanted bilateral electrodes. These are placed in the white matter bordering

the subcallosal cingulate cortex. (B) Coronal slices of the asymmetrical

MNI152 template (42) illustrating the location of the habenula and surrounding

structures. The habenula appears bright (hyperintense) on T1-weighted MRI.

DBS, deep brain stimulation; MNI, Montreal Neurological Institute; SCC,

subcallosal cingulate area.

(https://github.com/CoBrALab/MAGeTbrain) (12, 48). The
hippocampus and its subfields were also segmented bilaterally
using MAGeT in order to assess the specificity of any volumetric
findings. MAGeT segments structures of interest on individual
input images in a contrast-driven fashion via registration-based
label propagation. It has been shown to be robust for various
anatomical structures and subject populations in prior work
(12, 19, 48, 49). Specifically, five manually segmented high-
resolution atlases are propagated using 21 template images
selected from the input dataset, yielding a large number (5 ×

21 = 105) of candidate segmentations; these are then fused
using a majority vote approach to generate final individualized
segmentations. The use of the template library helps to reduce
atlas bias and also diminishes registration errors by averaging
(49). For quality assurance, each Hb segmentation label was
overlaid on the corresponding structural image with DISPLAY
(https://www.mcgill.ca/bic/software/minc/minctoolkit) and
visually inspected by two raters (JG and GJBE).

FMRI Functional Connectivity Analysis
Preprocessing of rsfMRI data was conducted with the BRANT
toolbox (http://brant.brainnetome.org/) (50). After removing the
first 10 volumes, each fMRI sequence was (i) corrected for head

motion using volume realignment; (ii) nonlinearly normalized to
MNI152 space via coregistration to the corresponding structural
scan; (iii) resampled to 3× 3× 3mm3; (iv) denoised for nuisance
variables using a multiple regression model (51); (v) filtered with
a temporal bandpass filter (0.01–0.08Hz); (vi) smoothed with a
6mm full width at half maximum gaussian kernel. In order to
account for the artifact created by the DBS leads and extension
wire (45), affected voxels in each individual fMRI image were
manually segmented with DISPLAY (https://github.com/BIC-
MNI/minc-tools). A group summation map incorporating these
individual artifact masks was then created in MNI space; any
voxels overlapping this summation map were excluded from
further analysis. Finally, the brain-wide functional connectivity
of the Hb was examined in each preprocessed rsfMRI image. To
do so, we computed Pearson correlations between the average
blood oxygen level-dependent (BOLD) time course within a
bilateral Hb seed (Supplementary Figure 2) and the BOLD time
course of all other voxels in the brain. The resulting connectivity
r-maps were then Fisher transformed to z-maps, in which each
voxel’s value reflected the strength of connectedness between that
voxel and the Hb.

Statistics
The relationship between Hb volume (as derived from MAGeT
segmentations) and clinical response status (responder vs. non-
responder) was investigated both at pre-operative baseline and
longitudinally following DBS implantation. Baseline Hb volume
was compared between responders and non-responders using
a linear model that controlled for each patient’s whole-brain
volume (Hb volume ∼ response status + whole-brain volume).
The interaction between patient-specific Hb volume change over
time and response status was investigated via a linear mixed-
effect model with patient as random intercept [Hb volume ∼

time × response status + (1 | patient)]. For the fMRI analysis,
changes in Hb functional connectivity between each patient’s
DBS-ON and DBS-OFF states were examined using voxel-wise
paired-tests. Threshold-free cluster enhancement (TFCE) (52)
and Bonferroni correction (pBonferroni < 0.0001) were applied to
the resulting t-map to correct for multiple corrections across the
brain. All statistical analyses were performed using R [version
3.6.1; https://www.r-project.org, including the lme4 (version 1.1-
21) and lmerTest (version 3.1.1) packages] and RMINC (https://
github.com/Mouse-Imaging-Centre/RMINC).

RESULTS

Overall, 86 SCC-DBS patients, 54 (62.8%) of whom were
responders, were included for retrospective analysis of baseline
pre-operative Hb volume (Table 1). From this number, 32
patients with serial post-operative structural MR images (80
images overall), 22 (68.8%) of whom were responders, were
included for retrospective volumetric analysis (mean duration
between baseline and latest post-operative images = 4.4 ± 3.0
years). Twelve of these patients, nine (75.0%) of whom were
responders, were also prospectively scanned with 3T fMRI in
both DBS-ON andDBS-OFF conditions (mean duration between
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TABLE 1 | Demographics, baseline clinical characteristics, and clinical outcome.

Cohort Age at surgery,

mean (SD),

years

Sex Baseline

HAMD-17

score, mean (SD)

Disease duration

at surgery,

mean (SD),

years

Number of

patients by

diagnosis (%)

Number of

responders (%)

HAMD-17

percentage

reduction from

baseline, mean (SD)

Baseline volume

analysis (n = 86)

43.8 (10.4) 61 f, 25m 24.5 (4.9) 22.2 (9.5) MDD: 65 (75.6) 54 (62.8) 53.6 (27.1)

BD: 4 (4.7)

AN: 17 (19.8)

Longitudinal volume

analysis (n = 32)

40.2 (10.7) 26 f, 6m 23.3 (5.9) 19.7 (7.2) MDD: 16 (50.0) 22 (68.8) 54.4 (30.4)

BD: 2 (6.3)

AN: 14 (43.8)

fMRI analysis (n = 12) 34.6 (10.1) 11 f, 1m 23.4 (5.4) 15.7 (7.0) MDD: 3 (25.0) 9 (75.0) 61.1 (26.3)

BD: 1 (8.3)

AN: 8 (66.7)

Responder status and HAMD-17 reduction reported as of 12 months post-operative follow-up. AN, anorexia nervosa; BD, bipolar disorder; HAMD-17, 17-item Hamilton rating scale

for depression; MDD, major depressive disorder.

surgery and fMRI acquisition = 5.6 ± 3.2 years). A study
flowchart is provided in the Supplementary Figure 1.

No significant difference in baseline pre-operative Hb
volume was apparent between eventual responders (mean =

30.5 ± 3.4 mm3) and non-responders (mean = 30.9 ±

4.9 mm3) (t = −0.8, p = 0.940). However, analysis of
longitudinal Hb volume change revealed a significant interaction
effect between volume change and response status, with
bilateral Hb volume increasing following SCC-DBS surgery in
responders but decreasing in non-responders (t = 2.4, p =

0.021; Figure 2). There was no significant difference between
longitudinal cohort responders and non-responders in terms
of age (responders: mean = 40.0 ± 10.3; non-responders:
mean = 40.7 ± 12.1) or proportion of females (responders:
81.8%; non-responders: 80.0%). No response-related differences
in hippocampal volume were detected, either at baseline
or longitudinally.

Comparison of fMRI-derived functional connectivity
maps between DBS-ON and DBS-OFF states uncovered a
number of brain regions whose connectedness to the Hb
was significantly (TFCE-adjusted pBonferroni < 0.0001) altered
by SCC-DBS stimulation. Specifically, active stimulation
appeared to increase Hb functional connectivity with several
prefrontal and corticolimbic regions, including rostral and
dorsal anterior cingulate cortex (ACC), posterior cingulate
cortex (PCC), medial prefrontal cortex, and dorsolateral
prefrontal cortex (dlPFC). In addition, increased and decreased
Hb connectivity was noted with superior temporal gyrus
and fusiform gyrus, respectively (Figure 3). Due to the
small number of patients included in the prospective fMRI
analysis (n = 12), we were unable to conduct a comparison
of habenular connectivity changes between responders
and non-responders.

DISCUSSION

The present study employed multimodal MRI techniques to
specifically investigate the involvement of the habenula (Hb)

in clinical response to SCC-DBS. Evidence supporting such an
involvement was observed in two ways: (i) longitudinal Hb
volume change following DBS treatment differed in SCC-DBS
responders compared to non-responders; (ii) active SCC-DBS
stimulation acutely modulated Hb’s functional connectivity to a
number of regions that are implicated in brain-wide depression
networks (54–57). Building on existing ECT, ketamine, and
standard pharmacotherapy imaging work (23, 25), these results
strengthen the notion that Hb plays an important role in
subserving clinical response to a variety of antidepressant
therapies. They also fit with preliminary evidence that DBS
directly targeting Hb itself may be a useful therapy for
depression (58, 59) and various other refractory neuropsychiatric
disorders (60).

Our MRI-based volumetric analysis demonstrated that
the trajectory of Hb volume change following SCC-DBS
differed according to individual treatment response. Specifically,
clinical responders (patients who experienced ≥ 50% symptom
reduction) tended to exhibit increased habenular volume over
time, while non-responders showed the opposite trend. Long-
term volume alterations have been previously demonstrated
in patients receiving DBS for various indications including
Parkinson’s and Alzheimer’s disease (61, 62), suggesting that
part of this intervention’s therapeutic effect is mediated by
neuroplastic changes. Indeed, a prior data-driven study—using a
different method for volumetric analysis—in this same SCC-DBS
patient population (55) identified other (mostly cortical) regions
whose trajectories of volume change over time corresponded to
patient outcome. The phenomenon of Hb volume changes in the
context of psychiatric interventions is also supported by existing
evidence. Work by Savitz et al. (23) indicates that antidepressant
and/or mood stabilizing pharmacotherapy can also lead to Hb
volume increases, suggesting that this may be a common marker
of clinical response.

Using 3T fMRI, we additionally observed that acute
SCC-DBS was associated with immediate changes in Hb
functional connectivity. These changes occurred within minutes
of switching between DBS-ON and DBS-OFF states, and
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FIGURE 2 | Response-related trajectories of change in habenular volume over time following SCC-DBS. (A) Outline of the habenula—as per automated MAGeT

segmentation—shown on two different coronal slices of the MNI152 template brain for illustrative purposes. (B) Changes in bilateral habenula volume over time

following SCC-DBS surgery are shown for each patient (follow-up is cut off at 2,500 days post-surgery for visualization purposes, although some post-operative

scans were acquired at later timepoints). The dotted lines indicate the change in habenular volume over time in individual patients, while the thick solid lines indicate

the estimated change in habenular volume over time for each cohort overall. The gray shaded zones surrounding the solid lines denote the 95% confidence interval. A

significant difference in trajectory of change was found in responders (≥50% HAMD improvement) compared to non-responders: habenula volume decreased over

time in non-responders but increased in responders (t = 2.4, p < 0.021 for interaction of time and response status). DBS: deep brain stimulation; HAMD-17: 17-item

Hamilton rating scale for depression; MNI, Montreal Neurological Institute; SCC, subcallosal cingulate area.

might be mediated by direct projections between Hb and
the cingulate cortex and medial prefrontal region, which
have been demonstrated in rodent tracer studies (63). Active
SCC stimulation generally increased Hb connectivity with
a number of depression-implicated brain areas such as the
anterior (specifically rostral and dorsal anterior cingulate
cortex, lying outside of the direct stimulation target area)
and posterior cingulate cortices, medial prefrontal cortex,
dorsolateral prefrontal cortex, superior temporal gyrus, and
fusiform gyrus. Many of these, including posterior cingulate
cortex (64), superior and middle temporal gyrus (65–68),
medial prefrontal cortex (69, 70), and fusiform gyrus (71), are
heavily implicated in depression and mood regulation. The
rostral and dorsal anterior cingulate activity in particular have
been identified as key predictors of pharmacotherapy success
(72, 73). Moreover, previous voxel-wise, data-driven fMRI
analyses of an overlapping SCC-DBS cohort detected significant
amplitude of low frequency fluctuations (ALFF; a measure
of spontaneous neural activity) alterations in dorsal anterior
cingulate as well as posterior cingulate when comparing DBS-
OFF andDBS-ON conditions (47). Dorsolateral prefrontal cortex
hypoactivity in depression is substantiated by the antidepressant
effect of repetitive transcranial magnetic stimulation (rTMS)
targeting this area (74–77). Interestingly, the degree of symptom

improvement following dorsolateral prefrontal cortex rTMS
has been linked to the functional connectivity between this
region and SCC (78). Overall, our observation that therapeutic
stimulation alters Hb connectivity with these mood-implicated
areas tentatively positions Hb as a key player in the brain-
wide network of depression (49–52). In particular, Hb may be
important for mediating the expression of anhedonia across these
circuits (79).

Limitations
This study identified significant post-DBS changes in Hb volume
that were not appreciated in a prior volumetric analysis of the
same patient cohort (55). This apparent discrepancy may be
explained by several factors, including different experimental
designs and different methods used to discern longitudinal
volume change. The former paper employed a data-driven,
hypothesis-free approach (deformation-based morphometry)
in which statistical tests were conducted at the voxel level,
necessitating stringent multiple comparison correction. By
contrast, the current study used the MAGeT segmentation
algorithm to specifically estimate bilateral Hb volume in an a
priori fashion. Finally, while our analyses are novel, they were
conducted in relatively small-to-moderately sized patient cohorts
(n= 32 for the volumetric analysis; n= 12 for the fMRI analysis).
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FIGURE 3 | Habenular functional connectivity changes with active SCC-DBS. Change in habenular functional connectivity between DBS-ON and DBS-OFF states.

Brain areas that showed a significant change in functional connectivity [TFCE-adjusted pBonferroni < 0.0001 (52)] between these states are superimposed on axial slices

of a high resolution, high contrast brain template (53) in MNI standard space (42). Red/yellow colors denote areas that were more functionally connected with the

bilateral habenula in the DBS-ON condition, while blue colors denote areas that showed less habenular connectivity in the DBS-ON state. Many of the areas whose

habenular connectivity changed with SCC-DBS are known to be part of the “brain-wide network of depression.” c., cortex; DBS, deep brain stimulation; DLPFC,

dorsolateral prefrontal cortex; g., gyrus; MNI, Montreal Neurological Institute; SCC, subcallosal cingulate area; TFCE, threshold-free cluster enhancement.

As such, the results outlined here are preliminary and should be
confirmed in future work.

To conclude, this study lends support to growing evidence
that Hb plays an important role in response to antidepressant
therapies (26), suggesting that both structural and functional
Hb features may contribute to neurobiological signatures of
response to SCC-DBS. In doing so, it also strengthens the case
for further exploration of DBS targeting Hb itself for refractory
psychiatric disorders.
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Supplementary Figure 1 | Study flowchart. Three separate analyses were

performed: a retrospective baseline volume analysis, a retrospective longitudinal

volume analysis, and a prospective fMRI functional connectivity analysis. DBS,

deep brain stimulation; FC, functional connectivity; SCC, subcallosal

cingulate area.

Supplementary Figure 2 | Habenular segmentation. (A) Segmented habenula

illustrated on orthogonal slices of the MNI152 brain. This bilateral habenula label

was used as a seed for the functional connectivity analysis. (B) Exemplar MAGeT

habenula segmentation illustrated in orthogonal slices. MNI, Montreal

Neurological Institute.

Supplementary Table 1 | Imaging acquisition parameters for structural

MR imaging.

Supplementary Table 2 | Imaging acquisition parameters for functional

MR imaging.
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