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Just over ten years have passed since the seminal Takahashi-Yamanaka paper, and while most attention nowadays is on induced,
embryonic, and cancer stem cells, much of the pioneering work arose from studies with embryonal carcinoma cells (ECCs) derived
from teratocarcinomas.This original workwas broad in scope, but eventually led theway for us to focus on the components involved
in the gene regulation of stemness and differentiation. As the name implies, ECCs are malignant in nature, yet maintain the ability
to differentiate into the 3 germ layers and extraembryonic tissues, as well as behave normally when reintroduced into a healthy
blastocyst. Retinoic acid signaling has been thoroughly interrogated in ECCs, especially in the F9 and P19 murine cell models, and
while we have touched on this aspect, this review purposely highlights how some key transcription factors regulate pluripotency and
cell stemness prior to this signaling. Another major focus is on the epigenetic regulation of ECCs and stem cells, and, towards that
end, this review closes on what we see as a new frontier in combating aging and human disease, namely, how cellular metabolism
shapes the epigenetic landscape and hence the pluripotency of all stem cells.

1. Introduction

Wehave just celebrated the 10th anniversary of theTakahashi-
Yamanaka report on induced pluripotent stem cells, where
introducing four transcription factors (Oct4, Sox2, Klf4,
and c-Myc) was sufficient to reprogram fibroblasts towards
pluripotent stem cells [1]. Although this work is a milestone
in itself, paving the way for research into furthering our
understanding of development and disease [2, 3], we must be
reminded thatmost of the investigations into embryonic stem
cells (ESCs) and cancer stem cells (CSCs) were preceded by
those that focused on teratomas and teratocarcinomas [4–10].
The history is attention-grabbing, as over the last two thou-
sand years teratomas have been attributed to everything from
lucky omens, consorting with demons and the devil, par-
ticipating in inappropriate sexual behavior, and incomplete

twinning [5, 11]. Depending on the source, we know the
word is derived from the Greek terato(s) [12], teras [13],
or teraton [14] meaning monster and oma from onkoma
or swelling [15] and was first reported in the mid-1860s
by Rudolf Virchow [16]. Teratomas, which are benign germ
cell tumors that contain cells derived from one or more of
the three germ layers, develop spontaneously in the testes
of the 129 family of inbred mouse strains, or they can be
induced in adult mice when the genital ridges of embryos
or early embryos themselves are ectopically transplanted into
the testes or kidney [17, 18]. How teratomas develop has
been the topic of much debate and is well beyond the scope
of this review. However, we would be remiss if we did not
note the recent findings that Cyclin D1, a target of canonical
Wnt/𝛽-catenin signaling, plays a key role in predisposing
germ cells to switch their developmental potential to form
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teratomas containing somatic tissues [19]. These teratomas
represent “an intersection of pluripotency, differentiation
and cancer biology” [20]. Teratocarcinomas contain early
embryo-like cells called embryonal carcinoma cells (ECCs)
that share three distinct features: (1) they are malignant; (2)
they can differentiate into any of the three germ layers or
extraembryonic tissue; and (3) they can develop normally
when injected into the blastocyst [21, 22]. Although ECCs
cells can be propagated following transfer of individual cells
[23], the ability to culture them in vitro and their loss of
“multipotentiality” [24] set the stage for the studies that fol-
lowed. Pioneering work by Ralph Brinster, Richard Gardner,
Michael McBurney, Beatrice Mintz, Virginia Papaioannou,
and many others recognized the importance of ECCs, and
their ability as noted by François Jacob, to adopt a normal
fate when injected into host mouse blastocysts [25, 26]. In
those early days, many were not fully aware that the attributes
of these in vitro model systems would be so instrumental in
contributing to studies that delved into trying to understand
how ESCs and CSCs remain in a pluripotent state and how
intrinsic and extrinsic factors reverse the ability of these
cells to self-renew to allow them to differentiate into new
lineages. In fact, the suggestion that the genetics of ECCs
would uncover genes involved in stem cell self-renewal and
pluripotency [27] only serves to underscore the importance
of ECC lines. These lines have been and continue to be
studied extensively [28–31], and although similarities and
differences exist between them, as well as between ECCs
and those representative of ESCs and CSCs, this review will
focus almost exclusively on two ECC lines from mouse (F9
and P19) and one from human (NTERA-2) and how various
pathways influence their pluripotency state. In light of the
considerable number of studies generated using these lines,
especially in regard to differentiation, which warrants its own
review and has been presented in part for P19 cells [32], we
have purposely concentrated our efforts to highlight what
has been learned about self-renewal and pluripotency from
ECCs, and in some cases how these studies have extended to
ESCs and CSCs.

2. Embryonal Carcinoma Cells

The utility of ECCs as a proxy for the study of early
mammalian development and neoplasia was recognized long
before we began asking questions regarding pluripotency and
self-renewal [4, 33, 34]. Not only were these early studies
instrumental in uncovering many of the in vivo mechanisms
that govern development [35], but also they led to the widely
accepted theory on the process of cancer development [31].

2.1. F9 Teratocarcinoma Cells. F9 teratocarcinoma cells, one
widely used mouse ECC line developed from another ter-
atocarcinoma [36], give rise to tumors consisting almost
exclusively of undifferentiated cells [21, 37, 38]. F9 cells exhibit
a pseudodiploid karyotype composed of 38 acrocentric and
1 metacentric chromosomes, and a G1 and S phase of
approximately 8 hours [37]. Once considered nullipotent,
as they have lost the ability to differentiate spontaneously
[37], studies would later reveal that F9 cells are capable

of differentiating into extraembryonic endoderm-like cells
[39, 40], and evidence would indicate that they share many
characteristics of ESCs [41]. Subsequent studies reported that
F9 cells can be induced by all-trans retinoic acid (RA) [42], a
natural derivative of vitaminA (retinol), thus setting the stage
for a plethora of studies to follow [43].

2.2. P19 Cells. P19 cells, another mouse ECC line, were
derived from a 7.5-day post coitum embryo that was trans-
planted into the testis of an adult mouse [44–46].These cells,
which represent a population at a later stage of development
than the F9 cells [38], are pluripotent and resemble epiblast
stem cells. P19 cells have a male euploid karyotype (40
and XY), and much like F9 cells are considered nullipotent
[47]. P19 cells can differentiate into neurons, glial cells, and
fibroblasts when treated with RA or into skeletal and cardiac
muscle when treated with DMSO [32, 48–52]. While many
studies have shed light on the similarities between F9 and
P19 cells, details would eventually emerge to indicate that
differences in gene regulation allow them to break from
pluripotency and differentiate [53–55]. For instance, F9 cells
have greater reprogramming capabilities than P19 cells, and
this is probably due to differences in the levels of the master
pluripotency gene Sox2.

2.3. NTERA-2 Cells. While most studies with ECC lines have
focused on those of mouse origin, the NTERA-2 cell line is
a human ECC line first established in the 1980s from a tes-
ticular teratocarcinoma from a 22-year-old Caucasian male
[56]. NTERA-2 cells exhibit a hypotriploid karyotype with
a modal chromosome number of 63 [57]. NTERA-2 cells,
like mouse ECCs, respond to RA and differentiate towards
a neural lineage [5, 58–67]. Furthermore, NTERA-2 cells
differentiate into nonneural epithelial cells when treated with
bone morphogenic protein-2 (BMP-2), whereas 27X-1 cells,
another human ECC line, differentiate into extraembryonic
endoderm when exposed to BMP-2 or RA [68, 69]. It is
obvious that differences within ESCs [70] and ECC lines exist
(Table 1); however, one unifying concept is in their ability to
respond to RA, which leads to a loss of pluripotency factors
resulting in differentiation towards certain lineages.

3. Retinoic Acid: Lessons from the Inducer

RA is a potent teratogen and an important endogenous reg-
ulator of proper and extraembryonic endoderm [71]. RA sig-
naling has many diverse roles in the differentiation of ECCs
[72, 73], most often leading to extraembryonic endoderm-
like lineages, which in itself has led to the derivation of the
extraembryonic-like ECC lines PYS2 and END2 cell [74].
RA-induced differentiation is accompanied by changes in
gene expression in F9 cells [75–80], P19 cells [80, 81], and
NTERA-2 cells [82]. Genes on this exhaustive list include
c-Myc [83, 84] and Int-1 (later renamed Wnt1), which have
become the focus of many subsequent cancer-related studies.
In the case of c-Myc in P19 cells, its expression following RA
treatment follows two transient increases at 3 h and 48 h, and
then it drops below basal levels by 144 h [83]. In contrast,
c-Myc expression in F9 cells declines with RA-induced
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Table 1: Key features of ECC lines.

F9 cells P19 cells NTERA-2 cells References
Origin Mouse Mouse Human [37, 38, 57]
Colony morphology Compact Flat Flat [37, 38, 57]

Global methylation Hypomethylated Hypomethylated Hypermethylated [234, 248,
255]

Stemness genes
Oct4, Sox2,

Nanog, Klf4, Rex1,
c-Myc

Oct4, Sox2,
Nanog

Oct4, Sox2, Nanog,
Dnmt3b, Fgf4, Rex1,

Dppa5

[58, 75–
77, 81, 82]

LIF requirement No No No [122, 149]

RA-responsiveness Yes Yes Yes [37, 38, 59,
72]

Reprogramming efficiency High Low Low [41]
Teratoma formation High High High [22, 26]
Chimera contribution High High No data available [22, 26]
X chromosome status X:0 Male Male [37, 38, 60]

differentiation [78] comparable to ESCs [85]. We now know
c-Myc is downstream of the Wnt targetome [86], but it was
the discovery of Wnt1 itself that was exciting to many in the
scientific community as it linked Drosophila embryogenesis
and theWingless protein to protooncogenes and cancer [87–
89]. Later reports have highlighted Wnt1 and other Wnt
genes expression during RA-induced differentiation in P19
cells [90–92], F9 cells [78, 93, 94], and NTERA-2 cells [95,
96]. These early discoveries led to the assembly of complex
cell signaling pathways and gene networks linked to ECC
differentiation, and these were to be the platform that many
have since used to identify the crosstalk and autoregulatory
loops that exist within and between ECCs and ESCs [97–103].
It is interesting that while many of these studies revealed that
RA must repress certain genes during differentiation, little
discussion at the time linked these genes to self-renewal and
stemness in ECCs. In fact, despite the irony that stemness
genes including c-Myc [83, 104–107], Oct3/4 [108–110], and
Sox2 [111–113] had already been identified in ECCs, their
specific roles in self-renewal and pluripotency would not be
elucidated until later [27, 114]. Meanwhile, studies showing
expression of genes such as K-fgf and Hst-1 [115–117], TGF𝛼,
and LAMIN A/C [117–121] provided the framework that
gene activity was sufficient and necessary to keep ECCs
in the pluripotent state. Two genes linked to stemness
and pluripotency are Rex1 (Zfp42), encoding a zinc finger
transcription factor, and Ccnd1, encoding Cyclin D1. Rex1
expression is not detected in undifferentiated P19 cells [122–
124]; however, it is induced when Nanog is overexpressed
[122, 125]. Similarly, Nanog controls the expression of Ccnd1,
as seen when Nanog is depleted or overexpressed in P19 cells
[125] and by retinoids in NTERA-2 cells, which promotes the
ubiquitination and degradation of Cyclin D1 [67]. In addition
to these studies and others involving c-Myc [104, 126–130],
Oct4 [110, 131–133], and Sox2 [111, 112], further evidence that
pluripotency genes must be developmentally regulated in the
early embryo came from reports that Nanog [134, 135] and
Foxm1 [136] are downregulated in P19 and F9 cells in response
to RA treatment. Foxm1, a member of the Forkhead box of

transcription factors, is an interesting example as we now
know it plays pivotal roles in cell proliferation, differentiation,
and self-renewal and acts downstream of canonical Wnt/𝛽-
catenin signaling [137, 138]. This downregulation of Oct4,
Nanog, and Sox2 is also seen in NTERA-2 cells treated with
RA [139], which together with reports on the effects of
deregulating c-Myc expression [140] and ZNF536, encoding
a novel zinc finger protein [141] in F9 and P19 cells, respec-
tively, underscores the importance of activating, regulating,
and maintaining self-renewal and pluripotency genes in the
undifferentiated state. Thus, while much of the focus was
initially on ways to differentiate ECCs, subsequent efforts
were underway to identify pluripotency factors that would
attenuate differentiation, thereby maintaining stemness.

4. Pluripotency Factors and
Signaling Crosstalk

4.1. Leukemia Inhibiting Factor (LIF). Differentiating inhibit-
ing activity (DIA)/leukemia inhibiting factor (LIF) produced
by feeder cells or medium conditioned by Buffalo rat liver
cells can block differentiation and promote stemness [124,
142–144]. Interestingly, ECCs harbor components responsible
for LIF signaling [145, 146] and can secrete factors that
support self-renewal of ESCs, but, unlike ESCs, they can
maintain pluripotency in the absence of LIF or feeder layers
[124, 147]. LIF belongs to the IL-6 family of cytokines, which
contain IL-11, oncostatin M, ciliary neurotrophic factor, and
others [148], all of which can signal through the JAK/STAT3
(Janus Kinase/Signal Transducer and Activator of Tran-
scription) pathway. LIF activation in P19 cells [149, 150]
blocks endodermal andmesodermal differentiation [114] and
potentiates RA-induced neural differentiation [144, 151]. LIF
has no apparent effect on NTERA-2 cells [114], and although
there was early debate as to whether or not it had an effect
on F9 cells [152, 153], recent evidence indicates that it blocks
the ability of F9 cells to differentiate towards an extraembry-
onic lineage when induced by RA [154]. Moreover, STAT3
in F9 cells is regulated by Src-homology protein tyrosine
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Figure 1: LIF signaling maintains ECCs pluripotency. In pluripotent ECC lines, LIF binds to the LIF receptor (LIFR) and gp130 recruiting
Janus Kinase (JAK), which in turn phosphorylates and activates Signal Transducer and Activator of Transcription 3 (STAT3). Phosphorylated
STAT3 homodimerizes and translocates to the nucleus promoting the expression of pluripotency genes encodingOCT4, SOX2, andNANOG.
During differentiation, LIF levels decline substantially leading to decreased phosphorylated STAT3, which is augmented by the tyrosine-
specific protein phosphatase SHP-1. The decline in active STAT3 reduces the expression of pluripotency genes.

phosphatase-1 (SHP-1), leading to its dephosphorylation and
subsequent decrease in Nanog expression, which, as noted
by the authors, restricts the expansion of the epiblast at
implantation (Figure 1) [155].

4.2. Nanog. The homeodomain transcription factor Nanog
plays an essential role in maintaining stem cell pluripotency
and self-renewal. The Nanog promoter is well characterized,
and although it is known to contain Oct4 and Sox2 binding
sites, the early studies were contradictory with the report
that Oct4 acts alone to induce Nanog expression [156], while
another noted that both Oct4 and Sox2 were required [157].
Nanog overexpression in F9 cells maintains them in the
undifferentiated state, as evident by the upregulation of Oct4
and SSEA-1 and downregulation of markers of differentiation
including Gata-6, Gata-4, Hnf1𝛽, and LamininB1 [135]. The
Nanog promoter contains one negative and two positive cis-
regulatory elements that are active in F9 and ES cells, but only
one positive element is active in P19 cells [134]. This example
not only underscores the complexity of Nanog regulation,
but also highlights the differences that exist between ECC
lines. Negative feedback loops that regulate ESC pluripotency
involving Oct4, FoxD3, and Nanog are known [158]. Fur-
thermore, the presence of one of these loops whereby the
Nanog promoter is negatively regulated by its own ectopic
expression in ECCs would indicate that the pathway is even
more complex than first thought [159]. Similarities in the
pathway controlling Nanog expression exist between F9 and
P19 cells, but because their Nanog levels differ, as well as Sox2,
so too does their pluripotency state [41, 134]. Nevertheless,
Nanog in ECCs is regulated by a Sox2 : Oct4 ratio [159] as
well as the interplay between Oct4 and Rex1, which are both

involved in the maintenance of self-renewal downstream of
Nanog [125].

4.3. Oct4. The crosstalk and feedback within proteins
encoded by self-renewal and pluripotency genes are high-
lighted by the regulation of Oct4, considered as the master
regulator of totipotency [160]. Oct4 has many roles in gene
regulation, and its own positive and negative regulation
is the topic of many studies. For instance, Nspc1, a poly-
comb protein and a transcriptional repressor that is highly
expressed in undifferentiated P19 cells, directly activates the
Oct4 promoter [161], which in itself gets negatively regulated
following RA treatment [78, 108, 162–165]. Once Oct4 is
transcribed and translated in F9 cells, Rex1 expression is
upregulated [166, 167], and similarly, in P19 cells, the Rex1
promoter is activated by either Oct4 or Sox2 when Nanog
is overexpressed [122]. The Rex1 promoter is also activated
in differentiated P19 cells when Oct4 is overexpressed [166].
However, while itmay seem contradictory, high levels ofOct4
downregulate Rex1 expression in F9 cells [166], which again
highlights the importance of the cellular environment and
context.

4.4. Wnt Signaling and miRNAs. Although studies indicate
that Wnt signaling suppresses pluripotency and promotes
differentiation, Oct4 overexpression in P19 cells suppresses
canonical Wnt signaling [168]. Nevertheless, canonical Wnt
signaling is linked to Oct4 and pluripotency as evident by the
fact that the downregulation ofOct4 expression occurs when
T-cell factor 3, Tcf3, serving as a transcriptional repressor
in the absence of 𝛽-catenin, is overexpressed in F9 cells
(Figure 2) [169]. This supports what was described earlier
where Wnt is induced and Axin, a negative regulator of
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Table 2: Trend of select miRNAs in P19 and NTERA-2 cells.

miRNA name P19 NTERA-2 References
P D P D

miR-9 − + − + [183]
miR-124 − + − + [178, 179, 183]
miR-125 − + = = [179]
miR-302 + − + − [179, 180, 183]
Let-7 − + − + [181]
P: pluripotent ECCs; D: differentiated ECCs
+: increase, −: decrease, and =: no change in levels.
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Figure 2: The dual role of WNT/𝛽-catenin signaling ECCs stemness and differentiation. In the absence of WNT ligand, 𝛽-catenin is
phosphorylated and degraded by the proteasome; subsequently, TCF3, a transcriptional repressor of WNT target genes, translocates to
the nucleus and upregulates pluripotency genes. TCF3-dependent upregulation of OCT4 allosterically binds to TCF/LEF, preventing 𝛽-
catenin from binding, which attenuates WNT signaling and differentiation. In the presence of WNT, AXIN is downregulated leading to
the dissociation of the destruction complex, which results in the accumulation of 𝛽-catenin in the cytoplasm and subsequent translocation to
the nucleus where it binds to TCF/LEF proteins. As a result, WNT target genes including Dab2, Ccnd1, and c-Myc are upregulated leading to
cell differentiation. 𝛽-catenin-TCF/LEF interactions also result in the increase inmiR-9 andmiR-302 expression, which in turn downregulate
the expression of pluripotency genes.

canonical Wnt signaling, declines in RA-treated F9 and
P19 cells [88, 91–93, 170]. Another level impacting pluripo-
tency and stemness involves microRNAs (miRNAs), which
together with Oct4, Sox2, and Nanog are regulated positively
by Wnt signaling (Figure 2) [171]. In one case this regulation
involves the mir-302 gene, which encodes a cluster of 5
microRNAs (miRNAs) that are highly expressed in undif-
ferentiated NTERA-2 cells and P19 cells [172, 173]. Oct4 can
bind directly to miR-302 and upregulate its expression [171],
while canonical Wnt signaling regulates mir-302 expression
involving 3 TCF/LEF binding sites. In the latter, knocking
down 𝛽-catenin leads to decreased expression of mir-302,
whereas knocking down Tcf3 produces the opposite effect
[174], which promotes the expression of pluripotency genes
in F9 and P19 cells [154, 175]. Other miRNAs play a role
in regulating stemness and differentiation of mouse and
human ECCs (Table 2), including miR-9, whose expression
not only increases with differentiation, but also serves to
repress Sox2 in NTERA-2 cells [176]. Other examples include

miR-124, where elevated levels in P19 cells promote neuronal
differentiation by suppressing Ezh2, a histone methyltrans-
ferase, which represses genes involved in neurogenesis [177].
While many miRNAs are known to impact the ability of
ECCs to remain pluripotent [172, 177–182], other modes
of regulation, including that by PI3K/AKT signaling, can
influence pluripotency and stemness.

4.5. PI3K/AKT Signaling. The PI3K/AKT signaling pathway
is well known to have a key role in cell growth, proliferation,
metabolism, and survival [183]. This list can be added to
as RA and the negative regulation of the Oct4 promoter
are accompanied by an increase in AKT signaling in F9
cells [184] and the suppression of PTEN in P19 cells [185].
Furthermore, the phosphorylation of Oct4 and Klf4 by
AKT leads to their degradation by the ubiquitin-proteosome
system, which promotes the loss of pluripotency in F9 cells
[186]. Although RA was previously described as an inducer
of differentiation, its presence promotes AKT-dependent
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Figure 3: Global methylation and acetylation pattern of ECC lines during stemness and differentiation. Pluripotent ECCs are methylated and
deacetylated yielding a low expression profile of differentiation markers. The dimerization of Jun Dimerization Protein 2 (JDP2) results in
the recruitment of Histone Deacetylase 3 (HDAC3), which interacts and inhibits Histone Acetylases (HATs) from activating differentiation
genes. Pluripotency is lost when DNA methyltransferase 1 (Dnmt1) expression and activity is reduced, resulting in the demethylation
of differentiation-inducing genes including Vimentin, Laminin B1, Collagen IV, and Endo A. Similarly, HDAC activity is reduced as the
p300 complex displaces the JDP2/HDAC3 complex, resulting in the recruitment of HATs and initiation of c-Jun transcription leading to
differentiation.

phosphorylation of the chromatin remodeler SATB1, which
binds to SOX2 thereby preventing it from associating with
Oct4 to maintain pluripotency. In addition, and contrary to
what was described earlier [186], active AKT signaling in P19
cells induces a transient increase in Nanog expression [187],
which seems counterintuitive because AKT inhibits pluripo-
tency markers. However, it is more complex than this as Oct4
in ECCs can bind to the human AKT1 promoter, and this is
dependent on its phosphorylation state controlled by AKT
itself [188]. In fact, these authors found that the stabilization
of Oct4 through AKT phosphorylation not only promotes its
dissociation from the AKT1 promoter, but also facilitates its
interaction with Sox2 to upregulate Nanog expression. Thus,
PI3K/AKT signaling is anothermeans by which pluripotency
is dictated in ECCs.However, othermechanisms downstream
of signaling pathways such as epigenetic modifications also
play a role in regulating stemness and differentiation [189].

5. Epigenetic Modifications

Understanding how global changes in gene expression are
required to maintain ECCs in a pluripotent state has been a
daunting task, one that is nearly eclipsed when considering
the roles epigenetic modifiers and chromatin remodelers
have on regulating these genes. The complexity imposed
by these control mechanisms, especially as they relate to
ESC pluripotency and differentiation, is evident by the many
recent reviews and their historical account of the field
[190–200]. While many epigenetic modifications exist, we
will focus on the most common: DNA methylation and
histone modifications by acetylation, which intricately link
pluripotency genes andmicroRNAs in germ cell tumor devel-
opment [201–208] to cancers and other diseases [209–215].
The molecular details of how these modifications occur and

the effects imparted by these changes are presented elsewhere
[193, 216–219].

5.1. DNA Methylation. Methylation of the fifth cytosine of
CpG islands on the promoter of various genes is conserved
in Eukaryotes [220]. Global methylation patterns in somatic
cells are relatively stable and well characterized (Figure 3);
however, DNA methylation or demethylation is tightly reg-
ulated and highly dynamic during embryo development [221,
222].While multiple studies have highlighted the importance
of DNA methylation in the maintenance of stemness and
differentiation in ESCs [223–233], some of the first reports
were with ECCs.

5.1.1. Methylation, Stemness, and Differentiation. These stud-
ies used 5-Azacytidine, which can induce differentiation
of various ECCs by inhibiting DNA methyltransferases
(DNMTs), though surprisingly not in F9 cells [234–237]. We
have seen that F9 cells treated with a DNMT inhibitor do
not differentiate and undergo apoptosis instead (unpublished
data), which corroborates an earlier report [238]. Therefore,
global demethylation in F9 cells is not sufficient to induce
differentiation, even though it results in a demethylation
profile like that seen following RA treatment [236, 239–241];
however, gene-specific demethylation pattern might vary.
The methylation status of any gene can be misinterpreted,
as in the case of those involved in the maintenance of
pluripotency in F9 cells, which are hypomethylated and
therefore transcriptionally active, while those induced with
RA, including Vimentin [242], Laminin B1 [243], Collagen IV
[244], and Endo B [245], are hypermethylated making them
inactive. Furthermore, the promoter of theThrombomodulin,
a marker of differentiation, gene shows a similar methylation
pattern regardless of the differentiation status of the F9
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cells. Thus, other mechanisms such as chromatin remodeling
may also play a role in gene expression [246]. We know
P19 cells treated with RA differentiate towards a neuronal
lineage [49, 51], and this is marked by global demethylation
[247], which is similar to what is seen in F9 cells treated
with RA [239]. A reduction in DNMT protein levels and
activity leads to reduced global and gene-specificmethylation
involved in differentiation seen in other ECCs [237, 239, 248,
249]. Specifically in P19 cells, the AP-1 regulatory site in the
Dnmt1 promoter is heavily methylated in the undifferentiated
state [250]. When challenged by 5-Azacytidine, CpG islands
upstream of the AP-1 site are demethylated leading to the
recruitment of the Jun/Fos complex leading to expression of
Dnmt1, which in turn methylates those same sites leading
to transcriptional repression [250]. In fact, the methylation
of regulatory regions in the Dnmt1 promoter acts in a
feedback mechanism, as sensors for the methylation capacity
of the cell [250]. While downstream changes to methyla-
tion profiles have been linked extensively to pluripotency
potential, much less attention has been given to upstream
regulators. Early work has emphasized the importance of
RAS and its downstream effectors [54, 251] on the role
in global and site-specific demethylation by inducing the
phosphorylation and activation of c-JUN, which binds to
the Dnmt1 promoter, inducing its expression and leading to
differentiation [252]. These examples of consistent methy-
lation trends, differences in DNMT activity, and activation
of signaling pathways reveal the complexity underpinning
the maintenance of stemness and differentiation in ECCs.
Although much has been learned regarding the influence
of DNA methylation on genes involved in differentiation,
we know that similar mechanisms are in place for self-
renewal. For instance, Oct4 and Nanog promote pluripo-
tency in ESCs and ECCs, but it is important to note that
the expression of these genes is regulated by methylation.
The Nanog promoter in undifferentiated NTERA-2 cells is
methylated 200 bp upstream of Oct4/Sox2 binding domains
[253]. Similarly, themethylation status of the c-Myc promoter
in F9 cells dictates the levels of the protein, which are high
in the undifferentiated state but fall precipitously due to RA
treatment [130]. This is recapitulated in human ESCs where
high c-Myc levels maintain pluripotency in the absence of
LIF/STAT3 [254]. Undifferentiated P19 cells maintain high
levels of Oct4 expression by promoting a low methylation
profile on the Oct4 locus [255, 256]. Taken together, these
studies would indicate that the ratio of demethylation-to-
methylation dictates the expression of pluripotency genes
in ECCs, and thus the maintenance of stemness [255, 256].
If so, this role of methylation status could account for the
heterogeneity in pluripotency as others and we have noted in
ECCs populations.

5.2. RA Signaling and Methylation. While overwhelming
evidence was presented earlier that RA induces ECCs differ-
entiation, it is necessary to devote a brief description on how
RA and retinoid synthesis and transport to their RAR/RXR
are linked to the methylation status of promoters. During
differentiation, the cellular RA binding protein 1 (CRABP-1)
binds to RA and delivers it to RAR/RXR sites on the DNA

of target genes [257]. RA induces CRABP-1 in P19 and F9
cells, yet the methylation pattern of its promoter remains
unchanged, even in the presence of 5-Azacytidine, which
does not induce CRABP-1 expression [258]. Conversely, a
methylated Histone H2B variant (TH2B) transfected into F9
cells gets demethylated, signifying that there is active histone
gene expression in the undifferentiated state [259]. TheTh2b
gene, like many other housekeeping genes, maintains a low
methylation profile, which is largely due to the protection
of CpG islands imparted by the SP1 transcription factor
[260, 261]. Whereas DNA methylation can play a role in
transcriptional repression, the activation of the H-2K gene
during differentiation is associated with hypermethylation,
and this is evident from studies with 5-Azacytidine, which
attenuates H-2K expression in F9 cells [262]. Since DNA
methylation is not easily reversed, gene regulation may be
better controlled temporally by the more labile and reversible
modifications made to histones.

5.3. Chromatin Remodeling. Eukaryotic DNA with all its
modifications is folded into nucleosomes, which are made
up of histone octamers. Since resolving the nucleosome
structure [263, 264], many histone modifications have been
discovered [265–268]. These discoveries have provided us
with a great understanding of how changes to chromatin
availability directly or indirectly regulate gene expression.
Although histone modifications by methylation are known
to play a role in chromatin availability [269], we will focus
on acetylation modifications in ECCs. In one example, the
modification involves histone acetylation of lysine residues
via histone acetyl-transferases (HATs), which weaken DNA-
histone interactions allowing several proteins to dock and
initiate transcription.

5.3.1. Histone Modifications, Stemness, and Differentiation.
P19 cells maintained in an undifferentiated state have high
levels of nonacetylated histones (Figure 3), but this declines
with RA induction [270, 271]. A similar situation occurs in
NTERA-2 cells, where regulatory regions of Oct4 and Nanog
in differentiated cells are hypoacetylated, leading to the closed
chromatin conformation and reduced expression [272]. The
expressions of Oct4 and Nanog are influenced by the knock-
down of the Brahma related gene, Brg1, encoding a protein
present in Brg-containing Switch/Sucrose NonFermentable
(SWI/SNF) complexes [273]. In P19 cells, the involvement
of Brg1 with the promyelocytic leukemia protein maintains
an open chromatin conformation of the Oct4 gene [274],
whereas RA induces silencing and chromatin remodeling by
receptor-interacting protein 140 [72, 274]. This silencing and
remodeling displaces Brg1 for the Brahma- (Brm-) containing
SWI/SNF complex on both the Oct4 and Nanog promoters,
thus silencing transcription [275]. Although comparable con-
ditions exist in ESCs [276] this is not a universal phenomenon
as histone acetylation near theNestin locus accompanies RA-
induced differentiation in P19 cells [277]. It is interesting
to note that RAR−/− F9 cells exhibit increased expression
of Slc38a and Stmn2, which is normally associated with
differentiated F9 cells due to hyperacetylation, suggesting
that RA signaling might have a role in regulating histone
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modification [278]. Modifications by histone deacetylases
(HDACs) are also intricately linked to RA signaling. HDACs
antagonize HATs, as they remove acetyl groups from lysine
residues, a modification that restores their positive charge
and leads to chromatin stability that is largely associated
with transcriptional repression. Jun Dimerization Protein
2 (JDP2) maintains stemness in F9 cells by serving as a
transcription factor not only to recruit HDAC3, but also to
have it interact and inhibit HATs [279]. During RA treatment,
however, the p300 complex displaces JDP2/HDAC3 leading
to acetylation, initiating c-Jun transcription and differentia-
tion [280, 281]. Other examples of this regulation are seen
with HDAC3 in P19 cells, which inhibits the autoactivation
of the neuronal transcription factor NeuroD [270], or in
studies using HDAC inhibitors, which show reduced Nanog
expression in undifferentiated P19 and F9 cells, and Esrrb,
Klf2, and Rex1 in ESCs [282]. Differentiated ECCs treated
with an HDAC inhibitor and showing elevated pluripotency
markers would suggest that HDAC activity could be largely
regulated by the stemness state of a cell [282]. These reports
andmany others document the importance ofHDACs in reg-
ulating chromatin availability, but the fact they also physically
interact with pluripotency markers including Sox2 [282],
Oct4 [283], andNanog [284] reminds us of their involvement
at other levels. In addition to the control conveyed directly
by HDACs, chromatin remodeling of pluripotency genes
is facilitated by other factors. For instance, in RA-induced
differentiation of P19 cells, Nanog repression is the result of
Foxa1, a member of the forkhead/winged-helix gene family
induced by RA, to recruit the transcriptional corepressor
Grg3, which belongs to the Gro/TLE/Grg family [285]. This
potentiates subsequent recruitment of HDACs, together with
Foxa1, to deacetylate histone 3 and repress the Nanog locus
[285]. This type of multiplex control is not just reserved for
Nanog. In differentiated P19 cells, Oct4 expression initially
increases, and in cooperation with histone H3 acetylation it
inducesMeis1a expression, which recruits HDAC1 directly to
the Oct4 promoter to subsequently reduce its activity [286].
Examples of this complex interplay between HDACs and
other factors arewell documented fromESC studies [198, 287,
288], and it would be of interest to investigate whether similar
mechanisms are in place in ECCs.

5.4. RA Signaling and Histone Modification. Since HDAC
deacetylation of key lysine residues on the regulatory regions
of the RAR and RXR receptors would lead to their transcrip-
tional repression, it is easy to envision given the network of
genes regulated by RA how important this mechanism is to
maintaining pluripotency. Butyrate inhibits histone deacety-
lation and promotes reversible morphological changes to F9
cells, but it does not induce differentiation [289]. Surprisingly,
in the presence of cycloheximide, transcript and protein
levels of differentiation markers were sustained in butyrate
treated F9 cells [290]. Trichostatin A is another HDAC
inhibitor that cannot induce P19 cell differentiation by itself
but is able to when cells are cotreated with RA [291]. Like
butyrate, treatment of Trichostatin A alone induces apoptosis
in P19 cells, whereas cotreatmentwithRA inducesRAR/RXR-
induced transcription via histone acetylation [291]. In this

study, the authors postulate that histone acetylation alone
is not sufficient to induce differentiation, but it nevertheless
primes ECCs for these events. Although the RAR/RXR
response to acetylation plays a limited role during butyrate
and Trichostatin A treatment, it more importantly suggests
that othermechanisms are likely involved in themaintenance
of stemness [292]. For example, CDK-associated Cullin 1
(CAC1), affects RA-induced differentiation by directly bind-
ing to RAR𝛼, inhibiting its transcriptional activity in P19
cells [293, 294]. In this position, CAC1 recruits HDAC2,
which deacetylates RAR2 to promote pluripotency [293].
While we have provided some examples of how epigenetic
modifications influence gene regulation, we did not cover
the source of cofactors required to induce such changes. The
idea that epigenetic regulation is energetically demanding is
often overlooked, and for that reason we will complete our
discussion by addressing the fact that many of the cofactors
involved are provided by cellular metabolism. Thus, the
epigenome is intricately linked to themetabolome [295, 296],
and any changes to one would be expected to have direct
consequences on the other.

6. Cellular Metabolism

We begin this section with some of the earliest discus-
sions to spotlight the contribution of the mitochondria
and metabolism to pluripotency and stemness [296–299].
Mitochondria havemany roles including itsmostwell-known
role, to produce ATP, and obligatory production of reactive
oxygen species as the by-product of cellular metabolism.
In addition, mitochondrial metabolism is linked to calcium
signaling and apoptosis, all of which play a part in pluripo-
tency in ESCs [300–303]. During oxidative phosphorylation
(OXPHOS) one molecule of glucose generates 38 molecules
of ATP, which in comparison to glycolysis generates 2 ATP
molecules. Although glycolysis is inherently less efficient than
OXPHOS, it does support and promote high cellular pro-
liferation during embryonic development [304, 305], cancer
initiation and progression [306, 307], and neurodegenerative
disease states [308, 309]. A balance between glycolysis and
OXPHOS metabolism has been considered as a “rheostat”
for stem cell fate [310], as these processes that generate and
utilize metabolites have an impact on changes in epigenetic
modifications and cell signaling networks governing the equi-
librium between pluripotency and differentiation [311–314].
The majority of ESCs tend to transition towards OXPHOS
with differentiation [315, 316], although this is not universal
[304] as evident in iPSCs derived from fibroblasts that revert
to glycolysis [317]. These findings and others only serve to
strengthen the argument that themetabolic state of a cellmust
be considered when discussing stemness and pluripotency,
and we are reminded that some of the seminal studies that
led to this account were first reported in ECCs in the 1990s.

One such study examined Phosphofructokinase (PFK),
a glycolytic enzyme that catalyzes the phosphorylation of
fructose-6-phosphate to fructose 1,6-bisphosphate in the
presence of ATP. Van Erp and colleagues (1990) reported
that undifferentiated P19 cells show preference to Pfk-L
expression, encoding an isoform that is more sensitive to
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Figure 4: General overview of ECCs differentiation and the metabolic transition associated with the loss of stemness. ECCs can be
differentiated towards neuronal and extraembryonic endoderm in the presence of retinoic acid, or cardiomyocytes in the presence of
DMSO. With the differentiation process, others and we have observed a metabolic transition from glycolytic metabolism towards oxidative
phosphorylation.Moreover, we can induce F9 cell differentiation towards an extraembryonic lineage using dichloroacetate (DCA), a pyruvate
dehydrogenase kinase (PDK) inhibitor, or oxamate, a lactate dehydrogenase A (LDHA) inhibitor, which would indicate that the metabolic
status of a cell determines whether it will remain pluripotent or if it will differentiate towards a specific lineage.

activation by fructose 2,6-bisphosphate, and thus increas-
ing the glycolytic rate [318]. Similar results were reported
in highly proliferative cells for lactate dehydrogenase A
(LDHA), which converts pyruvate to lactate [319] and pyru-
vate dehydrogenase kinase (PDK), which by phosphorylating
and blocking the pyruvate dehydrogenase (PDH) complex
inhibits the conversion of pyruvate to acetyl Co-A in the
mitochondria [320]. Undifferentiated P19 cells have a strong
glycolytic profile, which is correlated with high levels of
Oct4, Sox2, and Nanog [320]. Similarly, we have found
that F9 cells maintained in the undifferentiated state have
high levels of LDHA and PDK1 (manuscript in preparation)
(Figure 4). This parallels the increased lactate and pyruvate
production seen in differentiating P19 cells [321]. The fate of
pyruvate in these cells, however, differs significantly between
the undifferentiated and differentiated cells, as when cells are
grown in the presence of galactose, pyruvate is shuttled to the
mitochondria and this is associated with reduced stemness
[320]. It is interesting to note that undifferentiated P19 cells
have fewer mitochondrial proteins [322] compared to their
differentiated counterparts, even though both have similar

mitochondrial DNA copy number [320]. This may not be
a general phenomenon for all ECCs, as we have seen the
opposite in F9 cells (manuscript in preparation). Similar
mitochondrial DNA copy number between the undifferen-
tiated and differentiated state is likely offset by mitochon-
drial activity, highly prevalent in differentiated ECCs, and
substrate availability, which would fuel these mitochondria.
What is perplexing is that P19 cells induced to formcardiomy-
ocytes initially have low mitochondrial DNA content and
ATP levels during the early stages of differentiation, but both
eventually return to basal levels [323]. That these changes are
not expected to occur during differentiation only reinforces
the idea of the complex, nonuniversal nature and specificity
of cellularmetabolism inmaintaining stemness or promoting
differentiation. We have shown that F9 cells differentiate
when OXPHOS metabolism is promoted (Figure 4), and
this parallels what was reported earlier for P19 cells [320].
Likewise, while many have shown that the differentiation
of ECCs is accompanied by a shift in the metabolic profile
towards OXPHOS [320–322], it remains to be determined if
this metabolic transition precedes the differentiation process
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or is the result of it. If we are to champion one or the
other, it would probably be the former given the evidence
that mouse embryonic fibroblasts reprogrammed using the
Yamanaka factors transition to glycolytic metabolism prior
to the induction of pluripotency [324]. This phenomenon, if
general, would indicate that metabolism might be the master
regulator of pluripotency and stemness and not just their
slave in preventing differentiation.

7. Conclusion

Using ECCs as our platform we have highlighted some of
the dramatic interplay that must exist between key genes and
their regulators for these cells to remain pluripotent and to
self-renew. Extrapolating many of these events to ESCs and
CSCs in vivo has been fruitful in many cases, but as we have
noted on several occasions, there are fundamental differences
that preclude striking a unifying model. Other means of
regulation are known to play key roles in ECC self-renewal
and differentiation, including modifications imparted by
reactive oxygen species (ROS) [325, 326], as well as the
influence of ROS homeostasis in cellular programming [300,
327], cell cycle control as demonstrated in ESCs [328–333],
as well as long noncoding RNAs in these cells [334–337]. In
fact, signaling through Ca2+ channels in ECCs has also been
reported to be involved in regulation [338]. Changes to the
epigenome and chromatin remodeling, however, have gar-
neredmuch attention. Together, we expect that in the future a
better understanding of how these changes contribute to self-
renewal and pluripotency in development will only serve to
elucidate a major question on the minds of everyone—why
do we get cancer?
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[20] X. Bustamante-Maŕın, J. A. Garness, and B. Capel, “Testicular
teratomas: an intersection of pluripotency, differentiation and
cancer biology,” The International Journal of Developmental
Biology, vol. 57, no. 2–4, pp. 201–210, 2013.

[21] F. Jacob, “Mouse teratocarcinoma and embryonic antigens,”
IMMUNOL.REV., vol. 33, pp. 3–32, 1977.



Stem Cells International 11

[22] J. Rossant and V. E. Papaioannou, “Outgrowth of embryonal
carcinoma cells from injected blastocysts in vitro correlates
with abnormal chimera development in vivo,”Experimental Cell
Research, vol. 156, no. 1, pp. 213–220, 1985.

[23] L. J. Kleinsmith and G. B. Pierce Jr., “Multipotentiality of single
embryonal carcinoma cells,” Cancer Research, vol. 24, no. 9, pp.
1544–1551, 1964.

[24] B. W. Finch and B. Ephrussi, “Retention of multiple develop-
mental potentialities by cells of a mouse testicular teratocar-
cinoma during prolonged culture in vitro and their extinction
upon hybridization with cells of permanent lines,” Proceedings
of the National Academy of Sciences, vol. 57, no. 3, pp. 615–621,
1967.

[25] R. L. Brinster, “The effect of cells transferred into the mouse
blastocyst on subsequent development,” Journal of Experimental
Medicine, vol. 140, no. 4, pp. 1049–1056, 1974.

[26] V. E. Papaioannou, M. W. Mcburney, R. L. Gardner, and M. J.
Evans, “Fate of teratocarcinoma cells injected into early mouse
embryos,” Nature, vol. 258, no. 5530, pp. 70–73, 1975.

[27] R. H. Blelloch, K. Hochedlinger, Y. Yamada et al., “Nuclear
cloning of embryonal carcinoma cells,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 101, no. 39, pp. 13985–13990, 2004.

[28] J. F. Nicolas, P. Avner, J. Gaillard, J. L. Guenet, H. Jakob, and
F. Jacob, “Cell lines derived from teratocarcinomas,” Cancer
Research, vol. 36, no. 11, pp. 4224–4231, 1976.

[29] B. Blum and N. Benvenisty, “The tumorigenicity of human
embryonic stem cells,” Advances in Cancer Research, vol. 100,
pp. 133–158, 2008.

[30] D. Solter, “From teratocarcinomas to embryonic stem cells and
beyond: a history of embryonic stem cell research,” Nature
Reviews Genetics, vol. 7, no. 4, pp. 319–327, 2006.

[31] T. Liu, Y. Wang, X. Peng et al., “Establishment of Mouse Terato-
carcinomas Stem Cells Line and Screening Genes Responsible
forMalignancy,”PLoSONE, vol. 7, no. 8, Article ID e43955, 2012.

[32] J. Kanungo, “Retinoic acid signaling in P19 stem cell differenti-
ation,”Anti-Cancer Agents in Medicinal Chemistry, vol. 16, 2016.

[33] G. R. Martin, “Teratocarcinomas and mammalian embryogen-
esis,” Science, vol. 209, no. 4458, pp. 768–776, 1980.

[34] G.R.Martin, “Teratocarcinomas as amodel system for the study
of embryogenesis and neoplasia,”Cell, vol. 5, no. 3, pp. 229–243,
1975.

[35] M. Evans, “Discovering pluripotency: 30 years ofmouse embry-
onic stem cells,” Nature Reviews Molecular Cell Biology, vol. 12,
no. 10, pp. 680–686, 2011.

[36] E. G. Bernstine,M. L. Hooper, S. Grandchamp, and B. Ephrussi,
“Alkaline phosphatase activity in mouse teratoma,” Proceedings
of the National Academy of Sciences, vol. 70, no. 12, pp. 3899–
3903, 1973.

[37] A. Alonso, B. Breuer, B. Steuer, and J. Fischer, “The F9-EC
cell line as a model for the analysis of differentiation,” The
International Journal of Developmental Biology, vol. 35, no. 4,
pp. 389–397, 1991.

[38] B. Boer, C. T. Bernadt, M. Desler, P. J. Wilder, J. L. Kopp, and A.
Rizzino, “Differential activity of the FGF-4 enhancer in F9 and
P19 embryonal carcinoma cells,” Journal of Cellular Physiology,
vol. 208, no. 1, pp. 97–108, 2006.

[39] M. I. Sherman and R. A. Miller, “F9 embryonal carcinoma
cells can differentiate into endoderm-like cells,” Developmental
Biology, vol. 63, no. 1, pp. 27–34, 1978.

[40] B. L. M. Hogan, A. Taylor, and E. Adamson, “Cell interactions
modulate embryonal carcinoma cell differentiation into parietal
or visceral endoderm,” Nature, vol. 291, no. 5812, pp. 235–237,
1981.

[41] D. W. Han, N. Tapia, M. J. Araúzo-Bravo et al., “Sox2 level is a
determinant of cellular reprogramming potential,” PLoS ONE,
vol. 8, no. 6, Article ID e67594, 2013.

[42] S. Strickland and V. Mahdavi, “The induction of differentiation
in teratocarcinoma stem cells by retinoic acid,” Cell, vol. 15, no.
2, pp. 393–403, 1978.

[43] E. Lehtonen, A. Laasonen, and J. Tienari, “Teratocarcinoma
stem cells as a model for differentiation in the mouse embryo,”
International Journal of Developmental Biology, vol. 33, no. 1, pp.
105–115, 1989.

[44] M.W.McBurney and B. J. Rogers, “Isolation of male embryonal
carcinoma cells and their chromosome replication patterns,”
Developmental Biology, vol. 89, no. 2, pp. 503–508, 1982.

[45] M. W. McBurney, “P19 embryonal carcinoma cells,” The Inter-
national Journal of Developmental Biology, vol. 37, no. 1, pp. 135–
140, 1993.

[46] G. Bain, W. J. Ray, M. Yao, and D. I. Gottlieb, “From embryonal
carcinoma cells to neurons: the P19 pathway,” BioEssays, vol. 16,
no. 5, pp. 343–348, 1994.

[47] M.A.G.VanDerHeyden andL.H.K.Defize, “Twenty one years
of P19 cells: what an embryonal carcinoma cell line taught us
about cardiomyocyte differentiation,” Cardiovascular Research,
vol. 58, no. 2, pp. 292–302, 2003.

[48] M. K. S. Edwards and M. W. McBurney, “The concentration of
retinoic acid determines the differentiated cell types formed by
a teratocarcinoma cell line,” Developmental Biology, vol. 98, no.
1, pp. 187–191, 1983.

[49] M. W. McBurney, E. M. V. Jones-Villeneuve, M. K. S. Edwards,
and P. J. Anderson, “Control of muscle and neuronal differenti-
ation in a cultured embryonal carcinoma cell line,” Nature, vol.
299, no. 5879, pp. 165–167, 1982.

[50] C. Dony, M. Kessel, and P. Gruss, “An embryonal carcinoma
cell line as a model system to study developmentally regulated
genes during myogenesis,” Cell Differentiation, vol. 15, no. 2-4,
pp. 275–279, 1984.

[51] E. M. Jones-Villeneuve, “Retinoic acid induces embryonal
carcinoma cells to differentiate into neurons and glial cells,”The
Journal of Cell Biology, vol. 94, no. 2, pp. 253–262, 1982.

[52] J. Kanungo, “Tumor suppressors and endodermal differentia-
tion of P19 embryonic stem cells,”Cell &Developmental Biology,
vol. 4, no. 3, article no. e138, 2015.

[53] G. T. Snoek, C. L. Mummery, C. E. van den Brink, P. T. van
der Saag, and S. W. de Laat, “Protein kinase C and phorbol
ester receptor expression related to growth and differentiation
of nullipotent and pluripotent embryonal carcinoma cells,”
Developmental Biology, vol. 115, no. 2, pp. 282–292, 1986.

[54] C. A. Boulter and E. F. Wagner, “Expression of c-src and c-
abl in embryonal carcinoma cells and adult mouse tissues,”
Experimental Cell Research, vol. 179, no. 1, pp. 214–221, 1988.

[55] S. K. Mallanna, B. Boer, M. Desler, and A. Rizzino, “Differential
regulation of theOct-3/4 gene in cell culturemodel systems that
parallel different stages ofmammalian development,”Molecular
Reproduction and Development, vol. 75, no. 8, pp. 1247–1257,
2008.

[56] P. W. Andrews, I. Damjanov, D. Simon et al., “Pluripotent
embryonal carcinoma clones derived from the human terato-
carcinoma cell line Tera-2. Differentiation in vivo and in vitro,”
Laboratory Investigation, vol. 50, no. 2, pp. 147–162, 1984.



12 Stem Cells International

[57] P. W. Andrews, “Human teratocarcinomas,” Biochimica et Bio-
physica Acta (BBA)—Reviews on Cancer, vol. 948, no. 1, pp. 17–
36, 1988.

[58] M. V.Wiles, “Isolation of differentially expressed human cDNA
clones: similarities between mouse and human embryonal
carcinoma cell differentiation,” Development, vol. 104, no. 3, pp.
403–413, 1988.

[59] C. L. Mummery, M. A. van Rooijen, S. E. van den Brink, and
S. W. de Laat, “Cell cycle analysis during retinoic acid induced
differentiation of a human embryonal carcinoma-derived cell
line,” Cell Differentiation, vol. 20, no. 2-3, pp. 153–160, 1987.

[60] P. W. Andrews, “Retinoic acid induces neuronal differentiation
of a cloned human embryonal carcinoma cell line in vitro,”
Developmental Biology, vol. 103, no. 2, pp. 285–293, 1984.

[61] P. W. Andrews, E. Gonczol, S. A. Plotkin, M. Dignazio, and J.
W. Oosterhuis, “Differentiation of TERA-2 human embryonal
carcinoma cells into neurons and HCMV permissive cells.
Induction by agents other than retinoic acid,” Differentiation,
vol. 31, no. 2, pp. 119–126, 1986.

[62] S. J. Pleasure and V. M. −. Lee, “NTera 2 cells: a human cell line
which displays characteristics expected of a human committed
neuronal progenitor cell,” Journal of Neuroscience Research, vol.
35, no. 6, pp. 585–602, 1993.

[63] R. Pal and G. Ravindran, “Assessment of pluripotency andmul-
tilineage differentiation potential of NTERA-2 cells as a model
for studying human embryonic stem cells,” Cell Proliferation,
vol. 39, no. 6, pp. 585–598, 2006.

[64] W. M. W. Cheung, A. H. Chu, and N. Y. Ip, “Identification
of candidate genes induced by retinoic acid in embryonal
carcinoma cells,” Journal of Neurochemistry, vol. 68, no. 5, pp.
1882–1888, 1997.

[65] M. J. Spinella, S. Kitareewan, B. Mellado, D. Sekula, K.-S. Khoo,
and E. Dmitrovsky, “Specific retinoid receptors cooperate to
signal growth suppression andmaturation of human embryonal
carcinoma cells,” Oncogene, vol. 16, no. 26, pp. 3471–3480, 1998.

[66] R. J. Alfonso, I. Gorroño-Etxebarria, M. Rabano, M. M.
Vivanco, and R. Kypta, “Dickkopf-3 alters the morphological
response to retinoic acid during neuronal differentiation of
human embryonal carcinoma cells,” Developmental Neurobiol-
ogy, vol. 74, no. 12, pp. 1243–1254, 2014.

[67] M. J. Spinella, S. J. Freemantle, D. Sekula, J. H. Chang, A. J.
Christie, and E. Dmitrovsky, “Retinoic acid promotes ubiqui-
tination and proteolysis of cyclin D1 during induced tumor cell
differentiation,” Journal of Biological Chemistry, vol. 274, no. 31,
pp. 22013–22018, 1999.

[68] R. S. V. Chadalavada, J. E. Korkola, J. Houldsworth et al., “Con-
stitutive gene expression predisposes morphogen-mediated
cell fate responses of NT2/D1 and 27X-1 human embryonal
carcinoma cells,” Stem Cells, vol. 25, no. 3, pp. 771–778, 2007.

[69] M. F. Pera and D. Herszfeld, “Differentiation of human pluripo-
tent teratocarcinoma stem cells induced by bone morpho-
genetic protein-2,”Reproduction, Fertility andDevelopment, vol.
10, no. 7-8, pp. 551–555, 1998.

[70] K. C. Davidson, E. A. Mason, and M. F. Pera, “The pluripotent
state in mouse and human,” Development, vol. 142, no. 18, pp.
3090–3099, 2015.

[71] G. Kelly and T. Drysdale, “Retinoic acid and the development
of the endoderm,” Journal of Developmental Biology, vol. 3, no.
2, pp. 25–56, 2015.

[72] L. J. Gudas and J. A. Wagner, “Retinoids regulate stem cell
differentiation,” Journal of Cellular Physiology, vol. 226, no. 2,
pp. 322–330, 2011.

[73] D. R. Soprano, B. W. Teets, and K. J. Soprano, “Role of retinoic
acid in the differentiation of embryonal carcinoma and embry-
onic stem cells,” Vitamins and Hormones, vol. 75, pp. 69–95,
2007.

[74] K. Brown, S. Legros, J. Artus et al., “A comparative analysis of
extra-embryonic endoderm cell lines,” PLoS ONE, vol. 5, no. 8,
2010.

[75] C. Eifert, N. Sangster-Guity, L.-M.Yu et al., “Global gene expres-
sion profiles associated with retinoic acid-induced differentia-
tion of embryonal carcinoma cells,”Molecular Reproduction and
Development, vol. 73, no. 7, pp. 796–824, 2006.

[76] M. A. Mendoza-Parra, M. Walia, M. Sankar, and H. Grone-
meyer, “Dissecting the retinoid-induced differentiation of F9
embryonal stem cells by integrative genomics,” Molecular Sys-
tems Biology, vol. 7, no. 1, article no. 538, 2011.

[77] E.Moutier, T. Ye,M. Choukrallah et al., “Retinoic acid receptors
recognize the mouse genome through binding elements with
diverse spacing and topology,” Journal of Biological Chemistry,
vol. 287, no. 31, pp. 26328–26341, 2012.

[78] A. Chatagnon, P. Veber, V. Morin et al., “RAR/RXR binding
dynamics distinguish pluripotency from differentiation associ-
ated cis-regulatory elements,”Nucleic Acids Research, vol. 43, no.
10, pp. 4833–4854, 2015.

[79] T. Harris and G. Childs, “Global gene expression patterns
during differentiation of F9 embryonal carcinoma cells into
parietal endoderm,” Functional & Integrative Genomics, vol. 2,
no. 3, pp. 105–119, 2002.

[80] S. Lalevee, Y. N. Anno, A. Chatagnon et al., “Genome-wide in
silico identification of new conserved and functional retinoic
acid receptor response elements (direct repeats separated by 5
bp),” Journal of Biological Chemistry, vol. 286, no. 38, pp. 33322–
33334, 2011.

[81] Y. Wei, T. Harris, and G. Childs, “Global gene expression pat-
terns during neural differentiation of P19 embryonic carcinoma
cells,” Differentiation, vol. 70, no. 4-5, pp. 204–219, 2002.

[82] F. Leypoldt, J. Lewerenz, and A. Methner, “Identification of
genes up-regulated by retinoic-acid-induced differentiation
of the human neuronal precursor cell line NTERA-2 cl.D1,”
Journal of Neurochemistry, vol. 76, no. 3, pp. 806–814, 2001.

[83] R. St-Arnaud, A. Nepveu, K. B. Marcu, and M. W. McBurney,
“Two transient increases in c-myc gene expression during neu-
roectodermal differentiation of mouse embryonal carcinoma
cells,” Oncogene, vol. 3, no. 5, pp. 553–559, 1988.

[84] K. D. Nakamura and R. W. Hart, “Proto-oncogene expression
during retinoic acid-induced neural differentiation of embry-
onal carcinoma cells,” Mechanisms of Ageing and Development,
vol. 48, no. 1, pp. 53–62, 1989.

[85] N. V. Varlakhanova, R. F. Cotterman, W. N. deVries et al., “Myc
maintains embryonic stem cell pluripotency and self-renewal,”
Differentiation, vol. 80, no. 1, pp. 9–19, 2010.
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