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Abstract: As one of the typical farmland ecosystems, tea gardens are of vital importance in China.
The purpose of this study was to quantify the dynamic of soil properties, soil microbial diversity,
and nematodes, as affected by various cover crop patterns in a Tanjiawan tea garden in Hubei
Province, China. Four cover crop patterns were established as following: naturally covered of bare
land and mixed planting with two species, four species, and eight species. The results revealed
that soil organic matter, pH, and total phosphorous content were significantly related to cover crop
patterns. The number of nematodes increased with cover crop diversity, and the percentage of plant
parasitic nematodes in cover crop treatments was lower than in naturally covered bare land. A higher
diversity of cover crops increased the number of bacterivores and fungivores, thereby enhancing
the bacterial decomposition pathway of soil organic matter. Both soil nematodes and microbial
communities showed significant seasonal changes under different cover crop patterns. The soil food
webs were more stable and mature under cover crops with two species and four species. Combined
with the results of a structural equation model, we found that soil properties, characterized by the
total nitrogen, available phosphorus, NO3

--N, and soil organic matter, were significantly correlated
with soil nematodes and microbial communities. In addition, acterivores and plant parasites were
significantly negatively correlated with omnivores/predators. Our results implied that soil properties
and seasonal changes influence the relationships between cover crops, soil nematodes, and microbial
communities. These findings provide a theoretical basis for future studies on interactions between
soil properties, soil microorganisms, and nematodes in tea gardens.

Keywords: cover crops; microorganisms; nematodes; soil food web; tea

1. Introduction

Biodiversity is an ecological complex formed by organisms and their surrounding
environment, as well as the synthesis of various ecological processes [1]. Biodiversity is the
basis for water conservation, soil conservation, climate regulation, and other ecosystem
functions [2,3]. With agricultural intensive practices, multi-scale habitat heterogeneity has
been significantly reduced, resulting in visible soil diversity degradation [4]. This will
largely LIMIT the sustainable resources utilization related to soil diversity, thereby leading
to the loss of natural resources which are substantial for human survival [5]. Understanding
the response of biodiversity to different land use practices and climate change is important
for preventing its decline [6,7]. Increasing the availability of non-cultivated habitats, i.e.,
cover crop, is an effective measure to protect farmland biodiversity [2,8]. Vegetation has
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the greatest impact on biodiversity and is vital for increasing species diversity [3]. When
the diversity of plant species in an ecosystem changes, soil fertility, microclimate mainte-
nance, and other ecosystem functions might also change, which is critically important for
ecosystem function [5].

Previous studies have reported that planting cover crops has the potential to increase
the richness of plant functional groups, thereby promoting soil microbial diversity, which
can reduce the proliferation of soil-borne pathogens and increase the number of beneficial
microorganisms [2,9]. Planting cover crops can also increase soil carbon turnover rate and
nitrogen availability [10–12], thus providing favorable conditions for microbial prolifera-
tion [13]. In addition to act as nutrients, their root exudations are biodegradable organic
substances which can be utilized as energy and nutrients for microbial growth, potentially
influencing soil microbial diversity [14]. Additionally, different types of cover crops have
different effects on soil microbial abundance [15]. For example, soil microbial biomass in
the field of winter rapeseed used as cover crop is higher than in Violet and Hairy vetch
fields [8]. Therefore, it is important to explore the dynamics and related mechanism of soil
microbial diversity in various patterns of cover crops.

Soil nematodes are sensitive to their habitat changes [16]. Meanwhile, their structure
and enrichment indices have been proven to be significantly correlated with soil carbon
and nitrogen content [17], which can provide unique information on soil ecological pro-
cesses [18]. The evaluation of soil nematodes community structure can be used as an
index for soil decomposition pathway [19]. Therefore, soil nematodes can be regarded as a
good indicator for the degree of soil disturbance and soil biodiversity [20]. Additionally,
changes in soil nematode community structure are important for studying the status and
function of soil organisms in vegetation succession [21]. It has been reported that the spatial
distribution and total abundance of nematodes are greatly affected by cover crops, due to
changes in soil carbon [22], as well as the increased structure and complexity of the soil food
web [23]. However, although soil nematodes vary with different vegetation types [24], little
research has been conducted on investigating plant varieties when choosing cover crops.

Jiang et al. [25] have demonstrated that there are interactions between soil microorgan-
isms and nematodes. First, plant parasitic nematodes (PPNs) can change the root secretion
morphology and chemical composition by infecting plants [26], provide more material
energy and a better root chemical composition for soil microorganisms [27], as well as
changing the community structure of rhizosphere fungi [26]. For example, root-parasitic
nematodes can enhance soil microbial activity and promote soil microbial activities and
nitrogen cycling [27]. Microbivorous nematodes could also affect soil microbial activities,
influenced by plant species, substrate C/N ratios, as well as complex interactions between
nematodes and other soil animals [28]. Due to the regulating effect of soil nematodes, the
balance between beneficial parasitic microorganisms and pathogenic microorganisms in
the soil is maintained [29], which is important for the prevention and treatment of harmful
microorganisms, especially soil-borne pathogenic microorganisms [30]. Second, the an-
tagonistic relationship between nematophagous microorganisms and PPNs provides an
important reference for the biological control of nematodes. There are two ways in which
microorganisms control nematode worms: (1) microorganisms trap and kill nematode
worms from outside; and (2) microorganisms enter nematode worms parasitically and
produce toxins to kill nematode worms [31]. Therefore, it is essential to explore how both
soil nematodes and microorganisms could provide new biological control strategies for
PPNs in the future [32].

Tea gardens, a typical agricultural ecosystem of China, have been influenced by
the traditional concept of “grass and tea plants competing for fertilizer and water” in
recent years. The research on cover crops started relatively recently, and few studies have
been conducted in tea gardens. We hypothesized the following: (1) diversified cover
crop patterns exert different effects on soil microorganism and nematode communities
in a tea plantation; (2) soil physical and chemical factors are interacted with dynamics
of soil nematodes and microbes, as affected by planting diversified cover crops; (3) soil
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microorganism and nematode communities show different changing trends under the
diversified cover crop patterns, depending on seasonal changes. The findings of this study
will reveal the effect of various cover crop patterns on soil fertility and soil food webs in a
tea garden.

2. Materials and Methods
2.1. Study Site

The experimental site was located at Weiping Temple Village, Tanjiawan Town, Yun-
yang District, Shiyan City, Hubei Province, China (32◦93′ N, 110◦87′ E), which has an
altitude of 220 m, an annual rainfall of 800–1100 mm, a frost-free period of 248 d, a north
sub-tropical continental monsoon climate, with annual average sunshine hours of 1655–
1958, and an annual average temperature of 16 ◦C. According to the United Nations Food
Agriculture Organization (FAO), soil type is mainly Humic Cambisols. Soil pH was around
6.02–6.48 during the study period.

2.2. Experimental Design

The experiment started from 2016, and there were four cover crop patterns with three
replicates: naturally covered bare land (A0), mixed planting with two species (Lolium
perenne and Trifolium repens) (A1), mixed planting with four species (L. perenne, T. repens, Poa
annua, and T. pratense) (A2), and mixed planting with eight species (L. perenne, T. repens, P.
annua, T. pratense, Festuca rubra, Vicia villosa Roth, Perennial Coreopsis, and Zinnia elegans Jacq)
(A3). During the experiment, weeds were regularly removed between rows. All treatments
were treated with conventional field management measures. The area of each treatment
was 1200 m2, with 400 m2 for each replicate. The spacing of tea planting rows was 1.5 m.
The sowing weight of covered crops is shown in Table S1.

2.3. Soil Samples

Soil samples were collected in May, August, and November 2018, as well as February
2019. Fifteen points were selected for each soil sampling. Soil samples (0–20 cm) were taken
by drill with a diameter of 3 cm. Five triplicates were selected for each treatment, and soil
samples were divided into three parts. The first part was dried at room temperature and
then used for the analysis of soil physical and chemical properties. The second part was
stored at −70 ◦C for soil microbial analyses, and the third part was stored at 4 ◦C for the
isolation and subsequent identification of soil nematodes.

2.4. Analysis of Soil Physical and Chemical Properties

The soil nitrate (NO3
−-N) and ammonium (NH4

+-N) were extracted using the CaCl2
extraction method and measured by an AA3 flow analyzer (Bran Lubbe AA3, Hamburg,
Germany). The soil total nitrogen (TN) was determined by a flow analyzer (Bran Lubbe AA3,
Hamburg, Germany) [33]. The Soil pH was determined with the glass electrode method
using an MP511 pH meter (MP511 pH meter, Shanghai, China) [34]. The ratio of soil to
water was 1:2.5. The soil organic matter (OM) was determined by a total organic carbon
analyzer (Multi N/C3100, Hamburg, Germany) [33]. The soil available phosphorus (AP) and
the soil total phosphorus (TP) were determined by methods described by Lu [35]. The AP
was extracted using 0.5 mol/L NaHCO3 and determined by the molybdenum–antimony anti-
spectrophotometric method (UV-2800 Ultraviolet-visible Spectrophotometer, Shanghai, China).
The TP was boiled with HClO4–H2SO4 and determined using the molybdenum–antimony
anti-spectrophotometric method (UV-2800 Ultraviolet-visible Spectrophotometer, Shanghai,
China). The microbial biomass carbon (MBC) and the microbial biomass nitrogen (MBN) were
fumigated by chloroform. Ultimately, 20 g of fresh soil were fumigated by chloroform at 25 ◦C
for 48 h without light exposure [36]. Their contents were extracted by potassium sulfate and
determined by a total organic carbon analyzer (Multi N/C3100, Hamburg, Germany). The
conversion factor (0.45 for the MBC and 0.54 for the MBN) was calculated according to the
difference between the fumigated and non-fumigated subsamples [37].
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2.5. Nematode Identification

A modified shallow tray method was utilized for separating nematodes from soil [38].
Then, 50 g of fresh soil were weighed and evenly spread on a filter paper in a tray. After
a 48 h separation at 25 ◦C, soil leaching liquid was filtered through a 500 µm mesh sieve.
The rinse solution was collected in a sample bottle and was left to stand for two hours.
The rinse solution was carefully extracted, and 9 mL were retained. Nematodes were then
concentrated in water at the bottom of the sample bottle. The sample bottle must not be
shaken during operation to prevent nematodes from being agitated. Nematodes were
killed through heating in a water bath at 60 ◦C for 3 min and then cooled by standing. One
milliliter of a nematode fixing solution (80% formalin, 20% glycerol, and two to three drops
of glacial acetic acid) was added. Nematodes were counted with an aspheric microscope,
and the number of nematodes per 100 g dry soil was calculated. Nematode worms were
identified under a high-power (200×) inverted fluorescence microscope. Morphological
methods were used to identify the taxonomic units at the genus level [39].

According to the identification results, the nematodes could be divided into different
c-p groups and four functional nutrition groups: bacterivores (Ba), plant parasites (Pp),
fungivores (Fu), and omnivores/predators (Op) [40,41].

Based on the classification results, the ecological and structural indices of nematodes
were calculated as follows [41–46]:

The Shannon–Wiener diversity index (H) was calculated as following:

H = −∑Pi ln Pi (i = 1, 2, 3, . . . , S),

where Pi is the ratio of the individual number to the nematode quantity in taxon i of the
sample, and S is the number of the identified taxa.

The Pielon’s evenness index (J) was calculated as following:

J = H/lnS.

The Simpson dominance index (λ) was calculated as following:

λ = ∑pi2 (i = 1, 2, 3, . . . , S).

The structure index (SI) was calculated as following:

SI = 100 × (s/(s + b)),

where s represents nematodes with c-p values of 3, 4, or 5 in the Ba, Fu, and Op groups,
respectively, and b is the nematodes with a c-p value of 2 in the Ba group.

The enrichment index (EI) was calculated as following:

EI = 100 × (e/(e + b)),

where e represents nematodes with a c-p value of 1 in the Ba and Fu groups.
The nematode pathway index (NCR) was calculated as following:

NCR = NB/(NB + NF),

where NB is the number of nematodes in the Ba group, and NF is the number of nematodes
in the Fu group.

The Wasilewska index (WI) was calculated as following:

WI = (NF + NB)/NPP,

where NPP is the number of nematodes in the Pp group.
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2.6. Microbes

The soil microbial community was characterized by the phospholipid fatty acid (PLFA)
method [47]. Three grams of freeze-dried soil were accurately weighed, and PLFAs were
extracted by adding a mixed agent (chloroform:methanol:citrate volume ratio: 1:2:0.8). After
a full oscillation on a horizontal oscillator, the supernatant was collected in a centrifuge.
Citric acid buffer (the volume ratio of the citric acid solution:trisodium citrate solution:
5.9:4.1) and chloroform were added and then left overnight in the dark. Phospholipids were
separated from neutral lipids and glycolipids by an SPE column, collected in methanol
and dried with nitrogen. The phospholipids were converted into PLFA methyl ester using
mild and basic methyl ester and then added to an internal standard solution (nonadecanoic
acid and methyl ester). The types and contents of PLFAs were detected by GC-MS (6890-
5973N). The corresponding soil microbial communities were characterized by the structural
diversity and biological specificity of phospholipid fatty acids and classified into the
following: gram-positive bacteria (G+), gram-negative bacteria (G−), bacteria (B), fungi (F),
and actinomycetes (A) (Table S2) [48].

The ecological index of each community was calculated as follows [49–51].
The Shannon–Wiener diversity index (H) was calculated as following:

H = −∑PilnPi (I = 1, 2, 3, . . . , S),

where Pi is the ratio of the number of PLFAs to the total PLFAs in taxon i of the sample,
and S is the number of microbial taxa.

The Pielon’s evenness index (J) was calculated as following:

J = H/lnS.

The Simpson dominance index (λ) was calculated as following:

λ = ∑pi2 (i = 1, 2, 3, . . . , S).

The Margalef richness index (D) was calculated as following:

D = (S − 1)/lnN,

where N is the total number of PLFAs.

2.7. Statistical Analyses

SPSS Statistics v21.0 was used to conduct one-way and two-way ANOVA analyses
on the test data. Duncan’s new multiple range test and Fisher’s least significant difference
(LSD) post hoc tests were used for multiple comparisons in order to determine significant
differences between treatments with a significance level of p < 0.05. Origin v9.4 was used
for creating figures, and Amos v21.0 was used for a structural equation model (SEM)
construction [52]. A redundancy analysis (RDA) was conducted using Canoco v5.0.

3. Results
3.1. Soil Physical and Chemical Properties

The soil physical and chemical properties under different cover crop patterns showed
variable trends, depending on the specific indices. The OM, pH, and TP were significantly
related to cover crop patterns (p < 0.05; Table S3). Among the different treatments, TP content
was higher in A1 and A3, compared to in A0, even though there was no statistical difference
in the TP contents between A0 and A2. Compared to in A0, pH was higher in the covering
planting modes in A1, A2, and A3, with the highest value occurring in A2 (p < 0.05; Table 1).

Our results showed that the water content of soil (WCS), pH, TP, NO3
−, NH4

+, AP, and
OM were also significantly related to months (p < 0.05; Table S3), implying the importance
of seasonal changes’ effects on soil physical and chemical properties in a tea garden.
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Table 1. Soil physical and chemical properties under different cover crop patterns. Different lowercase
letters indicate significant differences between different cover crop patterns (p < 0.05).

Cover Crop Pattern A0 A1 A2 A3

water content of soil (WCS; %) 13.31 ± 1.00 a 13.35 ± 0.98 a 13.69 ± 0.99 a 13.17 ± 1.08 a
organic matter (OM g/kg) 1.34 ± 0.08 a 1.42 ± 0.06 a 1.52 ± 0.09 a 1.48 ± 0.08 a

pH 6.22 ± 0.05 c 6.43 ± 0.03 b 6.56 ± 0.03 a 6.35 ± 0.04 b
available phosphorus (AP; mg/kg) 12.67 ± 2.56 a 15.01 ± 1.99 a 10.69 ± 1.57 a 12.56 ± 2.20 a

total phosphorus (TP; g/kg) 0.43 ± 0.03 b 0.64 ± 0.03 a 0.45 ± 0.02 b 0.66 ± 0.04 a
total nitrogen (TN; g/kg) 0.65 ± 0.05 a 0.72 ± 0.04 a 0.76 ± 0.03 a 0.72 ± 0.04 a
nitrate (NO3

−-N; mg/kg) 2.47 ± 0.31 a 3.32 ± 0.48 a 2.60 ± 0.41 a 2.85 ± 0.37 a
ammonium (NH4

+-N; mg/kg) 4.20 ± 0.60 a 4.89 ± 0.71 a 3.77 ± 0.60 a 5.24 ± 0.62 a
microbial biomass carbon (MBC; mg/kg) 124.81 ± 16.51 a 134.78 ± 14.25 a 144.38 ± 16.02 a 153.06 ± 11.65 a

microbial biomass nitrogen (MBN; mg/kg) 17.44 ± 2.20 a 20.19 ± 1.87 a 20.75 ± 1.99 a 21.23 ± 2.38 a

Note: A0 represents naturally covered of bare land; A1 represents mixed planting with two species; A2 represents
mixed planting with four species, and A3 represents mixed planting with eight species. The same representations
were used throughout the paper.

3.2. Soil Nematode Communities

The number of nematodes increased with cover crop diversity. The number of nema-
todes in A3 was the highest in May and November 2018 and February 2019. There were no
significant differences in the nematode numbers between A1, A2, and A3 in August 2018,
which were all higher than that in A0 (Figure 1). As shown in Figure 2, the percentages of
PPNs in treatments with cover crops in A1, A2, and A3 were lower than in A0 (p < 0.05).
There were no significant differences in the percentage of omnivores/predators and PPNs
under different cover crop patterns. Our results showed that increased cover crop diversity
reduced the number of PPNs (Figure 2).
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Figure 1. Variation of nematode abundance under different cover crop patterns. Note: A0 represents
naturally covered of bare land; A1 represents mixed planting with two species; A2 represents mixed
planting with four species, and A3 represents mixed planting with eight species. Different capital
letters indicate the significant differences between different cover crop patterns in the same month,
and different lowercase letters indicate the significant differences between different months of the
same cover crop patterns (p < 0.05).



Int. J. Environ. Res. Public Health 2022, 19, 2695 7 of 16

Int. J. Environ. Res. Public Health 2022, 18, x  7 of 18 
 

 

 

Figure 1. Variation of nematode abundance under different cover crop patterns. Note: A0 represents 

naturally covered of bare land; A1 represents mixed planting with two species; A2 represents mixed 

planting with four species, and A3 represents mixed planting with eight species. Different capital 

letters indicate the significant differences between different cover crop patterns in the same month, 

and different lowercase letters indicate the significant differences between different months of the 

same cover crop patterns (p < 0.05). 

 

Figure 2. Changes in the nutritional groups of nematodes under different cover crop patterns. Dif-

ferent lowercase letters indicate that there are significant differences between different cover crop 

Figure 2. Changes in the nutritional groups of nematodes under different cover crop patterns.
Different lowercase letters indicate that there are significant differences between different cover crop
patterns in the same month (p < 0.05). Ba, bacterivores; Fu, fungivores; Op, omnivores/predators; Pp,
plant parasites.

The Shannon–Wiener diversity indices of soil nematodes were not significantly affected
by the increased cover crop diversity. Compared to in A0, the Simpson dominance indices of
cover treatments in A1, A2, and A3 were significantly lower (p < 0.05). The results revealed
that cover crops increased the uniform distribution of species. The Wasilewska indices in
treatments with cover crops were significantly higher in A2 and A3 (p < 0.05) were higher
than in A1. Moreover, the Wasilewska indices showed no significant difference between A2
and A3. The diversity of cover crops did not affect the decomposition pathway of soil OM
(p > 0.05). The nematode channel ratio (NCR) of >0.5 indicated that the bacterial channel
served as the main pathway of soil OM decomposition in the four treatments (Table 2).
However, the NCRs in plots with cover crops in A1, A2, and A3 were significantly higher
than in A0 (p < 0.05), indicating that cover crop enhanced the bacterial decomposition
pathway of soil OM.
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Table 2. Ecological indices of the nematode communities. Different lowercase letters indicate the
significant differences between different cover crop patterns (p < 0.05).

Cover Crop Pattern A0 A1 A2 A3

Shannon–Wiener diversity index
(H) 2.236 a 2.253 a 2.248 a 2.245 a

Simpson dominance index
(λ) 0.147 a 0.104 c 0.116 bc 0.119 b

Pielou’s evenness index
(J) 0.853 a 0.842 a 0.853 a 0.847 a

Structure index
(SI) 60.873 a 59.471 a 55.369 a 52.007 a

Enrichment index
(EI) 59.164 a 62.835 a 60.700 a 65.192 a

Wasilewska index
(WI) 12.845 b 18.778 ab 39.996 a 41.189 a

Nematode channel ratio
(NCR) 0.626 b 0.703 ab 0.731 a 0.718 abInt. J. Environ. Res. Public Health 2022, 18, x  9 of 18 
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3.3. Soil Microbial Community

In May 2018, the total number of PLFAs in microorganisms in A0 was the largest, and
there were no significant differences in the total number of PLFAs among A1, A2, and A3
(Figure 4). In the other three months, no significant differences were found among the four
cover crop patterns.

As shown in Figure 3, compared to in A0, the flora changes in A1 and A2 were more
concentrated in quadrant B, indicating that A1 and A2 were more conducive. It implied
that soil environment risk was reduced and a more stable and mature food network was
enabled.

As shown in Figure 5, the interaction of the monthly variation and cover crop patterns
showed no significant effect on the soil microbial community. The percentage of soil fungi
and common bacteria in different months under various cover crop patterns was shown in
Figure S1. Our results found that the number of soil microorganisms was mainly affected by
seasonal changes, and cover crop diversity only had a significant impact on the number of
soil fungi (Table S4). Moreover, there were no significant differences between soil microbial
indices, as cover crop diversity increased (Table S4).
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Figure 5. Changes of microbial communities under different cover crop patterns. G+, gram-positive
bacteria; G–, gram-negative bacteria; A, actinomycetes; F, fungi; B, bacterial.

Ecological indices of the microbial community were shown in Table 3, but there
are no significant differences among the various cover crop patterns. The RDA results
showed that the NH4

+-N, TN, and TP were positively correlated with the Pielou’s even-
ness, Shannon–Wiener diversity, and Margalef richness indices for microorganisms but
negatively correlated with the Simpson dominance index. The TP content was signifi-
cantly positively correlated with the Margalef richness index, indicating that soil microbial
population richness rose with the increased TP content. The WCS, OM, and pH were
negatively correlated with soil microbial Pielou’s evenness, Shannon–Wiener diversity, and
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Margalef richness indices but positively correlated with the Simpson dominance index. The
AP was positively correlated with the Pielou’s evenness and Shannon–Wiener diversity
indices of soil microorganisms but negatively correlated with the Margalef richness index,
indicating that the AP content promoted the enhancement of biodiversity and evenness of
soil microbial communities but inhibited their species richness (Figure 6).

Table 3. Ecological indices of the microbial community. Different lowercase letters indicate the
significant differences between different cover crop patterns (p < 0.05).

Cover Crop Patterns A0 A1 A2 A3

Shannon–Wiener diversity index
(H) 2.622 a 2.580 a 2.662 a 2.636 a

Simpson dominance index
(λ) 0.090 a 0.094 a 0.088 a 0.089 a

Pielou’s evenness index
(J) 0.980 a 0.980 a 0.990 a 0.985 a

Margalef richness index
(D) 4.681 a 4.735 a 4.632 a 4.609 a
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3.4. Mechanism of the Potential Impact of Cover Crops on Soil Food Webs

As shown by SEM (Figure 7), soil properties, characterized by the WCS, TN, AP, NO3
−-

N, and OM, were significantly correlated with the community structure of microorganisms
and nematodes (p < 0.05). There was a significant correlation between soil physical and
chemical factors and the community structure of microorganisms and nematodes (p < 0.05).
The correlation coefficient between soil physical and chemical factors and bacteria was
−0.52, and its correlation coefficient with fungi was 0.62. The relationship between soil
properties and bacteria or fungi was stronger than with PPNs. In our study, soil nematodes
showed no significant correlation with microorganisms. Fungivores, bacterivores, and plant
parasites were significantly negatively correlated with omnivores/predators, among which
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the most significant correlation was between plant parasites and omnivores/predators
(p < 0.05; Figure 7).
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4. Discussion
4.1. Effects of Cover Crop Patterns on Soil Nematode Community Characteristics and the Related
Ecological Index

It has been reported that, with exception of PPNs, the abundance of other vegetative
groups increased with a higher cover crop diversity [22,53]. In our study, nematode density
was not significantly different among A1, A2, and A3 (Figure 2 and Table S5), but the ne-
matode densities in these three groups were higher than in A0. The percentage changes in
PPNs and the patterns of nematode density exhibited opposite trends (Figure 2), indicating
that a higher cover crop diversity mainly increased the number of bacterivores and fungi-
vores. This might be due to that biodiversity of cover crops increased the diversity of plant
litters and rhizospheric sediments. It has already been verified that the decomposition of
different litters and rhizospheric sediments promotes the accumulation of soil humic acid,
which affects the proportion of bacterivores and fungivores [54]. Different plant functional
groups can influence the composition of soil nematode communities. In a previous study, it
was found that leguminous plants could increase the number of bacterivores, while the
number of fungivores was positively correlated with the number of weeds [55]. Bachie and
McGiffen [56] reported that cover crops inhibit the growth of weeds and indirectly lead to
a decrease of fungivores, consistent with our results of soil nematodes during winter in
this study.

Meanwhile, it has been reported that the succession of PPNs is more easily affected
by changes of the plant community than the other way round [57]. As for the nematode
community composition, plant species identification is often more important than plant
diversity [55]. A combination of Perennial Coreopsis and Z. elegans Jacq inhibits the
reproduction of parasitic nematodes and thereby affects their densities [58,59]. It is also
reported that, unlike leguminous plants, gramineous plants inhibit the growth of nematode
density [60,61]. However, cover crops belonged to the mixed sowing of gramineae and
leguminous plants in our study, and no significant differences in PPNs were found between
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different treatments. These results indicated that there might be interactions between
leguminous and gramineous plants and soil nematodes, which remains to be elucidated.

Previous studies demonstrated that the decomposition of OM depends on the abun-
dance of easily decomposed parts of OM [62]. When the OM was abundant and easy to
decompose, the decomposition of the OM in soil food web is mainly through the bacterial
channel. In contrast, when the OM is poor and difficult to decompose, the decomposition
of the OM in the soil food web is mainly through the fungi channel [62,63]. In this study,
the NCR was >0.5, which indicated that the bacterial channel acted as the main pathway of
the OM decomposition. Additionally, plots covered with crops in A1, A2, and A3 had a
significantly higher OM decomposition than in A0. These results showed that cover crops
increased the bacterial decomposition pathway of the OM. Changes in the soil nematode
community structure caused by environmental factors are always closely related to the
ecological index of nematodes [64]. The findings of this study clearly illustrated the rela-
tionships among soil nematodes community composition, environmental changes, and
ecosystem functions of nematodes, as affected by cover crops in tea gardens.

4.2. Effects of Cover Crop Patterns on Microbial Community Characteristics and the Related
Ecological Indices

Finney et al. [65] verified that species-specific cover crops have different effects on the
soil microbial community composition. In our study, the increased diversity of cover crops
did not significantly influence the total PLFAs of microorganisms, but fungi varied among
different cover crop patterns. This could be due to the divergent microbial catabolic activity
and the concentrations of aromatic organic compounds produced by different cover crop
species [66], and the effects of cover crops on soil bacteria might be neutralized by different
cover crop species. Overall, the number of soil microbial communities in our study was
mainly affected by seasonal changes, which indicated that the proportion of each microbial
group (except for actinomycetes) did not change significantly under different cover crop
patterns (Figure 5; Table S4). The proportions of actinomycetes in the cover crop patterns
in A1, A2, and A3 were lower than those in A0, and significant differences were found
between A1, A2, and A3. This might be related to differences in the soil environmental
preference for actinomycetes in the various cover crop patterns. Meanwhile, it has been
shown that actinomycetes are the most significant factor affecting the TP [67]. In our study,
except A2, the TP contents of cover crops in mixed plots were higher than that in A0,
which was consistent with a previous study regarding the effect of cover crops on the soil
surface phosphorus [68], which reported that fertilizer P could be reduced in such cover
crop systems.

Soil important functions as well as the degree of soil health are always affected,
combined with changes in the soil microbial community composition and soil physical-
chemical properties responsive to cover crops [69,70]. In our study, the RDA results on
the ecological index of soil microorganisms and soil physical-chemical properties revealed
that the TP content was correlated with the richness of soil microbial population. In
addition, the AP content had a positive relationship with the biodiversity and evenness
of soil microbial community, while it had a negative relationship with soil microbial
species richness. Our findings verified that soil properties and seasonal changes deserved
increased attention when exploring the effects of cover crops on the ecological indices of
soil microbial communities. This study is critical in improving the ability to better predict
potential changes in the soil function and soil health, as affected by cover crops.

4.3. Analysis of the Soil Food Web

SEM could help uncover the direct and indirect relationships in complex soil food
webs [71]. The enrichment index reflects the main nutritional level of the food network,
which could represent the richness and activity of main detrital consumers [41]. A flora
analysis on soil nematodes combines functional and reactive factors, which has been proven
helpful in a previous study on the mutual relationship between the soil nematode diversity



Int. J. Environ. Res. Public Health 2022, 19, 2695 13 of 16

and the ecosystem function [72]. In our study, soil properties had an influence on soil
nematodes and microorganisms, among which the WCS exerted the greatest effect. Soil
physical and chemical properties were negatively correlated with the proportion of soil
bacteria but positively correlated with the proportion of soil fungi. Changes in soil bacteria
and fungi reflected the degree of soil health and thereby affected the food web structure.
Soil properties mainly affected plant parasites and showed a negative correlation. The
ratio of omnivores/predators negatively correlated with bacterivores, fungivores, and
plant parasites, mainly due to the predatory relationships between these organisms [40,53].
In this study, the correlation between omnivores/predators and plant parasites was the
strongest, indicating that the omnivores/predators in soil food web mainly feed on plant
parasites. The diversity of cover crops influenced PPNs by affecting soil properties as well
as the community structure of soil nematodes through the energy flow in the food web.

5. Conclusions

In this study, we found that increasing the diversity of cover crops enhanced the total
density of nematodes, which thereby increased the number of bacteria and fungi-eating
nematodes, but inhibited the number of PPNs. Both soil nematodes and microbial com-
munities showed significant seasonal changes. The soil food web was found to be more
stable and mature under two and four crop mulching patterns. The diversity of cover
crops affected PPNs by changing soil physical and chemical properties and the commu-
nity structure of nematodes via energy flows in the food webs. In addition, significant
relationships were found between soil microbial communities and soil properties, such
as soil OM, TP, and pH. Our results demonstrated that the effect of cover crop on soil
nematodes and microbial communities depends on soil properties and seasonal changes in
tea gardens. This study highlights the significant interactions among soil properties, nema-
todes, and microbial communities, which implies the necessity of simultaneous studies on
multiple factors when exploring soil function changes as influenced by diversified cover
crop patterns in tea gardens.

Further studies should be designed on a multi-year basis, and long-term investigations
of the automatic detection of soil temperature and humidity should be considered in
studies on soil biodiversity, as affected by various cover crop patterns. In addition, both
beneficial and harmful nematode and microorganism species should be analyzed, and
these interactions should be studied in more detail in future studies.
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.3390/ijerph19052695/s1, Figure S1: The percentage of soil fungi and common bacteria in different
months under various cover crop patterns, Table S1: The sowing weight of covered crops in a tea
plantation, Table S2: Biological characterization of PLFAs, Table S3: Two-way ANOVA analyses of
cover crop patterns and time effects on soil physical and chemical properties, Table S4: Two-way
ANOVA of cover crop patterns and time effects on soil microbial communities; Table S5: Two-factor
ANOVA of cover crop modes and months on soil nematode communities.
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