Bioinformatics, 37(16), 2021, 2266-2274

doi: 10.1093/bioinformatics/btab077

Advance Access Publication Date: 3 February 2021
Original Paper

Sequence analysis
Detecting high-scoring local alignments in pangenome

graphs

5,6

Tizian Schulz and

Jens Stoye

123 Roland Wittler ® 2, Sven Rahmann ©® ?, Faraz Hach

1.2,%

'Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld 33615, Germany, 2Bielefeld Institute for
Bioinformatics Infrastructure (BIBI), Bielefeld University, Bielefeld 33615, Germany, 3Graduate School ‘Digital Infrastructure for the
Life Sciences’ (DILS), Bielefeld University, Bielefeld 33615, Germany, “Genome Informatics, Institute of Human Genetics, University
Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany, *Vancouver Prostate Centre, Vancouver, BC V6H 326, Canada
and ®Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6T 124, Canada

*To whom correspondence should be addressed.
Associate Editor: Janet Kelso

Received on August 24, 2020; revised on December 2, 2020; editorial decision on January 25, 2021; accepted on January 29, 2021

Abstract

Motivation: Increasing amounts of individual genomes sequenced per species motivate the usage of pangenomic
approaches. Pangenomes may be represented as graphical structures, e.g. compacted colored de Bruijn graphs,
which offer a low memory usage and facilitate reference-free sequence comparisons. While sequence-to-graph
mapping to graphical pangenomes has been studied for some time, no local alignment search tool in the vein of
BLAST has been proposed yet.

Results: We present a new heuristic method to find maximum scoring local alignments of a DNA query sequence to
a pangenome represented as a compacted colored de Bruijn graph. Our approach additionally allows a comparison
of similarity among sequences within the pangenome. We show that local alignment scores follow an exponential-
tail distribution similar to BLAST scores, and we discuss how to estimate its parameters to separate local alignments
representing sequence homology from spurious findings. An implementation of our method is presented, and its
performance and usability are shown. Our approach scales sublinearly in running time and memory usage with re-
spect to the number of genomes under consideration. This is an advantage over classical methods that do not make
use of sequence similarity within the pangenome.

Availability and implementation: Source code and test data are available from https://gitlab.ub.uni-bielefeld.de/gi/
plast.

Contact: jens.stoye@uni-bielefeld.de

Supplementary information: Supplementary data are available at Bioinformatics online.

distinction. The pangenomic approach allows a high memory saving

1 Introduction ; .
potential as sequence parts shared by multiple genomes have to be

1.1 Motivation

Substantial technological advances in DNA sequencing made gen-
omic data become one of the largest types of information kept by
humankind (Stephens ez al., 2015). Thus, finding efficient ways of
storing and analyzing these data is of high importance. The discip-
line of computational pangenomics tries to cope with this challenge
(Marschall et al., 2016). A pangenome is defined as a set of genomic
sequences that may be stored and analyzed collectively while being
represented as a single entity. Sequences within these sets are usually
strongly related and thus highly similar. Commonly, a pangenome
comprises all genomic sequences of a species, but this definition may
be widened or tightened to any other taxonomic unit or kind of

©The Author(s) 2021. Published by Oxford University Press.

stored only once. In addition, it enables the simultaneous compari-
son of a large number of individual genomes while avoiding classical
reference-based analyses that turned out to have shortcomings in
various cases (Brandt et al., 2015; Degner et al., 2009).

Pangenomes can be represented in many forms, ranging from
pure collections of raw sequences (Vernikos et al., 2015) over align-
ment-based approaches using multiple sequence alignments (Edgar
and Batzoglou, 2006; Notredame, 2007) to graphical structures
(e.g. Dilthey et al., 2015; Garrison et al., 2018; Igbal ef al., 2012).
In this work, we focus on graphical structures. In particular, we rep-
resent pangenomes as compacted colored de Bruijn graphs (Marcus
et al., 2014; Minkin et al., 2017). Advantages of this representation

2266

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0003-0744-7078
https://orcid.org/0000-0002-2249-9880
https://orcid.org/0000-0002-8536-6065
https://orcid.org/0000-0003-1143-0172
https://orcid.org/0000-0002-4656-7155
https://gitlab.ub.uni-bielefeld.de/gi/plast
https://gitlab.ub.uni-bielefeld.de/gi/plast
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab077#supplementary-data
https://academic.oup.com/

Detecting high-scoring local alignments

2267

over others include low memory and storage footprints, versatility
in accepting different input types (raw sequences or assemblies) and
fast and alignment-free construction.

1.2 Background

Basic kinds of comparisons on a pangenome are different variants of
sequence searches. Detecting exact or approximate matches can
serve to answer questions like presence or absence queries. More
complex analyses often involve alignment-based methods.

Algorithms for sequence-to-graph alignment have already been
studied for some time. Early works date back to 1989 where a graph
was used for approximate regular expression mapping (Myers and
Miller, 1989). In 2000, an algorithm to align sequences to arbitrary
graphs was proposed in the context of hypertext search (Navarro,
2000). Lee et al. (2002) introduced partial order alignment (POA)
on directed acyclic graphs in 2002. Works by Dilthey et al. (2015,
2016) are restricted to acyclic graphs as well. The tool ‘vg’ uses POA
on general graphs (Garrison et al., 2018) by unrolling cyclic parts.
Read mapping on de Bruijn graphs can be done by a heuristic pro-
posed by Limasset et al. (2016). Recently, a method was published
allowing exact read mapping on general graphs (Rautiainen et al.,
2019). However, covering a distance based scenario only, a general-
ization to local alignment is non-trivial and makes this approach
limited to semi-global alignment. Other solutions have been pre-
sented by Antipov et al. (2016) and Kavya et al. (2019).

These solutions address a sequence mapping scenario where
query sequences are aligned either globally or locally to the graph re-
gion that best matches the query. This approach is usually designed
for rapidly mapping a huge number of queries gaining speed by the
underlying assumption that a query either maps to exactly one pos-
ition in the graph or to none.

In this work, we study the problem of finding high-scoring local
alignments between a query sequence and a graph that are likely to
represent sequence homology. The exact notion of ‘high-scoring’ is
based on statistical considerations. Hence, we are within the regime
of the popular Basic Local Alignment Search Tool (BLAST; Altschul
et al., 1990). Even though BLAST is still widely used, many other
solutions have been presented for heuristic sequence alignment
searches (e.g. Kent, 2002). Some exploit new algorithmic techniques
or data structures to improve sensitivity, run time or both (e.g.
Edgar, 2010; Frith and Shrestha, 2018; Steinegger and Soéding,
2017). Others exclusively focus on protein alignment (Buchfink
et al., 2015; Suzuki et al., 2015; Vaser et al., 2016; Zhao et al.,
2012). Recently, the tool BlastFrost (Luhmann et al, 2021)
appeared, which enables sequence queries on a pangenome graph.
However, it does not calculate alignments.

1.3 Contribution
In comparison to the abovementioned alignment tools that work on
collections of individual sequences, our approach stores genomic
sequences in a graph to analyze them jointly. Moreover, by querying
the graph, we are able to compare these sequences not only to the
query but also among each other. This has an advantage over other
approaches where an all-against-all post-processing of results would
add a quadratic number of comparisons to their running time. To
this end, we introduce the notion of a guorum and a search color set
to allow for customized searches in specific parts of the pangenome.
A quorum here is meant as the number of individual sequences of
the pangenome that have to share a graph sequence to consider it
during search. A search color set enables the search to be focused on
graph sequences that appear in individual sequences from the set.
For instance, a user might be interested only in alignments shared by
the majority of genomes showing a certain phenotype. Finally, we
present first results of alignment statistics considering that all
sequences in a pangenome are related and highly similar. This is in
contrast to the general initial, underlying independence assumptions.
To our knowledge, our approach is unique and has never been
studied before.

The remainder of this manuscript is organized as follows. In
Section 2, we define our model, formally state the problem and

describe the algorithmic procedure. Section 3 contains use cases of
our algorithm and comparisons of its performance. In Section 4, we
discuss our results. The source code of our implementation, instruc-
tions on how to generate samples for our statistical parameter esti-
mation and test data used in this article are available from https://
gitlab.ub.uni-bielefeld.de/gi/plast.

2 Materials and methods

2.1 Basic definitions

A string is a sequence of characters drawn from a finite, non-empty
set, called alphabet. For a given string s, we denote its length by |s|,
the character at position 7 by s[i] and the substring starting at pos-
ition 7 and ending at position j by s[i..j]. A string of length & is called
a k-mer. For any decomposition s = xy, the (potentially empty) sub-
strings x and y are called prefix and suffix of s, respectively.

In this work, we assume that all strings are over the DNA nu-
cleotide alphabet Zpna = {2, C, G, T}. Then, a query is a finite string
q over Xpna. A genome is a set of strings over Xpna that can be
many millions of short sequences representing raw data produced by
a sequencing machine, or a few long sequences representing chromo-
somes or contigs of a complete or draft assembly. Each genome is
identified with a unique color of the universal color set U, and the
color is assigned to all strings of the genome to distinguish between
sequences from different genomes.

2.2 Compacted colored de Bruijn graphs

Let k > 2. A compacted colored de Bruijn graph of dimension k
over an alphabet X and a color set U is a vertex-labeled directed
graph G = (V,E, 2, C), where each vertex v € V is labeled with a se-
quence A(v) of length at least k, each k-mer r appears in the label of
at most one vertex of the graph, there exists an edge (v,w) € E from
vertex v to vertex w if and only if the (k—1)-length suffix of i(v)
equals the (k—1)-length prefix of A(w), and C assigns a color set
C(r) C U to each k-mer r that appears in any vertex label. For con-
venience, we write |v| instead of |A(v)| for the length of the label of
v. In addition, /' (v) denotes the label of v except its last k —1 charac-
ters, i.e. 2/ (v) = A(v)[1..(Jv] — k + 1)].

2.3 Locations and truncated paths
We represent a location in a compacted colored de Bruijn graph
G = (V,E,,C) by a pair (v, i) withve Vand 1 <i < |v|. We
say that a k-mer r overlaps a location [= (v,i) if and only if »
is a substring of A(v) starting at position o such that
max(1,i—k+1) < o < min(, [v]| — k+1). For an interval [b..e]
of positions within v, 1 < b < e < |v|, we define the interval loca-
tion as L(v,b,e) = {(v,b),(v,b+1),...,(v,e)}. The interval loca-
tion L(v, 1, [v]) of a complete vertex v is denoted by L(v).

We say that p = (vo,v1,...,v;) is a path in G if vo,v1,...,v, €
V and (vj,vi11) € E for all i with 0 < i < z. A triple t = (p, b, e) is
called a #runcated path in G from location (vo, b) to location (v, e)
passing vertices vy, . ..,v,1 if and only if (i) p = (vg, vg, ..., Vo) isa
pathin G; (ii) b € {1,...,|vo|}; (iil) e € {1,...,|v.|}; and (iv) if z=0
then b < e (see Fig. 1 for an example). A truncated path ¢ = (p, b, e)
has a sequence

Mwo)[b..e], ifz=0,
At) = { Avo)lb-lvol —k+ Ui (w1)...
2 (vz-1)A(v2)[1.], otherwise.

The path location of a truncated path t = (p, b, e) is defined as

L(vo, b, e), ifz=0,
L(t) = { L(UO‘, b, |U0‘) u U:/E(u. Vo1 } L(U)
UL(vz, 1), otherwise.

The color set of a path location L is then defined as
C(L) := U, overlaps any ter. C(7). Given a quorum value

https://gitlab.ub.uni-bielefeld.de/gi/plast
https://gitlab.ub.uni-bielefeld.de/gi/plast

2268

T.Schulz et al.

rank(AG)=2 —; w=2

PROF ‘ 1 ’ 2 | 4 | 5 | 6 | 7 ‘ 8 | 9 |10‘11’12‘12|14‘15’15|15‘

OCC[PROF[1]]

ocCC ID|5|4]12(3|3[|1|6(|6]|2[3|2[6(4]|5]|3

offset
#occ(AG)=2

=
fn
o
o
N
o
o
.
N
un
o
N
o
o
w

Fig. 1. Used data structures. Top: Example of a compacted de Bruijn graph G. The
truncated path ¢ = (1,(2,4,6),0) is marked in bold. Bottom: Visualization of an
index search using arrays PROF and OCC. Occurrences of the 2-mer AG in G are
accessed by looking up AG’s position in PROF that provides the offset in OCC
where #occ(AG) locations corresponding to occurrences of AG in G are stored con-
secutively. Array and sequence indices start with 0

m e {1,...,|C|}, we say a truncated path ¢ is quorum fulfilling if
and only if |C(I)| > m for every location I € L(t).

2.4 Formal problem statement

Our algorithm finds high-scoring local alignments between a given
query sequence g and a pangenome represented as a compacted
colored de Bruijn graph G = (V,E, ,C) over the DNA alphabet
and a color set U. Apart from g and G, it takes as input a non-empty
color set Cyoren € U called search color set and a quorum
m € {1,...,|Csarcn|}. It outputs a set A, where each A € A is a pair
(e, [e1, €2, .. .]) consisting of an alignment o between a substring of q
and the sequence /(¢) of a quorum fulfilling truncated path ¢, and a
list of checkpoints c1,c;,... partitioning ¢ into maximal subpaths
with the same color set, each containing a subset of Cq,,o, Of cardin-
ality at least . Our algorithm allows to find local alignments for
both g and its reverse complement. For the sake of simplicity, we
forgo to mention the reverse complement in the following descrip-
tions. Procedures may be assumed to work similarly for the reverse
complementary sequence.

2.5 Algorithm

The algorithm consists of three basic algorithmic steps. In the seed
detection step, maximal exact matches of a minimal length w < k
are searched between g and all sequences of G. Found seeds are
extended without gaps in the seed extension step. Statistical consid-
erations are used to extract biologically meaningful alignments.
These are then recalculated in the gapped recalculation step to ob-
tain the finally reported results.

2.5.1 Preprocessing: Graph construction and index generation
While the query sequence g has to be specified as an input param-
eter, the graph G may be given or initially constructed from a set of
genomes in a preprocessing step. Once G has been created for a spe-
cific value of k, an additional index is built according to a minimal
seed length w < k.

The index consists of two arrays that allow a fast location of
exact matches between g and sequences stored in G. Array PROF is
a w-mer profile that contains, in form of a cumulative sum, for any
w-mer o the number of occurrences of w in G, denoted #occ(w). In

other words, PROF|[0] = #occ(wp) and
PROF[] := #occ(w;) + PROF[i — 1] for alli,1 < i < 4%,

where w; is the i-th w-mer over Zpna in lexicographic order. The se-
cond array, OCC, harbors the occurrences of all w-mers in the

graph. An occurrence of a w-mer w in G is defined as a pair
occ(w) : = (v,0) where v € V and o represents the offset in A(v) at
which w starts. In OCC, all occurrences of a w-mer are stored con-
secutively in some arbitrary order such that OCC[PROF[i — 1]] con-
tains the first occurrence of w; and OCC[PROF[i] — 1] the last. It
may be accessed by using a ranking function to get position i in
PROF. In case a w-mer falls into the (k — 1)-length label overlap of
two consecutive vertices # — v, it is counted only once and only its
occurrence in v is stored. An example of the index and its use can be
found in Figure 1.

2.5.2 Seed detection step

The index is used to look up all w-mers occurring in g. All matches
are checked whether they fulfill the quorum requirement.
Consecutive matches may be merged into a single interval location.
A match is stored in a list directly linked to the vertex whose se-
quence it was found in. This allows a quick access to the match if
needed during seed extension. Inside the list, matches are ordered by
increasing starting offset in the vertex label. Match order is used to
terminate a list iteration as soon as it is clear that a demanded match
cannot be part of a list anymore, which leads to an additional speed
gain.

2.5.3 Seed extension step

Each match represents an interval location used as seed for an
ungapped extension. The extension is performed according to an X-
drop algorithm as used in BLAST along g and all truncated paths of
G starting at an initial interval location (v, b, e). The paths are gen-
erated by a depth-first search traversal through G outgoing from
vertex v. The exploration of a path stops as soon as either the cur-
rent extension’s score drops below X or the quorum requirement is
no longer fulfilled. Our experience shows that the exhaustive proc-
essing of all existing truncated paths starting from v through G is
possible without a notable slowdown of the algorithm most of the
time even though the number of paths may be very large. However,
an iteration over all truncated paths can become infeasible if G has
some dense regions consisting of vertices with short labels and high
degrees, producing truncated paths with highly similar sequences. If
these sequences are similar to the query g, the X-drop criterion does
not suffice to terminate path explorations leading to suboptimal
alignments within an acceptable time frame. Therefore, we intro-
duced a threshold that limits the number of vertices that can be vis-
ited during the extension of a seed.

2.5.4 Gapped recalculation step

The result of the ungapped extension is a set of path locations con-
sisting of a few biologically meaningful and many more spurious
hits. Statistical significance criteria, described in Section 2.6, are
used to rank the hits and separate both kinds. The most significant
alignments are recalculated using standard gapped alignment with
banded dynamic programming. The bandwidth is chosen according
to the quality of the alignment. The final alignments are reported,
together with statistics for gapped alignments.

2.6 Alignment statistics on a pangenome graph

In classical pairwise (linear) sequence comparison, an extensive stat-
istical theory exists, sometimes referred to as Karlin—Altschul theory
(Karlin and Altschul, 1990), but subsequently extended, refined and
made practical by many others (e.g. Pearson, 1998; Waterman and
Vingron, 1994). No statistical theory currently exists for sequence
queries against (graphical) pangenomes, so we provide a baseline
here.

A key question is as follows: Given a score value s, how many
hits H, of a random query sequence of length 7 against the given ref-
erence (genome or pangenome) of size m are observed whose score
reach or exceed s? The expected value E; = E[H] is called the E-
value of an observed score s. Let S be the score of the best hit. Then
we may observe the event {S > s} that is equivalent to {H; > 1} (as
one implies the other), and the probability ps := P[S > s] = P[H, >

Detecting high-scoring local alignments

2269

1] of the event that there exists at least one hit with score reaching s
is called the p-value of an observed score s. If E, is small (say
< 0.05) by Poisson approximation and first-order approximation
of the exponential function, then we have

ps=1—-PH; =0] ~1—exp(—E;) ~ Eg,

and we need not distinguish in practice between E-value and p-
value. We summarize an approximate version of the classical
Karlin—Altschul statistics for pairwise sequence alignment and then
discuss our proposal about how to generalize the theory for query-
to-pangenome alignment.

2.6.1 Summary of approximate Karlin—Altschul statistics
Comparing the expected numbers of hits Eg, Egi1, Esy2,... with
increasing scores s, (s + 1), (s + 2), ..., when already E; is small, one
observes that Eg,, = u* - E; for some factor 0 < u < 1, mostly in-
dependent of s, as long as s is large enough. Factor u is typically
written as e~* with some A > 0. This holds if the average score when
comparing two single nucleotides is negative; otherwise, there exist
arbitrarily long high-scoring matches. If we increase the length 7 of
the query or length 1 of the reference, we provide more possibilities
for a hit, and the expected number of such hits increases linearly
with both 7 and m. This leads to

ps ~ E; = Kmn - e, (1)

where K> 0 and 4 > 0 are constants, 7 is the query length and m is
the reference genome length. Note that this approximation is only
valid for the extreme tail of the distribution (large s, small
E; =~ p; < 0.05). The functional form of (1) has been empirically
shown to be very robust, valid for ungapped and gapped alignments
and even when considering compositional bias (difference in GC
content) between query and reference, or when considering a fixed
query against a random reference (Wolfsheimer et al., 2011).
Constants K and 1 depend on the scoring scheme, including the gap
costs for gapped alignment. In practice, 2 must be determined by
sampling and simulation (Altschul ez al., 2001; Wolfsheimer ez al.,
2011).

2.6.2 Statistics for pangenome alignment

We hypothesize that a relation as in Equation (1) can be observed
when considering the top score of a random query aligned against a
pangenome, if s is sufficiently large such that hits reaching score s
are rare. We further hypothesize that such a relation holds for both
ungapped high-scoring pairs after seed extension and for final
gapped alignments, albeit with different values of 2 > 0 and K> 0.
However, the dependency of 4 and K on sequence relatedness and
diversity within a pangenome may be complex, and it is out of scope
of this work to investigate the details. Instead, we investigate
whether indeed there holds an affine-linear relationship logps ~
C — s with C := log(Kmn) € R for fixed query length 7 and a pan-
genome graph of size m.

2.6.3 Parameter estimation by importance sampling

To obtain a good estimate of 1 > 0 and C € R, we need good esti-
mates of small probabilities p, for large s. Using random sequences,
large s with small p; < 107® are by definition rare, so too many
samples would be needed for accurate estimates. Hence, we only use
this ‘naive’ random sampling strategy to obtain an initial estimate
of C and 2 and then resort to importance sampling, using a
Metropolis—Hastings Markov Chain Monte Carlo strategy similar
to the one described by Wolfsheimer et al. (2011).

In brief, let 7, := P[S = s] be the unknown score distribution on
integers s. We construct a Markov chain in such a way that the
probability to sample a random sequence with score s is exponen-
tially biased toward higher scores, 7, := n - exp(4o - s)/Z, where
/o < A should slightly underestimate the true 1 and can be derived
from the initial naive sampling step, and Z is the appropriate (un-
known) normalization constant such that > 7, =1. To avoid

computing Z explicitly, we use the Metropolis—Hastings method:
Given a current DNA sequence x, a new candidate sequence y is pro-
posed from a neighborhood of x (see Wolfsheimer ez al., 2011 for
the precise definition of the neighborhood). Roughly, a single nu-
cleotide can be inserted, deleted or substituted at any position, delet-
ing or inserting a nucleotide at the left or right end to keep the
sequence length 7 constant. Thus, the edit distance between x and
the new proposal y is at most 2. This creates a Markov chain where,
in equilibrium, each sequence is equally probable, similarly to
the naive simulation, where each nucleotide is drawn independently
from a uniform distribution. Now, to bias the samples toward
higher scores, the scores s, and s, of x and proposal y, respectively,
are compared. We accept y with probability min{1, (r, /x,)/
(75, /ms.)} = min{1, exp(Zo - (s, — sx))}, i.e. a score increase is al-
ways accepted, and a decrease only with a certain probability. When
a proposal is rejected, x stays the current sequence and another pro-
posal is generated. A score sample is drawn after a large number of
accepts that allows the query sequence to change considerably in
comparison to the previous sample. Typically, 272/3 accepts suffice
for a query of length 7. The first few samples are discarded to allow
the Markov chain to reach equilibrium. Since the defined chain is
rapidly mixing (there exist short paths from every sequence to every
other sequence), we found it sufficient to discard the first five
samples.

The procedure yields uncorrelated score samples, which stem
from the biased distribution 7 = (7). Let R, be the absolute number
of times that score s was sampled, and let T,: =), Rg-
exp(—4o - §'). Then A can be estimated by fitting a line to points
(s, log Ts) in an interval of s where the counts R, are consistently
high, say R; > 50. Then, C is estimated from the 10% of highest
scores in the initial naive sampling step.

3 Results

We implemented the algorithm described in Section 2.5 in C+-+
using Bifrost (Holley and Melsted, 2020) as the underlying realiza-
tion of a compacted colored de Bruijn graph. Among several other
implementations (e.g. Almodaresi et al., 2017; Chikhi ez al., 2016;
Holley et al., 2016; Igbal ez al., 2012; Muggli ez al., 2017), we chose
Bifrost since it is an efficient, easy-to-use implementation, allows the
usage of assembled and raw sequencing data and provides the possi-
bility to assign any kind of data to vertices of the graph. Our imple-
mentation called PLAST' (‘Pangenome Local Alignment Search
Tool’) is available from https://gitlab.ub.uni-bielefeld.de/gi/plast.
We present results of our statistical parameter estimation, followed
by a performance analysis of our method. In particular, we show the
advantage in runtime, memory usage and result aggregation when
searching local alignments inside a pangenome with our method
compared to a conventional search and analysis using other BLAST-
like software tools. Afterwards, we present a more advanced use
case and show that our method scales even to human data. Unless
stated differently, all graphs have been built for a k-mer length of 31
(Bifrost default), and searches were performed using default parame-
ters. To obtain statistical parameters, we used a combination of ini-
tial naive sampling followed by importance sampling, as described
in Section 2.6.

3.1 Statistical parameter estimation

We tested the hypothesis from Section 2.6 that logps ~ C — s for
constants C € R and 4 > 0 for both ungapped and gapped align-
ments. After initial confirming results on simulated pangenomes
(not shown), we considered a real pangenome of 220 Salmonella
enterica genomes of the same lineage (Para C) taken from Zhou
et al. (2018). Naive simulation was performed with one million ran-
dom DNA sequences of length =200, yielding the empirical com-
plementary cumulative distribution function (ccdf) of the best hit’s

1 Not to be confused with a software of the same name introduced in (Van Nguyen and
Lavenier, 2009) parallelizing the conventional BLAST algorithm.

https://gitlab.ub.uni-bielefeld.de/gi/plast

2270

T.Schulz et al.

score for each query for both the gapped and ungapped case. A
least-squares fit of affine linear functions in the distribution’s tail,
considering logarithmic cumulative relative frequencies between
1072 and 107*, yielded initial estimates of C=17.45 and 1 = 1.085
for ungapped alignments and C=14.81 and 4 = 0.852 for the final
gapped alignments (see Fig. 2). As expected, Agapped < Aungappeds aS
gaps provide more freedom to achieve a higher score with the same
query length. The affine relationship cannot hold for much higher p-
values because our approximation assumes small p; < 1072, and
we also cannot make a statement for much lower p-values with
‘only’ 10 simulations.

To gain access to the rare-event tail, we performed importance
sampling as described above. Per sampled sequence and score, we
need to evaluate (272/3)/a sequences, where o is the average accept-
ance rate, which we typically find to be around 0.46 to 0.75, which
amounts to approximately (212/3)/(1/2) = 4n/3 evaluated sequen-
ces per drawn sample. Thus, importance sampling introduces a 250-
fold overhead over naive sampling for n=200. However, it allows
us to sample from high scores that are unobtainable by naive sam-
pling, even if billions of samples were used, yielding much higher ef-
ficiency by several orders of magnitude (cf. importance sampling

10° 4 XXX XKy

Xx
Xxx
s *
1072 1 X%
* o=
* X
-4 X
10 F =
+
+ +
+ 4
1075 4 =+ +
e
L +
+

* naive sampling ungapped +
1074 4+ importance sampling ungapped, Ao = 1.05 ¥ + ¥

¥ naive sampling gapped b + G

+ Iimportance sampling gapped, Ap = 0.85 ¥ +
1010 :] : } —* |+

10 15 20 25 30 35 40 45

Score

naive sampling ungapped

0.30 4 mm importance sampling ungapped, Ag=1.05
! naive sampling gapped

5 importance sampling gapped, A = 0.85
0.25

0.20

0.15 4

0.10 1

0.05 1

0.00 - g T T
20 40 60 80 100

Score

Fig. 2. Results of naive and importance sampling. Top: Logarithmic plot of p-values
(complementary cumulative distribution function) of highest ungapped and gapped
alignment scores for random queries (without color or quorum constraints) against
a pangenome of 220 Salmonella enterica genomes. Naive simulation with 10° sam-
ples yields accurate estimates for p-values in the range between 1072 and 107*.
Importance sampling enables a better view of the rare-event tail. For p-values
< 1072, the hypothesis of an affine dependency holds with values C = 20.78 and
A =~ 1.136 for ungapped alignments and C ~ 16.11 and 1 ~ 0.898 for gapped align-
ments, estimated from importance sampling. Bottom: Histograms of (normalized)
sample counts per score value for ungapped and gapped alignments, using naive
sampling and importance sampling. Importance sampling gives access to a broader
interval of scores in the rare-event tails

tails in Fig. 2). We obtain further refined estimates of 4 and C for
both ungapped and gapped alignments. As expected, using weight
factors of 4y = 1.05 for ungapped and 49 = 0.852 for gapped that
are slightly smaller than the ‘true’ 2 = 1.136 for ungapped and 1 =
0.898 for gapped, we observe an almost flat and slowly decreasing
histogram of score counts (Fig. 2) and thus sample from a broad
interval of scores.

3.2 Comparison to other tools

We evaluated our approach by comparing our implementation
against MMseqs2 (as of January 8, 2020), blastn (2.6.0+), BLAT
(36x4) and UBLAST (11.0.667). The tools DIAMOND, SWORD
and GHOSTZ do not support DNA to DNA alignment.
RAPSearch2 was not possible to install due to a reported, but unre-
solved issue. LAST is known to run very slow on highly redundant
datasets—index building was terminated after 10 days. BLAT was
designed to search genomes (represented as target databases) for
query sequences. It was only possible to run the tool for 750
genomes at once. Runs for larger pangenome sizes had to be split
into separate program calls. Results and runtimes were aggregated.
Similarly, UBLAST’s freely available 32-bit version has an upper
database size limit such that pangenomes consisting of more than
100 genomes had to be distributed on multiple databases.

For the comparison, we downloaded 5000 randomly selected
Salmonella Typhimurium assemblies from a total of 19237 that
were annotated as serovar ‘Typhimurium’ from EnteroBase
(Alikhan et al., 2018). As queries we chose 100 random substrings
of length 1000 from the Salmonella reference genome assembly
(RefSeq assembly accession GCF_000195995.1). We obtained
queries with an average percentual identity of about 86.9% (SD
31.1) per query and genome where 55953 query genome combina-
tions without any alignment were considered with an identity of
Zero.

If possible, tools were run with the same scores for match, mis-
match, gaps and the same X-drop value. Additionally, we set the
maximum number of reported results high enough to get all existing
results. This was necessary, because all other tools do not compare
their results internally and would otherwise report only the best re-
sult for each genome separately, hiding all further findings. For all
remaining parameters, default values were used. Concrete program
calls are documented at https://gitlab.ub.uni-bielefeld.de/gi/plast.
Calculations were performed single threaded on a virtual machine
with 28 cores and 256 GB of RAM.

To compare the results, we scanned the output of each tool and
identified corresponding alignments of PLAST and BLAST. In case
of PLAST, this identification was possible using the color sets that
are part of the program’s output for each alignment as explained in
Section 2.4. Two results are considered matching if they overlap by
at least 90% of the shorter alignment with respect to the query se-
quence. We call an alignment unique if it does not match any align-
ment of another tool. The comparison is shown in Table 1. We see
that PLAST reports the lowest total number of results. This is due to
the fact that one alignment of PLAST may correspond to several
genomes of the pangenome. All other tools report such alignments
separately, and an additional post-processing step would be required
to merge them. UBLAST reports by far the highest number of align-
ments. Thus, it seems to be most sensitive in our experiment. Apart
from UBLAST, the number of results that could be found by some
tool but not PLAST is below 0.03% (columns ‘Tool\PLAST> and
‘BLAST \Tool’, first row). The percentage of results unique to
PLAST varies between ~4% and ~6% among the tools. However,
only 178 PLAST alignments (2.4%) were unique with respect to all
other tools. Their score was low (mean 18.5 and maximum 25) and
they were short (mean length 28 bp and maximum length 112 bp).
They are a result of the different statistical parameters used by
PLAST in comparison to other tools. As explained in Section 1, these
tools do not consider a pangenomic use case where all sequences in
the database are highly similar. Thus, they overestimate the chance
for a random hit. Using the same statistical parameters as BLAST,
all 178 results are filtered out by PLAST due to the E-value thresh-
old. We observed 306 PLAST alignments (4.0%) that were unique

https://gitlab.ub.uni-bielefeld.de/gi/plast

Detecting high-scoring local alignments

2271

Table 1. Comparison of PLAST to other alignment tools

Tool Results Tool\ PLAST\ Tool\ BLAST\

PLAST Tool BLAST Tool

PLAST 7565 - - 357 290

4.72 % 0.02 %

BLAST 1246 221 290 357 - -
0.02 % 4.72 %

BLAT 457089 1 456 508 49798

0.00 % 6.03 % 0.11 % 4.00 %

MMseqs2 695792 6 322 800 21022

0.00 % 4.26 % 0.12 % 1.69 %

UBLAST 4881509 111386 272 220577 5459

2.28 % 3.59 % 4.52 % 0.44 %

Note: 100 random substrings of length 1 000 from the Salmonella reference
genome assembly have been aligned to the ‘Typhimurium’ dataset. The col-
umns list the tool names, absolute number of alignments and a comparison to
PLAST and BLAST, where X\Y denotes the number of results of X that did
not match any result of Y.

. :
¥
- o PLAST 1
o BLAST e
o ||+ BLAT :
N | = MMsegs2 H
4 UBLAST '
o 4
2 7 . ® .
0 :
2 / / '
- ’/ . |
L H
2 '
E o :
s 8 /o o
g N . :
o
-
o |] I/ :
39 ° ./ E
I/ H
0 a— :
o - — :
T T T T T L
0 100 200 300 400 500
Number of genomes
: o
g | ;
S a A A A A
® H
- '
S :
S * H
N '
-

Memory peak (Mb)
1500 2500
] Il

AN
\

S 4 . ° e
n o '
Zo o
¢ :
© - |
T T T T T 1

0 100 200 300 400 500

Number of genomes

with respect to at least one other tool but at the same time found by
at least one other. 56 of them had a score higher than 25 (maximum
678) or were longer than 112 bp (maximum 999 bp). Generally, we
found that PLAST was able to find alignments with even very low
sequence identity values of up to 58%, which is comparable to
BLAST (63%) in this setting.

Next, we randomly selected subsamples from the 5000
Salmonella genome assemblies to generate pangenomes of different
sizes and compared the tools’ performance. Runtime and memory
usage are shown in Figure 3. Generally, we can see that most tools
quickly lose speed with a growing pangenome size. Only MMseqs2
is able to keep a speed comparable to PLAST even for a pangenome
of 5000 individual genomes. However, its speed comes along with a
memory requirement between ~9 GB and 176 GB, which is far be-
yond that of all remaining tools.

All tools spend a large amount of memory for loading the highly
redundant datasets and additional index data structures for fast
alignment searches. Our graphical representation, in turn, allows a
maximal exploitation of sequence similarity. Most parts of the
graph represent sequences shared by many individual genomes that
have to be stored only once. An alignment calculated for these parts
is valid for all sharing genomes and does not have to be calculated
multiple times. Thus, we observe a strongly reduced growth in run

1200 1400
1 1

1000

Run time (seconds)
600 800
1 1
.

400
1
o o
[]

/ =
T "
L L d——=8
o 8=
T T T T T T
0 1000 2000 3000 4000 5000
Number of genomes
o
()
w |
N
L
&
x
[
[
[} L]
2 o |
5 =
g /
= L]
e 4
L
L]
o - * * * *
L — . N .
° o
d . o——0
o ﬁé.Q——O
T T T T T T
0 1000 2000 3000 4000 5000

Number of genomes

Fig. 3. Run time and memory usage comparison of all tools. The areas marked by a dashed rectangle in the plots on the right are shown in separate plots on the left. Values on
less than 1000 genomes have been averaged over five random subsamples each. The same legend applies to all plots

2272

T.Schulz et al.

time and memory consumption for PLAST. Considering a pange-
nomic use case with constantly growing numbers of individual
genomes, our approach will always be superior compared to con-
ventional methods not making use of sequence similarity.

When comparing PLAST’s run time for different quorum values
and pangenome sizes, we can generally observe two driving forces
(data not shown). On the one hand, the usage of a quorum has a
beneficial influence on PLAST’s run time, because it allows to disre-
gard parts of the graph harboring rarely appearing variations that
may prune it considerably, especially if the overall diversity within
the pangenome is high. At the same time, a quorum check is com-
paratively cheap if the graph has only a moderate total number of
colors in it. On the other hand, for larger pangenomes, the usage of
a high quorum becomes an increasing burden as color coverages
have to be checked on every vertex using Bifrost’s APL. The high de-
gree of color compression generates a noticeable loss in speed in this
case, which outstrips any gain by pruning from a certain pangenome
size. In our experiments, it doubled computation time compared to
a run without quorum for the largest pangenome size.

To prevent this loss in speed, a first filter was implemented that, in-
stead of only checking color presence, also considers the number of
missing colors on a vertex and rejects it as soon as this number
becomes too high during iteration. Other heuristics to speed up a quo-
rum check are currently under development and discussed in Section 4.

3.3 Pathogenicity islands in Vibrio cholerae

Pandemic strains in V. cholerae are known to contain the Vibrio
Pathogenicity Island-1 (VPI-1) that consists of a whole set of genes
whose sequence and order inside the island can be diverse among
different strains (Karaolis et al., 2001).

We examined a recent collection of 21 V. cholerae genomes, 7 of
which have been obtained from clinical samples and are labelled
‘pandemic genomes’ (PG), and the remaining 14 have been obtained
from non-clinical samples and are labelled ‘environmental genomes’
(EG) (Shapiro et al., 2017, primary dataset). Some of the samples
were available as assemblies, whereas others could be found only as
raw read datasets. Nevertheless, one graph was built from all 21
samples, using the functionality of the underlying Bifrost library to
construct a de Bruijn graph from both types of data: read data,
which are automatically filtered for low coverage k-mers, as well as
assembly data that are not filtered.

As a proof of concept, we used PLAST to search VPI-1 inside the
V. cholerae pangenome—once restricting the search to alignments
with PG genomes to verify the existence of VPI-1 in PG, and once
restricting the search to alignments with EG genomes to verify the
absence of VPI-1 in EG. For the search, we set an E-value cutoff of
0.01, the maximum number of alignments to maximum, and used
standard or automatically determined parameters otherwise.

The order of VPI genes within PG genomes may be rearranged,
and EG genomes might contain only small fragments of the island.
Even so, we used the complete island sequence (accession no.
AF325734 [Karaolis et al., 2001]) of length 41272 bp as query.

fTac< Y0 _oI<o0UEOukFWLE _nLULWSO
O®BRBOO0OO0OBELEELEEEEE8L8EE8LeE8006086 6L
PG
Bgdl
Bgd5
Bgd8
MQ1795

N16961
MJ1236
0395

0.0 0.2 0.4 0.6 0.8 1.0
alignment coverage

PLAST’s ability to compute local alignments and to report many
suboptimal findings, nevertheless, allowed an easy detection of each
VPI gene separately. Furthermore, conserved gene orders could be
detected by local alignments spanning larger fragments of the island.
We observed 64 alignments in the PG search that were longer than
2814 bp, i.e. three times the median length of coding sequences in
VPI-1.

For each coding sequence in VPI-1, we determined the maximum
overlap by any local alignment. As can be seen in Figure 4, when
restricting the alignment to PG, all coding sequences are covered by
alignments almost completely (row ‘PG’). In contrast, when restrict-
ing the alignment to EG, only very few (three of twenty-nine) coding
sequences are covered by any alignment by 50% or more
(row ‘EG’). We want to highlight here that the detection of such out-
standing sequences that are contained in any of a whole group of
genomes is possible by a single PLAST search. For further investiga-
tions, it would be possible to analyze the PLAST alignments for indi-
vidual genomes, as exemplified in the remaining rows in Figure 4,
where the maximum overlap is determined among those parts of the
alignments that are supported by the corresponding individual
genomes.

3.4 Beyond bacterial pangenomes

To test PLAST’s applicability beyond bacterial pangenomes, we
built a human pangenome using data from the 1000 Genomes
(1IKG) Project phase 3 (1000 Genomes Project Consortium et al.,
2015). We used bcftools consensus (https:/github.com/samtools/
beftools) to generate chromosome-wise genomic sequences for chro-
mosomes 2 and 15 of all 2504 human individuals by inserting all
reported variations into the GRCh37 reference sequence and built
one graph (k=63) for each of the two chromosomes. Instead of
building a single graph from all human chromosomes at once, we
had to perform this chromosome-wise approach as our system could
not store all 2504 human genome sequences including indexing
structures at once for a comparative call of MMseqs2 (see below).
Our method alone also scales to a whole human pangenome of
this size.

We exemplarily investigated a known polymorphism within the
human pangenome. The single nucleotide polymorphism rs1426654
is reported to influence skin pigmentation. Its reference allele indi-
cates a light skin color that is common to a West Eurasian ancestry
(Lamason et al., 2005; Soejima and Koda, 2006). It is located on
exon 3 of gene SLC24AS on chromosome 15. Searching the exon se-
quence from reference genome GRCh37 within the pangenome of
chromosome 135 resulted in two full size alignments: a perfect match
representing the reference allele, and one having a single mismatch
representing the variant allele. Restricting our search to the
European core genome (search set of all European samples and a
quorum of 99%), we exclusively found the reference allele, confirm-
ing the results of the earlier studies.

To evaluate PLAST’s performance on the human pangenome, we
used the graph of chromosome 2 (~8% of the complete human

ORF1
- aldA
L tagA
- ORF2
- ORF3
I ORF4
I tagD
L tepl
L tcpP
I tcpH
I tcpA
I tcpB
- tcpQ
L tcpC
I tcpR
I tcpD
I tcpS
L tepT
L tcpE
I tcpF
I toxT
- tcp)
+acfB
I acfC
I ORFY
I tagE
I acfA

acfD

int

EG

12129
LMA38944
CT536993
RC385
VL426
HEO9
He4s 1l
TMA21 -
62339
GBE0428 -
GBE1173
GBE1068 -
GBE1114 -
GBE0658 |

Fig. 4. PLAST search results for VPI-1 (Karaolis et al., 2001) inside the Vibrio cholerae dataset (Shapiro et al., 2017) with search color sets PG (left) and EG (right). Columns
correspond to coding sequences in VPI-1 ordered as appearing in the query sequence. Rows ‘PG’ and ‘EG’ show the maximum overlap of any alignment with a coding sequence
inside the pangenome using PG or EG as search color set, respectively. Rows ‘Bgd1’ to ‘0395 and ‘12129’ to ‘GBE0658’ show the maximum coverage of a sample in any

alignment overlapping a coding sequence using PG or EG as search color set, respectively

https://github.com/samtools/bcftools
https://github.com/samtools/bcftools

Detecting high-scoring local alignments

2273

genome) and searched 100 queries of length 1000 randomly drawn
from the human reference genome. For a comparison, we also ran
MMseqs2, next to PLAST the fastest tool according to Section 3.2,
on the same queries. PLAST took 317 s per query on average for the
complete dataset using a maximum of 24 GB of memory and run-
ning on a single thread. Using only a subset of 1000 chromosomes,
MMseqs2 took 339s per query on average using a maximum of 259
GB of memory and running on all available 28 cores. Furthermore,
its input files (sequences and index structures) required 2.2 TB of
disk space. PLAST’s input files occupied only 9.2 GB on disk in
total. Both tools were run with default parameters.

4 Discussion

We presented a new BLAST-like method to find highest scoring
local alignments between a query sequence and a pangenome repre-
sented as a colored de Bruijn graph. Unlike read mapping tools
developed to find the best or possibly a few suboptimal mapping
positions for potentially many query sequences in a short time, our
aim is to find all such alignments with statistically significant score.
Using a minimal seed length much smaller than k increases our de-
tection sensitivity that goes far beyond the scope of a k-mer-based
seeding approach, while alignment statistics enable us to filter the
results for biologically meaningful ones.

By working on a graph, our method is able to exploit the high
degrees of sequence similarity within a pangenome. On the one
hand, this allows to draw conclusions not only about the similarity
toward a query sequence but also to compare the diversity of gen-
omic sequences in the graph with regard to the query. On the other
hand, it avoids the storage and processing of highly redundant infor-
mation and lets the run time and memory usage of our algorithm
scale sublinearly with respect to the number of genomes inside the
pangenome. Both advantages make our approach superior in com-
parison to conventional local alignment search tools working on a
database of multiple individual genomes, scaling linearly in the num-
ber of sequences and enabling us to handle even large eukaryotic
pangenomes. We showed this in a comparison to other state-of-the-
art BLAST-like alignment search tools and by using human data
from the 1KG Project.

Moreover, we introduced the usage of a quorum and a search
color set that allow to limit searches on customized regions of the
pangenome. This is extremely useful for answering specific research
questions. Additionally, it avoids repeated construction of the graph
for different database sequence sets, which is especially important if
pangenomes are large and graph construction becomes prohibitively
expensive. As a practical application of our algorithm, we demon-
strated its usability on a classical pangenomic use case in Section
3.3.

Although our implementation PLAST performs well in practice,
it has to be seen as a proof of concept implementation so far. For ex-
ample, no affine gap cost model has been incorporated yet and is
subject to ongoing work. Also, many heuristics are strongly oriented
on common techniques for plain sequences. We are convinced that
further efforts on the development of heuristics exploiting the spe-
cial conditions prevailing in a graphical pangenome may lead to
even more efficient algorithms.

Yet, quorum checks may become a time-determining factor if
large pangenomes are considered and quorums are high. The reason
is that Bifrost compresses color information within binary matrices
for each vertex, and accessing this information requires a time con-
suming iteration over the matrix. Currently, we are working on
ways to aggregate this information as a preprocessing step next to
index building to avoid matrix iterations during the search.
Aggregated quorum information could be stored for each vertex,
e.g. by using five integers encoding the minimum quorum fulfilled
on the vertex, the potentially higher quorum being fulfilled at its be-
ginning and at the end and the sequence offsets at which this higher
quorum breaks. A different idea would be to store the number of
colors covering a k-mer separately for each k-mer using a single
byte. The memory footprint for both ideas would be small especially
in pangenomes of very closely related individual genomes.

We established that, similarly to the statistical behavior of pair-
wise alignment, sequence-to-graph alignment p-values exhibit expo-
nential tails, logps ~C—/-s for constants C € R,/ > 0. Still,
many interesting open questions remain about these statistics. The
calculation of precise statistical parameters for each pangenome
graph is based on compute-intensive simulations so far. To benefit
from existing simulations on similar graphs, instead of starting a
new simulation for every pangenome graph, we would like to better
understand how the statistical parameters change with graph prop-
erties and scores. While the dependency on gap scores has been
explored in the past, nothing is known about how (and which)
graph properties influence the parameters, and preliminary experi-
ments show complex patterns, which we intend to investigate in fu-
ture work.

Furthermore, we would like to further explore the computation-
al limits using our implementation. The here presented datasets
were the largest we considered so far in terms of individual samples
(Section 3.2) and the number of k-mers (Section 3.4).

We also plan to further extend the concept of quorum and search
color set. In particular, we would like to give more freedom to the
user by allowing not only to focus on certain parts of the graph but
also to explicitly exclude regions from analysis.

Funding

This work is supported by the BMBF-funded de.NBI Cloud within the
German Network for Bioinformatics Infrastructure (de.NBI) [031A537B,
031A533A, 031A538A, 031A533B, 031A535A, 031A537C, 031A534A and
031A532B]. It was funded in part by the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sktodowska-Curie agree-
ment [872539] and the International DFG Research Training Group GRK
1906 to T.S.; and National Science and Engineering Council of Canada
(NSERC) Discovery Grants (RGPIN-05952) and Michael Smith Foundation
for Health Research (MSFHR) Scholar Award (SCH-2020-0370) to F.H.

Conflict of Interest: none declared.

References

1000 Genomes Project Consortium. (2015) A global reference for human gen-
etic variation. Nature, 526, 68-74.

Alikhan,N.-F. et al. (2018) A genomic overview of the population structure of
Salmonella. PLOS Genet., 14,¢1007261.

Almodaresi,F. et al. (2017) Rainbowfish: a succinct colored de Bruijn graph
representation. In 17th International Workshop on Algorithms in
Bioinformatics (WABI 2017). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik, Article No. 18.

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,
403-410.

Altschul,S.F. et al. (2001) The estimation of statistical parameters for local
alignment score distributions. Nucleic Acids Res., 29, 351-361.

Antipov,D. et al. (2016) hybridSPAdes: an algorithm for hybrid assembly of
short and long reads. Bioinformatics, 32, 1009-1015.

Brandt,D.Y. et al. (2015) Mapping bias overestimates reference allele frequen-
cies at the HLA genes in the 1000 Genomes Project Phase I data. G3: Genes,
Genomes, Genetics, 5, 931-941.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using
DIAMOND. Nat. Methods, 12, 59-60.

Chikhi,R. et al. (2016) Compacting de Bruijn graphs from sequencing data
quickly and in low memory. Bioinformatics, 32,1201-i208.

Degner,].F. et al. (2009) Effect of read-mapping biases on detecting
allele-specific expression from RNA-sequencing data. Bioinformatics, 25,
3207-3212.

Dilthey,A. et al. (2015) Improved genome inference in the MHC using a popu-
lation reference graph. Nat. Genet., 47, 682-688.

Dilthey,A.T. et al. (2016) High-accuracy HLA type inference from
whole-genome sequencing data using population reference graphs. PLoS
Comput. Biol., 12,e1005151.

Edgar,R.C. (2010) Search and clustering orders of magnitude faster than
BLAST. Bioinformatics, 26, 2460-2461.

Edgar,R.C. and Batzoglou,S. (2006) Multiple sequence alignment. Curr. Opin.
Struct. Biol., 16, 368-373.

2274

T.Schulz et al.

Frith,M.C. and Shrestha,A.M. (2018) A simplified description of child tables
for sequence similarity search. IEEE/ACM Trans. Comput. Biol.
Bioinform., 15,2067-2073.

Garrison,E. et al. (2018) Variation graph toolkit improves read mapping by
representing genetic variation in the reference. Nat. Biotechnol., 36,
875-879.

Holley,G. and Melsted,P. (2020) Bifrost: highly parallel construction and
indexing of colored and compacted de Bruijn graphs. Genome Biol., 21,
1-20.

Holley,G. et al. (2016) Bloom Filter Trie: an alignment-free and reference-free
data structure for pan-genome storage. Algorithms Mol. Biol., 11, 3.

Igbal,Z. et al. (2012) De novo assembly and genotyping of variants using col-
ored de Bruijn graphs. Nat. Genet., 44,226-232.

Karaolis,D.K. et al. (2001) Comparison of Vibrio cholerae pathogenicity
islands in sixth and seventh pandemic strains. Infect. Immun., 69,
1947-1952.

Karlin,S. and Altschul,S.F. (1990) Methods for assessing the statistical signifi-
cance of molecular sequence features by using general scoring schemes.
Proc. Natl. Acad. Sci. USA, 87,2264-2268.

Kavya,V.N.S. et al. (2019) Sequence alignment on directed graphs. J. Comput.
Biol., 26, 53-67.

Kent,W.J. (2002) BLAT—the BLAST-like alignment tool. Genome Res., 12,
656—664.

Lamason,R.L. et al. (2005) SLC24AS, a putative cation exchanger, affects pig-
mentation in zebrafish and humans. Science, 310, 1782-1786.

Lee,C. et al. (2002) Multiple sequence alignment using partial order graphs.
Bioinformatics, 18, 452-464.

Limasset,A. et al. (2016) Read mapping on de Bruijn graphs. BMC
Bioinformatics, 17,237.

Luhmann,N. et al. (2021). BlastFrost: fast querying of 100,000s of bacterial
genomes in Bifrost graphs. Genome Biol., 22, 30

Marcus,S. et al. (2014) SplitMEM: a graphical algorithm for pan-genome ana-
lysis with suffix skips. Bioinformatics, 30, 3476-3483.

Marschall, T. et al. (2016) Computational pan-genomics: status, promises and
challenges. Brief. Bioinform., 19,118-135.

Minkin,I. et al. (2017) TwoPaCo: an efficient algorithm to build the com-
pacted de Bruijn graph from many complete genomes. Bioinformatics, 33,
4024-4032.

Muggli,M.D. et al. (2017) Succinct colored de Bruijn graphs. Bioinformatics,
33,3181-3187.

Myers,E.W. and Miller,W. (1989) Approximate matching of regular expres-
sions. Bull. Math. Biol. 51, 5-37.

Navarro,G. (2000) Improved approximate pattern matching on hypertext.
Theor. Comput. Sci., 237,455-463.

Notredame,C. (2007) Recent evolutions of multiple sequence alignment algo-
rithms. PLoS Comput. Biol., 3, e123.

Pearson,W.R. (1998) Empirical statistical estimates for sequence similarity
searches. J. Mol. Biol., 276,71-84.

Rautiainen,M. et al. (2019) Bit-parallel sequence-to-graph alignment.
Bioinformatics, 35,3599-3607.

Shapiro,B.]. et al. (2017) Origins of pandemic Vibrio cholerae from environ-
mental gene pools. Nat. Microbiol., 2, 16240.

Soejima,M. and Koda,Y. (2006) Population differences of two coding SNPs in
pigmentation-related genes SLC24AS5 and SLC45A2. Int. J. Legal Med.,
121, 36-39.

Steinegger,M. and Soding,]. (2017) MMseqs2 enables sensitive protein se-
quence searching for the analysis of massive datasets. Nat. Biotechnol., 35,
1026-1028.

Stephens,Z.D. et al. (2015) Big data: astronomical or genomical? PLoS Biol.,
13, ¢1002195.

Suzuki,S. et al. (2015) Faster sequence homology searches by clustering subse-
quences. Bioinformatics, 31, 1183-1190.

Van Nguyen,H. and Lavenier,D. (2009) Plast: parallel local alignment search
tool for database comparison. BMC Bioinformatics, 10, 329.

Vaser,R. et al. (2016) SWORD—a highly efficient protein database search.
Bioinformatics, 32, 1680-1684.

Vernikos,G. et al. (2015) Ten years of pan-genome analyses. Curr. Opin.
Microbiol., 23, 148-154.

Waterman,M.S. and Vingron,M. (1994) Rapid and accurate estimates of stat-
istical significance for sequence data base searches. Proc. Natl. Acad. Sci.
USA, 91, 4625-4628.

Wolfsheimer,S. et al. (2011) Accurate statistics for local sequence alignment
with position-dependent scoring by
Bioinformatics, 12,47.

Zhao,Y. et al. (2012) RAPSearch2: a fast and memory-efficient protein simi-
larity search tool for next-generation sequencing data. Bioinformatics, 28,
125-126.

Zhou,Z. et al. (2018) GrapeTree: visualization of core genomic relationships
among 100,000 bacterial pathogens. Genome Res., 28, 1395-1404.

rare-event sampling. BMC

	tblfn1

