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How do large-scale brain networks reorganize during the waxing and waning of

anxious anticipation? Here, threat was dynamically modulated during human functional

MRI as two circles slowly meandered on the screen; if they touched, an unpleasant

shock was delivered. We employed intersubject correlation analysis, which allowed

the investigation of network-level functional connectivity across brains, and sought to

determine how network connectivity changed during periods of approach (circles moving

closer) and periods of retreat (circles moving apart). Analysis of positive connection

weights revealed that dynamic threat altered connectivity within and between the

salience, executive, and task-negative networks. For example, dynamic functional

connectivity increased within the salience network during approach and decreased

during retreat. The opposite pattern was found for the functional connectivity between

the salience and task-negative networks: decreases during approach and increases

during approach. Functional connections between subcortical regions and the salience

network also changed dynamically during approach and retreat periods. Subcortical

regions exhibiting such changes included the putative periaqueductal gray, putative

habenula, and putative bed nucleus of the stria terminalis. Additional analysis of negative

functional connections revealed dynamic changes, too. For example, negative weights

within the salience network decreased during approach and increased during retreat,

opposite what was found for positive weights. Together, our findings unraveled dynamic

features of functional connectivity of large-scale networks and subcortical regions across

participants while threat levels varied continuously, and demonstrate the potential of

characterizing emotional processing at the level of dynamic networks.

Keywords: emotion, networks, intersubject correlation, dynamics, threat, amygdala, bed nucleus of the stria

terminalis (BST), periaqueductal gray (PAG)

INTRODUCTION

Imagine yourself reclining on a dentist’s chair. Most of us wait anxiously as the dentist gradually
moves the drill toward our mouth. At the same time, if the drill is moved away (perhaps the dentist
needed an additional adjustment), anxious apprehension likely will subside. A growing literature
of both non-human and human research indicates that anticipatory processing of negative events
engages multiple brain regions (Davis et al., 2010; Grupe and Nitschke, 2013; Tovote et al.,
2015), including medial prefrontal cortex, insula, and orbitofrontal cortex, cortically. Subcortically,
implicated regions include the amygdala, periaqueductal gray (PAG), and the bed nucleus of the
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stria terminalis (BST) (see Davis et al., 2010; Fox et al., 2015).
Anticipatory negative processing allows participants to prepare
and possibly minimize the impact of harmful stimuli. However,
aberrant responding to uncertain future negative events is
believed to be central to anxiety disorders (Grupe and Nitschke,
2013; Fox and Kalin, 2014). Thus, further elucidation of the
mechanisms of anticipatory processing is important from both
basic and clinical perspectives.

Anxious anticipation of negative events has widespread effects
on brain function (Thomason et al., 2011; Kang et al., 2016;
Raz et al., 2016; Young et al., 2017). However, understanding
how the organization of large-scale brain networks is affected
during anxious apprehension is poorly understood. At least
three networks are altered by processing threat (Pessoa, 2013):
a salience network that responds to motivationally salient
stimuli (Seeley et al., 2007; Menon and Uddin, 2010); a task-
negative (or “default mode”) network that is engaged when
attention is directed internally and during some forms of
emotional processing (Gusnard et al., 2001; Greicius et al.,
2003, 2009); and an executive control network that is engaged
when cognitively demanding tasks require attention (Seeley
et al., 2007; Vanhaudenhuyse et al., 2011). In the context
of anxious anticipation, one study described greater salience-
network connectivity while participants watched an aversive
movie (Hermans et al., 2011). In a previous study, we investigated
network interactions when participants were in either prolonged
threat (unpredictable mild shocks could be administered) or safe
(no shocks possible) conditions, and characterized transient and
sustained changes to the three networks above (McMenamin
et al., 2014).

Anxious anticipation is inherently temporal. Although
previous studies have investigated how brain responses are
sensitive to threat proximity (Mobbs et al., 2010; Somerville et al.,
2010; Grupe et al., 2013), little is known about how patterns
of brain co-activation (thus networks) change during dynamic
manipulations of threat. To address this gap in the literature,
here we modulated threat dynamically during functional MRI
scanning. Two circles moved on the screen, sometimes moving
closer and sometimes moving apart (Figure 1). If they touched,
an unpleasant shock was delivered to the participant. We
sought to determine how functional connectivity changed during
periods of approach (circles moving closer) and periods of retreat
(circles moving apart). As in our previous study (McMenamin
et al., 2014), we studied a set of regions spanning the salience,
executive, and task-negative networks, given their involvement
in cognitive and emotional processing (Yeo et al., 2011; Pessoa,
2013). In addition, we investigated subcortical regions important
for emotional processing.

Overall, our approach allowed us to test several questions
about the brain basis of anxious anticipation. How do functional
connectivity properties of large-scale networks evolve during
periods of threat approach and retreat? During dynamic threat,
what is the relationship between cortical and subcortical regions
important for threat processing? We investigated functional
connectivity based on intersubject correlation analysis (Hasson
et al., 2004), where time series data from voxels/ROIs are
correlated across participants (Figure 2A). This approach can be

FIGURE 1 | Experimental paradigm. To vary threat level dynamically, two

circles moved around on the screen with some degree of randomness,

sometimes approaching each other, other times retreating from each other.

When they collided with each other, an unpleasant mild electric shock was

delivered.

used to compute correlations between the same region (across
brains) as well as correlations between different regions (again
across brains) (Figure 2B) (Najafi and Pessoa, 2016; Simony et al.,
2016). Simony et al. (2016) showed that this method increased
the signal-to-noise ratio in detecting functional correlations
(compared to computing themwithin brains) likely from filtering
out processing unrelated to ongoing stimulus processing, as well
as non-neuronal artifacts (for example, respiratory rate, head
motion) that can influence correlation patterns within a brain
but are typically not correlated across brains. Another important
property of intersubject network analysis is that it can consider
the correlation of a region with itself; in intersubject analysis this
correlation is meaningful because the time series data come from
different brains.

MATERIALS AND METHODS

Participants
Ninety-three participants with normal or corrected-to-normal
vision and no reported neurological or psychiatric disease were
recruited from the University of Maryland community. Data
from 84 participants (44 males and 40 females, ages 18–40 years;
average: 22.62, STD: 4.85) were employed for data analysis (of the
original sample of 93, data from 7 subjects were discarded due
to technical issues during data transfer [specifically, field maps
were lost], 1 subject was removed because of poor structural-
functional alignment, and 1 subject’s data were lost). The project
was approved by the University of Maryland College Park
Institutional Review Board and all participants provided written
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FIGURE 2 | Intersubject time series analysis. (A1) In standard intersubject analysis, correlation between the same region across different participants’ brains is

calculated. (A2) To calculate intersubject correlation, for each voxel or region of interest (ROI), the time series for one subject (say, S1) is correlated with the average

time series of all other subjects (S2,… SN), for the same voxel/ROI. This process is then iterated and averaged to determine group-level correlations, namely a vector

that contains the correlation of every voxel/ROI with itself (across participants) (A3). (B1) The method can be generalized to study multiple regions by computing the

correlations between all pairs of voxels/ROIs across different brains. (B2) For each voxel/ROI, the time series of a one subject (say, S1) is correlated with the average

time series across other subjects (S2,…,SN). This process is then iterated and averaged to determine group-level correlations, namely a matrix that contains the

correlation of every voxel/ROI with every other voxel/ROI (across participants) (B3). Note that the vector in A3 corresponds to the diagonal of the matrix in B3,

illustrating that intersubject networks provide a more general characterization of time series relationships.

informed consent before participation. Results are reported for
a group of 49 participants (23 males and 26 females, ages
18–40 years; average: 22.78, STD: 5.40). A separate group of 35
participants was used as an exploratory dataset to fix specific
processing choices and to define subcortical regions of interest
(ROIs).

Procedure and Stimuli
Two circles with different colors moved around on the screen
randomly, and when they collided an unpleasant mild electric
shock was delivered. Overall, the proximity and relative velocity
of the circles were used to influence threat level. The position of
each circle (on the plane), xt , was defined based on its previous
position, xt−1, plus a random displacement, xt . The magnitude
and direction of the displacement was calculated by combining
a normal random distribution with a momentum term to ensure
motion smoothness, while at the same time remaining (relatively)
unpredictable to participants. Specifically, the displacement was
updated every 50ms as follows:

1xt = (1− c)1xt−1 + cN(0, 1)

where c = 0.2 and N(0, 1) indicates the normal distribution with
0 mean and standard deviation 1. The position and amount of
displacement of each circle were updated independently.

Visual stimuli were presented using PsychoPy (http://www.
psychopy.org/) and viewed on a projection screen via a mirror
mounted to the scanner’s head coil. The total experiment
included 6 runs, each of which had 6 blocks. In each block, the
circles appeared on the screen and moved around for 60 s; blocks
were preceded by a 15-s blank screen. Each run ended with 7 s of
a blank screen.

In each of the 6 runs the circles collided a total of 8 times
in 4 out of the 6 blocks (3 shocks maximum per block); each
collision resulted in the delivery of an electric shock. The 500-ms
electric shock was delivered by an electric stimulator (Coulbourn
Instruments, PA, USA) to the fourth and fifth fingers of the non-
dominant left hand via MRI-compatible electrodes. To calibrate
the intensity of the shock, each participant was asked to choose
his/her own stimulation level immediately prior to functional
imaging, such that the stimulus would be “highly unpleasant
but not painful.” After each run, participants were asked about
the unpleasantness of the stimulus in order to re-calibrate shock
strength, if needed.
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MRI Data Acquisition
Functional and structural MRI data were acquired using a 3T
Siemens TRIO scanner with a 32-channel head coil. First, a
high-resolution T2-weighted anatomical scan using Siemens’s
SPACE sequence (0.8mm isotropic) was collected. Subsequently,
we collected 457 functional EPI volumes using a multiband
scanning sequence (Feinberg et al., 2010) with TR = 1.0 s,
TE = 39ms, FOV = 210mm, and multiband factor = 6. Each
volume contained 66 non-overlapping oblique slices oriented
30◦Clockwise relative to the AC-PC axis (2.2mm isotropic). In
addition, a high-resolution T1-weighted MPRAGE anatomical
scan (0.8mm isotropic) was collected. Finally, double-echo field
maps (TE1 = 4.92ms, TE2 = 7.38ms) were acquired with
acquisition parameters matched to the functional data.

Exploratory and Test Data Sets
Data from 84 participants were employed in this study. One
of our goals was to attempt to enhance reproducibility in a
research area that faces the “curse of flexibility.” For example, a
recent review enumerated 69,120 different workflows for basic
functional MRI analysis alone (Poldrack et al., 2017). We thus
employed an exploratory data set to fix specific processing
choices, and to define subcortical ROIs, as described in this
section. At a point during data collection when approximately
40 participants had been studied, we labeled the data as
“exploratory” and to be used for data exploration. A total of N
= 35 usable participants were used in the exploratory set. With
the entire processing pipeline and ROIs fixed, statistical testing
was then applied to a separate dataset (N = 49; the original goal
being to have approximately 50 participants).

Stimulus Conditions
The exploratory set was used to define two conditions,
“approach” and “retreat,” based on whether the circles were
moving toward or away from each other. Time points were only
considered for analysis if the Euclidian distance between the
circles was at least 75% of the maximum distance that the circles
exhibited during the whole experiment; otherwise, the data were
not employed in the analysis. The rationale behind this was that,
when the circles were far from each other, participants reported
that they did not really pay as much attention to them. Therefore,
we reasoned that the analysis should focus on the time points
during which the circles were in (relative) closer proximity to
each other. Investigation of the exploratory set revealed that the
particular cutoff was not critical for the effects investigated and
that values at least between 65 and 85% were adequate; we chose
a cutoff value of 75%. After applying the cutoff, the approach
condition included 481 data points (i.e., TRs) and the retreat
condition 290 data points.

Functional MRI Preprocessing
We employed the exploratory data set to define the following
preprocessing steps. Skull stripping determines which voxels are
to be considered part of the brain and, although conceptually
simple, plays a very important role in successful subsequent
co-registration and normalization steps. Currently, available
packages perform sub-optimally in specific cases, and mistakes

in the brain-to-skull segmentation can be easily identified.
Accordingly, to skull strip the T1 high-resolution anatomical
image (which was rotated to match the oblique plane of
the functional data with AFNI’s 3dWarp), we employed six
different packages: ANTs (Avants et al., 2011), AFNI (Cox, 1996;
http://afni.nimh.nih.gov/), ROBEX (Iglesias et al., 2011; https://
www.nitrc.org/projects/robex), FSL (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki), SPM (http://www.fil.ion.ucl.ac.uk/spm), and Brainsuite
(Shattuck and Leahy, 2002). We employed a “voting scheme” as
follows: based on T1 data, a voxel was considered to be part of the
brain if 4/6 packages estimated it to be a brain voxel; otherwise
the voxel was not considered to be brain tissue (for 6 subjects
whose T1 data were lost due to issues during data transfer, the T2
image was used instead and only the ANTs package was used for
skull-stripping).

Subsequently, FSL was used to process field map images and
create a phase-distortion map for each participant (with bet
and fsl_prepare_fieldmap). FSL’s epi_reg was then used to apply
boundary-based co-registration to align the unwarped mean
volume registered EPI images with the skull-stripped anatomical
image (T1 or T2) along with simultaneous EPI distortion-
correction (Greve and Fischl, 2009). Next, ANTS was used to
determine a non-linear transformation that mapped the skull-
stripped anatomical image (T1 or T2) to the MNI152 template
(interpolated to 1-mm isotropic voxels). Finally, ANTs combined
the non-linear transformations from co-registration/unwarping
(from mapping mean functional EPI images to the anatomical
T1 or T2) and normalization (from mapping T1 or T2 to the
MNI template) into a single transformation that was applied to
map registered functional volumes of functional data to standard
space (interpolated to 2-mm isotropic voxels). In this process,
ANTs also utilized the fieldmaps to simultaneously minimize EPI
distortion.

Additional preprocessing steps included the following. The
first three volumes of each functional run were discarded to
account for equilibration effects. Slice-timing correction (with
AFNI’s 3dTshift) used Fourier interpolation to align the onset
times of every slice in a volume to the first acquisition slice,
and then a six-parameter rigid body transformation (with AFNI’s
3dvolreg) corrected head motion within and between runs by
spatially registering each volume to the first volume.

Subcortical ROIs
We used the exploratory data set to investigate subcortical
ROIs focusing on functional to anatomical co-registration.
The subcortical ROIs selected for evaluation in the test set
included the amygdala, PAG, habenula, and BST. For the
amygdala, we considered two subregions defined in the Nacewicz
et al. (2014) parcellation, specifically: lateral amygdala and
central/medial amygdala. For the PAG, we modified the mask
by Roy et al. (2014), which was dilated by 1 voxel; in addition,
we manually removed voxels overlapping cerebrospinal fluid.
The habenula has been implicated in emotional/motivational
processing (Hikosaka, 2010; Mizumori and Baker, 2017), and
here we employed a mask defined according to the Morel atlas,
as defined in Krauth et al. (2010). For the BST, we employed a
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recently developedmask based on 7 Tesla data but defined having
in mind 3 Tesla acquisition (Theiss et al., 2017).

ROIs for Large-Scale Networks
We investigated three networks widely studied in the literature:
salience, executive, and task negative. From these networks, we
employed cortical ROIs (defined as 5-mm radius spheres) based
on the center coordinates provided by previous studies (Table 1):
salience network (Hermans et al., 2011) (13 regions), executive
network (Seeley et al., 2007) (12 regions), and task-negative
network (Fox et al., 2005) (12 regions). If two ROIs abutted
each other, each mask was eroded by 1 voxel from the touching
boundary to minimize any potential data “spill over.”

Intersubject Correlation Analysis
We investigated functional connections based on intersubject
correlation analysis (Hasson et al., 2004). This was the first step
from which temporal dynamics was evaluated (see below).

To perform intersubject correlation analysis, time series data
from ROIs were correlated across participants, that is, across
different brains (Figure 2A). A simple, yet powerful extension
to intersubject correlation analysis is to consider intersubject
correlations across all pairs of ROIs, which allows the application
of the technique to networks (Figure 2B) (Najafi and Pessoa,
2016; Simony et al., 2016). The procedure to generate an
intersubject network is as follows (Figure 3). For a given ROI,
one subject’s s data are held out (ys), and the rest of the subjects’
time series is averaged (y

−s). Then, the Pearson correlation
between these two data vectors is computed: corr(ys, y−s). This
basic operation is repeated for all pairs of ROIs to compute an
intersubject matrix for the held-out subject (ISMS). Thus, the
ISMS is an NxN matrix, where N is the number of ROIs, and the
ij-th matrix element contains the correlation coefficient between
the i-th ROI time series of the held-out subject and the j-th ROI
time series averaged across the remaining subjects.

This procedure is repeated for all subjects. A group matrix
(ISMG) is then obtained by averaging across all subjects; the
distribution of intersubject correlations was well approximated
by a Gaussian (mean: −0.0022; STD: 0.0181) so averaging them
is reasonable. Note that the resulting intersubject network is not
necessarily symmetric, because, for each ROI, the time series
in the held-out subject (ys) is not necessarily equal to average
of all other subjects’ time series (y

−s) (symmetry is desirable
because the intersubject correlation between regions i and j
should, in principle, be equal to the intersubject correlation
between regions j and i). While the ISMG matrix in practice will
be near-symmetric, a simple and intuitive way to mathematically
accomplish symmetry is to average the group-level intersubject
network with its transpose (where row and column indexes are
flipped), leading to a final symmetric group matrix. Finally, the
procedures above were performed, separately, for the approach
and retreat conditions (generating one matrix per condition).
Note that in our method the matrix diagonal is also computed
because data at a given diagonal entry [i, i] is computed across
different brains.

TABLE 1 | List of cortical and subcortical Regions of Interest (ROIs).

ROI names Coordinates (MNI)

x y z

SALIENCE

1) Frontoinsular cortex L −34 18 4

2) Frontoinsular cortex R 34 22 4

3) Dorsal anterior cingulate cortex 2 10 40

4) Temporo-parietal junction L −62 −26 36

5) Temporo-parietal junction R 62 −26 36

6) Inferotemporal cortex L −54 −62 −4

7) Inferotemporal cortex R 54 −54 −8

8) Precentral L −26 −6 64

9) Precentral R 26 −2 64

10) Dorsolateral prefrontal cortex L −38 42 24

11) Dorsolateral prefrontal cortex R 34 46 28

12) Inferior frontal gyrus L −54 6 20

13) Inferior frontal gyrus R 54 10 12

EXECUTIVE

14) Orbital frontoinsula L −36 24 −10

15) Dorsolateral prefrontal cortex R 46 46 14

16) Dorsolateral prefrontal cortex L −34 46 6

17) Ventrolateral prefrontal cortex R 34 56 −6

18) Ventrolateral prefrontal cortex L −32 54 −4

19) Frontal operculum R 56 14 14

20) Dorsolateral prefrontal cortex / frontal

eye field R

30 12 60

21) Dorsolateral prefrontal cortex / frontal

eye field L

−32 18 50

22) Dorsomedial prefrontal cortex 0 36 46

23) Lateral parietal R 38 −56 44

24) Lateral parietal L −48 −48 48

25) Inferior temporal R 58 −54 −16

TASK NEGATIVE

26) Posterior cingulateprecuneus (PCC) −3 −38 38

27) Retro-splenial 2 −52 9

28) Lateral parietal cortex (LP) L −50 −64 38

29) Lateral parietal cortex (LP) R 50 −64 38

30) Medial prefrontal cortex (MPF) L −4 42 −9

31) Medial prefrontal cortex (MPF) R 0 59 16

32) Superior frontal L −16 44 51

33) Superior frontal R 17 43 51

34) Inferior temporal L −62 −33 −20

35) Inferior temporal R 66 −18 −20

36) Parahippocampal gyrus L −22 −26 −20

37) Parahippocampal gyrus R 25 −26 −18

SUBCORTICAL REGIONS

38) Amygdala Central-Medial L

39) Amygdala Central-Medial R

40) Amygdala Lateral L

41) Amygdala Lateral R

42) Periaqueductal gray (PAG) L

43) Periaqueductal gray (PAG) R

(Continued)
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TABLE 1 | Continued

ROI names Coordinates (MNI)

x y z

44) Habenula L

45) Habenula R

46) Bed nucleus of the stria terminalis

(BST) L

47) Bed nucleus of the stria terminalis

(BST) R

Cortical ROIs were defined via 5-mm radius spheres centered on the MNI coordinates

provided below. Subcortical ROIs were defined anatomically (see text for details).

Time Series Data
Because intersubject analysis seeks to investigate correlations
across brains of different individuals, the contributions of the
paradigm were not regressed out as done in some within-
subject analyses. However, because the moving circles were
presented in 60-s blocks that alternated with 15-s rest period,
we regressed out (with AFNI’s 3dDeconvolve) the block effect
(which was convolved with the standard hemodynamic response;
(see Cohen, 1997). Other regressors in the model included
6 motion parameters (3 linear displacements and 3 angular
rotations), and their discrete temporal derivatives. Additionally,
to model baseline and drifts of the MR signal, regressors were
included corresponding to polynomial terms up to 4th order
(for each run separately). To minimize the shock effect, data
points in a 15-s window after shock delivery were discarded
from all analyses. In addition, to minimize the impact of
potential block onsets (which can elicit strong transients), for

each block, the first 15 time points (15 s) were discarded.

Finally, the residual time series for each run was z-scored
separately.

The residual time series as defined was used for the
intersubject correlation analysis. As approach and retreat varied
dynamically throughout the blocks, we employed a windowing
procedure to extract data segments corresponding to approach

and retreat periods. Intuitively, the windowing allowed us to
select segments of the time series associated with each condition
and concatenate them across all runs, as outlined next.

Dynamic Intersubject Correlation
To investigate dynamic aspects of functional connectivity, we first
computed intersubject correlations as indicated previously (see
Figure 3) at each time t. The method considered all approach
and retreat segments separately, and computed one vector for
each time t, ROI, and condition (Figure 4). Specifically, for each
segment type (approach and retreat, separately), we considered
all time series data at t = 0 time points, then t = 1 time
points, and so on, separately (Figure 4A). The goal was to
generate a vector of data at t = 0 by concatenating all of
the t = 0 data across approach/retreat segments. To do so,
we concatenated the t = k points (for a fixed k) across
segments (Figure 4B). To account for the hemodynamic delay,
we discarded the first 5 s of each segment. The overall process
allowed us to compute correlations across subjects for ROI

pairs each time t (Figure 4C), thus computing the matrices
ISMt = 0, ISMt = 1, etc. (Figure 4D). We considered intersubject
matrices for t = 0, . . . , 6 s for the approach condition and
t = 0, . . . , 5 s for the retreat condition. For both conditions,
at least 20 data points (Figure 4B) were available per condition
and time slice (but note that less data were available for the
retreat compared to the approach condition, as some points
were discarded following shock events). Whereas, longer periods
of approach/retreat occurred, they did not occur at least 20
times, which was the minimum number of repetitions that we
judged needed for stable assessment of the correlations. Given
this constraint, there were 443 data points for approach and 255
for retreat.

Within- and Between-Network Weight
To measure the strength of connections within and between
networks, we utilized within- and between-network connectivity
weights, respectively. The weight between network N1 and
network N2,WN1 ,N2 , was defined as follows:

WN1 ,N2 =
1

n1n2

∑

i∈N1 ,j∈N2

cij (1)

where ni is the number of ROIs in network Ni. The value cij
is the ISMG value when the i-th ROI belongs to network N1

and the j-th ROI belongs to network N2. When N1 and N2

are the same network, the formula calculates within-network
weight. For most of the analyses reported here, we considered
only positive weights, as commonly done in network research
(but see below for negative weights). Most network measures do
not handle self-connections (Newman, 2010), which in standard
analysis (when correlations are determined within participants)
are not informative (cii = 1). Here, we considered functional
connections between the same region (across participants),
which could be incorporated in within-network weight by
considering the terms cii in Equation (1).

To study dynamic changes to network cohesion, ISMG was
computed as outlined above at each time t and within- and
between-network weights computed. Linear regression was used
to evaluate changes in network weight during approach and
retreat conditions. To evaluate functional connections between
subcortical regions and the salience network, we computed a
weight index that summed all functional connections between a
specific subcortical region and all nodes of the salience network.
This was performed for the approach and retreat conditions,
separately.

Because intersubject correlations are not independent (each
participant is present in more than one participant pair),
statistical tests were performed via non-parametric resampling
tests based on the approach proposed by Kauppi et al.
(2014). Briefly, we computed a null resampling distribution by
circularly shifting each participants’ time-series by a random
amount so that they were no longer aligned in time across
participants, and then calculated intersubject correlations.
The null distribution was estimated by computing 100,000
realizations (fewer iterations produced very similar results
showing that the estimation was stable). Statistically, we were
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FIGURE 3 | Computation of group-level intersubject correlation matrix (ISM). The operator corr corresponds to Pearson correlation.

FIGURE 4 | Evaluation of intersubject functional connectivity dynamics. Intersubject correlation matrices were computed at each time point of approach and retreat

segments, separately. (A) Time was used to index data during approach and retreat (not shown) segments. To account for the hemodynamic delay, we discarded the

first 5 s of each segment (gray part). (B) A time series vector at t = 0 was generated by concatenating all of the t = 0 samples (across same-condition segments

across blocks and runs); likewise, for t = 1, and so on. (C) At a given time t, time series vectors were used to compute the intersubject correlation matrix (D). This

process is shown for t = 0 and repeated for times t = 1,…,6 for approach and t = 1, …5 for retreat.

interested in evaluating changes to network weight during
approach and retreat, separately, and comparing the slopes of
the linear fits during approach vs. retreat. Thus, observed slopes
(based on data) were compared to values of the corresponding
null distribution and p-values determined; for the contrast of
approach vs. retreat, the observed difference (based on data)
was compared to values of the corresponding difference null
distribution.

We observed that the mean of the null distributions
for approach and retreat were not zero but small positive

values (which were due to the unequal number of time
points used for segments of different duration; for example,
there were fewer segments of duration 5 s than 4 s). Thus,
the mean values expected by chance (determined via the
null distribution) were subtracted from the observed values
(Figures 5, 7).

To explore dynamic changes in negative weights, we
considered equation (1) by excluding all positive weights and
followed the same procedures described above for positive
weights. The null distribution was based on 100,000 realizations.
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FIGURE 5 | Temporal evolution of intersubject network weight during approach and retreat segments (positive weights). Within- and between-network weights during

approach and retreat for the salience, executive, and task-negative networks. For example, as the circles approached each other, the weights within the salience

network increased; when the circles retreated, within-network weights decreased. Slightly longer approach periods were available to compute dynamics for this

condition. The orange line shows approach weights (90% confidence band); the cyan line shows retreat weights (90% confidence band). The red/blue line show the

least-squares linear fit to weight values during approach/retreat; solid lines indicate fits such that p < 0.05. Time is in seconds; the y-axis shows within/between

weight. The asterisk indicates that the slope difference was such that p < 0.05.
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FIGURE 6 | Snapshots of intersubject correlation matrices. Results are shown for approach and retreat conditions, as well as approach minus retreat. The top row

shows intersubject correlations at t = 1 s, and the bottom row shows intersubject correlations at t = 5 s (in both cases, a hemodynamic lag of 5 s was employed).

RESULTS

We performed intersubject correlation analysis during threat
approach and retreat. We focused on regions of the salience,
executive, and task-negative networks, as well as a targeted set
of subcortical ROIs. As threat level was varied dynamically,
we investigated how the intersubject correlation matrix evolved
temporally. Figure 5 shows the temporal evolution of within-
and between-network weight during approach and retreat for
the three networks. Statistically, we evaluated changes during
approach and retreat via linear regression, as well as the
difference between the two; for ease of reference, statistical values
are provided in the figure (slopes at p< 0.05 are indicated by solid
lines, and p-values for the difference in slopes are provided).

Evaluation of within-network weight revealed that all
networks exhibited functional connectivity changes during
approach and/or retreat periods, with the strongest change
observed for the salience network. During retreat, weight
decreased within all networks. Changes in intersubject
correlation were also found between networks; specifically,
between the salience and executive networks, and between the
salience and task-negative networks. The weight between the
salience and executive networks increased during approach
and decreased during retreat. However, the opposite was found
between the salience and task-negative networks. In this case, the
correlation actually decreased during approach. For illustration
purposes only, Figure 6 shows changes of the group-averaged

correlation matrix of the three large-scale networks (negative
values were removed from each participant’s matrix).

We also investigated the evolution of the functional
interactions between targeted subcortical regions and the salience
network. In most cases, their correlations with the salience
network were dynamic (Figure 7). The PAG, habenula, and BST
exhibited similar patterns of dynamic intersubject correlations
with the salience network, which increased during approach
and decreased during retreat (for the right BST, changes during
retreat were not detected). Figure 8 illustrates changes between
the right PAG and the entire set of salience network ROIs. For the
amygdala regions, when changes were detected, only decreases
in correlation were observed during both approach and retreat
segments, and the slopes were comparable in both conditions.

Negative Weights
The results above did not consider negative weights. Whereas,
the step of thresholding negative weights is commonly adopted
in analysis of brain networks, investigation of changes in
negative weights is likely to be informative. For example,
negative correlations between two systems might indicate that
they are complementary or that they work in some form of
opposition (such as appetitive and aversive systems). More
generally, effective ways of handling negative ways remain an
open question (Rubinov and Sporns, 2011; Fornito et al., 2016),
as positive and negative weights may index qualitatively different
processes. Possible approaches include considering the absolute
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FIGURE 7 | Temporal evolution of intersubject weights between subcortical regions and the salience network (positive weights). Dynamic changes in intersubject

correlation between subcortical regions and the salience network were detected for both approach and retreat. For example, for the right PAG, intersubject correlation

increased during approach and decreased during retreat. Conventions as in Figure 5.

value of connections (thus disregarding polarity), adding a
constant positive value to all weights (effectively making all
weights positive and negative weights smaller than positive
ones), or in the present context summing positive and negative
connections (which could lead to positive and negative weights
“canceling out”).

Inspection of the intersubject correlation matrix without any
thresholding (that is, considering positive and negative weights
in equation 1) revealed a predominance of negative weights
between the salience and task-negative networks (Figure 9). To
explore potential information of negative weights, we considered
equation (1) but only for negative weights (thus, positive weights
were excluded). We focused on the weights within the salience
network and between the salience and task-negative networks

(Figure 10). Salience-network negative weights increased
during retreat and decreased during approach. Negative
weights between the salience and task-negative networks
increased during approach and decreased during retreat. These
results were thus opposite to what was observed for positive
weights.

DISCUSSION

In the present study, we employed intersubject functional
correlation analysis to investigate large-scale networks
during threat approach and retreat. We found that functional
connectivity within and between networks changed dynamically
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FIGURE 8 | Snapshots of intersubject correlations between right PAG and salience network. Results are shown for approach and retreat conditions, as well as

approach minus retreat. The top row shows intersubject correlations at t = 1 s, and the bottom row shows intersubject correlations at t = 5 s. Intersubject correlations

between the right PAG and the salience network increased during approach and decreased during retreat.

FIGURE 9 | Intersubject correlation matrix during approach when both

positive and negative weights were simultaneously considered (no

thresholding). Weights between the salience and task-negative networks were

predominantly negative, indicating that they were inversely related during

approach. For simplicity, all data points during individual approach segments

were averaged; likewise, during individual retreat segments.

as threat imminence increased and decreased (as circles moved
closer and farther to/from each other).

Standard intersubject correlation analysis has been used to
investigate “synchrony” across brains when participants watch

the same movie or during other naturalistic conditions, such
as hearing extended narratives (Hasson et al., 2004; Stephens
et al., 2010; Nummenmaa et al., 2012, 2014). The method
was recently extended so that a specific voxel/region in one
person could be correlated with multiple voxels/regions in
other participants (Najafi and Pessoa, 2016; Simony et al.,
2016). Our interpretation of intersubject correlation is less
tied to inter-personal synchronization (possibly tied to social
processes), but more to the method’s potential at reducing
contributions of processing unrelated to the task/conditions at
hand. Furthermore, intersubject analysis increases the signal-
to-noise ratio by filtering out unwanted contributions to the
measured BOLD signal (Simony et al., 2016). This is particularly
important for head motion, which can induce within-participant
correlations (Van Dijk et al., 2012). By computing correlations
across participants, the approach essentially eliminates this issue
if head motion is uncorrelated across participants (here, head
motion parameters exhibited a correlation across subjects of 0.02
in the test set).

A central finding of our study was that functional connectivity

within and between networks changed dynamically during

periods of approach and retreat. Thus, networks are not static but
dynamic entities (Bassett et al., 2011; Pessoa and McMenamin,
2016; Pessoa, 2017). This adds to findings from recent studies
that showed how large-scale networks are reorganized during
periods of threat (Hermans et al., 2011; McMenamin et al.,
2014). The positive functional connections within the salience
network increased during approach, and decreased during
retreat. Thus, the salience network became more cohesive
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FIGURE 10 | Temporal evolution of intersubject negative weights during approach and retreat segments. Within the salience network, negative weights increased

during retreat and decreased during approach. Between the salience and task-negative networks, negative weights increased during approach and decreased during

retreat. In both cases, the dynamic pattern of negative functional connectivity was the opposite of what was observed for positive weights (compare with Figure 5).

Conventions as in Figure 5.

(regions more correlated) during approach in line with previous
studies (Hermans et al., 2011; McMenamin et al., 2014), and less
cohesive during retreat. In contrast, the correlation between the
salience and task-negative networks increased during retreat, but
decreased during approach. Overall, our findings demonstrate
that network functional connectivity is a dynamic property that
depends on threat level.

We also explored the evolution of negative weights. Negative
functional connections within the salience network followed the
opposite pattern to that observed for positive weights. These
results are also consistent with the notion that the salience
network becomesmore cohesive during approach, as the negative
weights between nodes of the network decreased during this
period (the increase of negative weights during retreat suggests
that there is was a tendency for anti-correlation to also occur).
The negative weights between the salience and task-negative
networks also displayed a pattern opposite that found for
positive functional connections. This result was noteworthy
because studies have reported that the salience and task-negative
networks are anti-correlated (Uddin et al., 2009). Here, such
negative correlation was found to dynamically increase during
approach periods (and to decrease during retreat).

The salience network comprises multiple regions in parietal,
frontal, and insular cortices (Seeley et al., 2007; Menon and
Uddin, 2010). Sometimes subcortical regions are listed as part
of the network, most notably the amygdala and PAG (Seeley
et al., 2007); the latter is an important brain region involved
in threat processing (Bandler and Shipley, 1994). In the present
study, not only were multiple subcortical regions functionally
connected with the salience network, but the correlations evolved
during periods of approach and retreat. Of the subcortical regions
investigated, the PAG, habenula, and BST exhibited a pattern
of dynamic connectivity that resembled most clearly that of the

salience network itself, namely increasing connectivity during
approach and decreasing connectivity during retreat.

Whereas the amygdala is engaged by emotion-laden stimuli
and conditions involving acute threat (as in aversive conditioning
paradigms), its involvement in potential threat (where threat
is not proximal and is relatively uncertain) is less clear (Davis
et al., 2010). Some human neuroimaging studies have even
observed deactivations of the amygdala during conditions of
potential threat (Pruessner et al., 2008; Wager et al., 2009; Choi
et al., 2012). Here, we observed decreases in correlation with the
salience network during both approach and retreat in amygdala
subregions (but only on the left hemisphere). Perhaps the most
noteworthy aspect of these results is that they clearly followed a
different pattern compared to the PAG, habenula, and BST.

The involvement of the BST in potential threat was suggested
in early work by Davis and colleagues (Davis and Shi, 1999)
and has been investigated recently in rodent studies with new
neurotechnologies (see Tovote et al., 2015). Work in humans has
revealed the involvement of the BST in potential threat, too (for
reviews, see Fox et al., 2015; Shackman and Fox, 2016). The BST is
rather small and thus challenging to investigate in humans with
functional MRI. Nevertheless, recent work at higher resolution
and magnetic field strengths (such as 7 Tesla) has been used
to generate anatomical masks (Avery et al., 2014; Torrisi et al.,
2015), and these appear to be reasonable approximations even at
the standard field strength of 3 Tesla (Theiss et al., 2017). An open
question concerns the conditions leading to BST engagement.
While some studies suggest that uncertainty may be a major
determinant of BST responses (Alvarez et al., 2011), this is not
entirely clear. For example, a previous study reported greater
BST responses for a simple threat approach vs. retreat contrast
(the authors only employed a single level of approach vs. retreat
“level;” also, the activation pattern was very diffuse, thus hard to
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attribute to the BST with more confidence) (Mobbs et al., 2010).
In the present study, functional connectivity between the BST
and the salience network increased during approach; decreased
connectivity was only detected in the left BST.

Although the involvement of the habenula in
affective/motivational processes has been known for some
time (Butler and Hodos, 2005), there is renewed interest in
the function of this structure (Hikosaka, 2010; Mizumori and
Baker, 2017). The habenula is a small structure (located at the
posterior-dorsal-medial end of the thalamus) and we must exert
caution in attributing our results to this structure without further
confirmation. Nevertheless, the putative habenula increased
functional connectivity to the salience network during approach,
and decreased connectivity during retreat. In this context, we
reiterate that we investigated functional connectivity of several
regions that are challenging to image with functional MRI,
including amygdala subnuclei, PAG, and BST (in addition to the
habenula). Although great care was taken at co-registration and
functional data were not smoothed, we suggest that region labels
be considered “putative” insofar as higher functional resolution
would be required for clearer anatomical attribution.

In conclusion, we employed intersubject functional
correlation analysis, which allows the investigation of functional
connectivity “across brains.” We detected dynamic changes in
functional connectivity involving regions across the salience,
executive, and task-negative networks, as well as subcortical
regions. Importantly, functional connectivity within and between
networks changed dynamically as threat imminence increased
and decreased. For example, positive dynamic functional
connectivity increased within the salience network during
approach and decreased during retreat. Functional connections

between several subcortical regions and the salience network also
changed dynamically during approach and retreat periods. The
regions included the PAG, habenula, and BST. Taken together,
our findings unraveled dynamic features of large-scale networks
while threat levels varied continuously. The results demonstrate
the potential of characterizing dynamic emotional processing at
the level of large-scale networks, and not simply at the level of
evoked responses in specific brain regions.
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