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Abstract

PI3K signaling is frequently dysregulated in NSCLC-SQCC. In contrast to well characterized

components of the PI3K signaling network contributing to the formation of SQCC, potential onco-

genic effects of alterations in PIK3C2B are poorly understood. Here, a large cohort (n = 362) of

NSCLC-SQCC was selectively screened for four reported somatic mutations in PIK3C2B via

Sanger sequencing. In addition, two mutations leading to an amino acid exchange in the kinase

domain (C1181, H1208R) were examined on a functional level. None of the mutations were

identified in the cohort while well characterized hotspot PIK3CA mutations were observed at the

expected frequency. Ultimately, kinase domain mutations in PI3KC2βwere found to have no

altering effect on downstream signaling. A set of SQCC tumors sequenced by The Cancer

Genome Atlas (TCGA) equally indicates a lack of oncogenic potential of the kinase domain

mutations or PIK3C2B in general. Taken together, this study suggests that PIK3C2B might only

have a minor role in SQCC oncogenesis.

Introduction

Phosphoinositide-3-kinases (PI3Ks) are able to phosphorylate the inositol ring of three differ-

ent phosphatidylinositol lipid substrates (PtdIns, PtdIns4P, PtdIns(4,5)P2), minor compounds

on the cytosolic site of eukaryotic cell membranes. Following activation by upstream agonists

such as receptor tyrosine kinases (RTKs) or G protein coupled receptors (GPCR), PI3Ks gen-

erate 3-phosphoinositides as second messengers. These 3-phosphinositides coordinate the

function and localization of numerous effector proteins. Downstream pathways of those pro-

teins control a broad range of different physiological functions as diverse as proliferation,

migration, apoptosis and cell metabolism [1–5]. Eight different catalytic PI3K isoforms have

been described that are subdivided into three different classes (class I, class II and class III).

This classification is based on substrate specificity, associated co-factors and sequence

homologies.
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Because of its central role in intracellular signaling, dysregulation of the PI3K network

belongs to the most common events in human cancers [6]. Prominent examples are loss of

function mutations in PTEN, the main PI3K phosphatase and antagonist of PI3K signaling

[7,8]. In regard to PI3K isoforms, there is plenty of evidence that alterations in class I alpha

(p110α) promote oncogenesis. Somatic mutations clustered in PIK3CA hotspot regions are fre-

quently found in a wide array of cancers [9,10] and their oncogenic potential is well docu-

mented in functional studies [11,12]. Aside from p110α, there are numerous publications

linking further PI3K isoforms to tumorigenesis [13–15].

Among them is the class II isoform C2β. As class II PI3Ks were discovered based on

sequence homologies with class I and class III instead of a functional context, the physiological

role and downstream pathways of PI3KC2β remain enigmatic. Nevertheless, PI3KC2β has

been repeatedly associated with various steps of oncogenesis in different cell lines. These range

from enhanced cell migration [16] to an increase in chemotherapeutic resistance [17], anchor-

age-independent growth [18] and cell proliferation [19]. Moreover, a study characterizing the

exomes of 31 non-small cell lung cancer (NSCLC) genomes found 4 missense mutations in

PIK3C2B: c.349C>G (P117A), c.3542G>T (C1181F), c.3623A>G (H1208R) and c.4407G>T

(L1469F). Two of them were located in a highly conserved region of the kinase domain (C1181

and H1208R) [20]. The frequency was even higher (3/12) when only considering the squamous

cell carcinoma (SQCC) subtype.

Together with adenocarcinomas (ADC), SQCC comprise the majority of all non-small cell

lung carcinomas (NSCLC) [21]. Recent efforts have been undertaken to unveil the underlying

changes in the genome, transcriptome and proteome of these two histological subtypes. This

led to growing evidence of distinct genomic alteration patterns. As for SQCC, oncogenesis

appears to rely on alterations in squamous differentiation [22], oxidative stress response [23]

and PI3K signaling [24]. According to a large genomic analysis, aberrant PI3K signaling is

present in approximately half of all cases [25], mainly through alterations in PIK3CA and

PTEN.

Given the high prevalence of PIK3C2B mutations in the small NSCLC cohort screened by

Liu et.al. and the connection to multiple steps of cancer progression, PIK3C2B and the

reported kinase domain mutations C1181F and H1208R were closer examined in regard to

promote aberrant PI3K signaling in NSCLC-SQCC.

For this purpose, a cohort of 362 NSCLC-SQCC was selectively screened for all four

reported alterations in PIK3C2B. To embed the sequencing results into a broader context, clin-

ical outcomes of a set of SQCC sequenced by the cancer genome atlas (TCGA) [26,27] were

analyzed with respect to alterations in PIK3C2B. Moreover, the functional impact of C1181F

and H1208R was assessed in relation to its potential to hyper-activate downstream PI3K/ERK

signaling in HEK293 cells.

Material and methods

DNA isolation from tumor samples

Punches from paraffin embedded NSCLC-SQCC tumor samples were provided by the Insti-

tute of Pathology and Tumor Tissue Bank, University of Bern. The SQCC cohort included 362

primary resected tumors and 29 corresponding mediastinal lymph node metastases diagnosed

at the Institute of Pathology 2000–2013. In order to exclude pulmonary metastases of other

SQCC, patients with previous SQCC of other organs were not included. The cohort comprised

52 females and 310 males with a median age of 69 years at the time of operation (range 43–85

years of age) and included all UICC 2009 pT stages (pT1a = 34, pT1b = 49, pT2a = 119,

pT2b = 53, pT3 = 77, pT4 = 30) and UICC 2009 tumor stages (IA = 61, IB = 79, IIA = 73,
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IIB = 51, IIIA = 81, IIIB = 8, IV = 8). The study was approved by the Cantonal Ethics Commis-

sion of the Canton of Bern (KEK200/14), which waived the requirement for written informed

consent. DNA was isolated from one or two paraffin punches per sample by using Qiaamp

DNA MicroKIT kits (Qiagen, cat. no. 56304).

Sanger sequencing

Potentially mutated sites were amplified via AmpliTaq Gold DNA Polymerase (Thermo-

Fischer, cat. no. N8080241) in a thermocycler (UNO II, Biometra). Cycling conditions con-

sisted of an initial denaturation step at 95˚C for 10 min and 30 cycles of denaturation (95˚C,

30 sec), annealing (60˚C, 30 sec) and extension (72˚C, 40 sec). Primer sequences and amplifi-

cation conditions for PIK3CA screening were adopted from Samuels et. al. [10].

Following amplification of the regions of interest, 5’ phosphates of the PCR products were

degraded with rAPid alkaline phosphatase (Roche, cat. no. 4898133001) followed by 25 cycles

of forward or reverse amplification at the same cycling conditions as indicated above (Big-

Dye1 Terminator v3.1 Cycle Sequencing Kit, Life Technologies, cat. no. 4337455). After

DNA precipitation, amplicons were dissolved in Hi-Di formamide (Thermo-Scientific, cat.

no. 4311320) and sequenced with an ABI3730 DNA analyzer (Applied Biosystems).

Primers

Primers of this project were purchased from Microsynth, designed with the Primer-Blast web

tool (ncbi. nlm.nih.gov/tools/primer-blast/) and are depicted in Table 1.

Plasmid engineering

A PIK3C2B expression vector with a C-terminal Myc-Tag was purchased from Origene (cat.

no. NM-002646). Primers with an adequate nucleotide mismatch were designed to engineer

C1181F and H1208R amino acid exchanges into the plasmid. The implemented changes in the

base triplicates were: C1181F: TGC>TTC / H1208R: CAC>CGC

To facilitate ensuing ligation, primers were additionally phosphorylated at the 5’-end.

Site-directed mutagenesis was carried out with the Phusion Site-Directed Mutagenesis

kit (Thermo Scientific, cat. no. F541). Mutations were incorporated by following the

Table 1.

Sequencing Primers

Name Forward Reverse

PIK3C2B.Ex3 CAGACCCCTCTCTCATCAGC ACGAAGAGACTCCCCCATCT

PIK3C2B.Ex24 CTGGAGTCCTTCCAAGCCAG ACCGCTTGATGTTGCCAAAC

PIK3C2B.Ex31 TCTGGAACAGTCCCCTTCCT GGGCAGAAGCAGTTACCCTT

PIK3CA.Ex9 GATTGGTTCTTTCCTGTCTCTG CCACAAATATCAATTTACAACCATTG

Mutagenesis Primers

Name Forward Reverse

PIK3C2B.C1181F TATCTACTCCTTCGCTGGCTGCT AAGTTCTCCACAGCCTTCTCATACTC

PIK3C2B.H1208R CACTGGTCGCATGTTCCA GTCTTCAGCATGATGTTGTCGT

qPCR Primers

Name Forward Reverse

PIK3C2B.qPCR CAGGCTTCAAGAGGCACTCA TGGTCATCATTCACCGTCCG

HPRT.qPCR TATGGCGACCCGCAGCCCT CATCTCGAGCAAGACGTTCAG

TBP.qPCR AGCGCAAGGGTTTCTGGTTT CTGAATAGGCTGTGGGGTCA

https://doi.org/10.1371/journal.pone.0187308.t001
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indicated cycling conditions: initial denaturation (98˚C, 10 min) was followed by 25 cycles

of annealing (C1181F: 69˚C, H1208R: 64,5˚C, 20 sec) and extension (72˚C, 5 min). PCR

products were ligated (Promega, cat. no. M180S) and successful engineering was tested via

Sanger sequencing.

An empty control plasmid was created by removing the PI3KC2B open reading frame via

restriction digestion with NheI (Promega, cat. no. R650A) and MluI (Promega, cat. no.

R638A). Plasmid fragments were separated in 1% agarose gel and purified (Promega, cat. no.

A9281). Afterwards, 5’-overhangs were blunted (NEB, cat. no. M0210S) and ligated (Promega,

cat. no. M180S). Plasmid constructs were cloned into E. Coli XL-1 Blue bacteria.

Bacterial transformation

Competent E.Coli XL-1 Blue bacteria were transformed with 150 ng of target plasmid by

applying a 42˚C heat shock for 85 sec. After overnight culture in LB medium containing ade-

quate antibiotic concentration (100 μg/ml ampicillin), clonally expanded plasmids were iso-

lated with PureyieldTM Plasmid Miniprep/ Midiprep kits (Promega, cat. no. A1223/A2495).

Cell lines and culture

HEK293 cells were purchased from the American Type Culture Collection (ATCC). Cells were

cultured in Dulbecco‘s Modified Eagle Medium (Sigma Aldrich, cat. no. D5796) supplemented

with 10% FBS (Gibco, cat. no. 10082147), 2 mM L-glutamine (Gibco, cat. no. 25030081) and

50.000 units of penicillin/streptomycin (Gibco, cat. no. 15140122). Cells were kept up to pas-

sage 50 or 3 months maximum.

Transient transfection

HEK293 cells were transfected at 50–60% confluency in different formats (6 well / 10 cm) with

calcium phosphate. Appropriate amounts of plasmid DNA (6 well: 4 μg / 10 cm dishes: 30 μg)

were thoroughly mixed with 1/10 Vol. of 2.5 M CaCl2 and 2x HEPES buffered saline (HBS, 40

mM HEPES, 10 mM D-Glucose, 10 mM KCl, 270 mM NaCl, 1,5 mM Na2HPO4). Subse-

quently, the transfection mix was added dropwise to HEK293 cells. After overnight exposure

to the precipitate, medium was changed and cells were further cultivated for 48–72 h.

qPCR

RNA from transfected HEK293 cells was isolated with the RNeasy Mini kit (Qiagen, cat. no.

74104), followed by reverse transcription (Applied Biosystems, cat. no. 4368814). Quantitative

PCRs were performed in a ViiA7 cycler (Applied Biosciences) using SybrSelect Mastermix

(Applied Biosystems, cat. no. 4472908).

Expression of mRNA was normalized to TATA box binding protein (TBP) and hypoxan-

thine-guanine phosphoribosyl transferase (HPRT) housekeeping genes.

Western blot

Proteins were extracted in RIPA buffer (20 mM Tris-base pH 8, 150 mM NaCl, 1% Triton-X-

100, 0.1% SDS, 0.5% sodium deoxycholate) supplemented with 100 μM Na3VO4, 25 mM β-gly-

cerophosphate, 1 mM NaF and cOmpleteTM Protease Inhibitor Cocktail (Roche, cat. no.

11836170001). Pierce BCA protein assay kit (Thermo Scientific, cat. no. 23225) was used to

determine protein concentration. Subsequently, 20 μg of protein were separated via

SDS-PAGE, transferred onto nitrocellulose membranes and blocked in Tris buffered saline

(TBS, 130 mM NaCl, 30 mM Tris-Cl, pH 7.5) containing 5% Bovine Serum Albumin (BSA)
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for 2 h. Western blots were probed with rabbit anti-PI3KC2β polyclonal antibody (1/1000,

described in [28]) rabbit anti-P-AKT Ser473 (1:1500, Cell signaling technology, cat. no.

4060L), rabbit anti-P-S6 Ser240/244 (1:2500, Cell signaling technology, cat. no. 5364L), mouse

anti-pan-AKT(1:2000, Cell signaling technology, cat. no. 2920S) mouse anti-total-S6 (1:2000,

Cell signaling technology, cat. no. 2317S), rabbit anti-P-ERK Thr202/Tyr204 (1500, Cell sig-

naling technology, cat. no. 4370L), mouse anti-total-ERK (1:2000, Cell signaling technology,

cat. no. 9107S) and mouse anti-β-actin antibody (1/2000, Sigma Aldrich, cat. no. A5316). Pri-

mary antibodies were detected by using goat anti-rabbit IR680 (1/10.000, cat. no. 926–68071,

LiCor Bioscience) and goat anti-mouse IR800 (1/10.000, cat. no. 926–32210, LiCor Bioscience)

antibodies and analyzed with a LI-COR OdysseySa imaging system.

Immunoprecipitation and lipid kinase assay

Lipid kinase activity of exogenously expressed PI3KC2β was measured with a bioluminescence

based kit purchased from Promega (ADP-Glo-Kinase Assay, cat. no. V6930).

HEK293 cells were grown in 10 cm diameter dishes and transfected with plasmid con-

structs as described above. Cells were lysed for 20 minutes on ice by applying 2 ml lysis

buffer (1% Triton X-100, TrisCl 50 mM pH 7.4, NaCl 150 nM, 1 mM EDTA), supplemented

with 100 μM Na3VO4, 1 mM NaF, 20 mM β-glycerophosphate and cOmpleteTM Protease

Inhibitor Cocktail. Then, lysates were centrifuged (16’000 g, 4˚C, 30 min) to remove insolu-

ble cellular debris and supernatant was incubated with anti-MycTag antibodies for 2 hours

at 4˚C under continuous agitation. Sepharose beads (GE Healthcare, cat. no. 17061801)

were added to the mix, followed by further incubation under continuous agitation (1 h,

4˚C). The resulting suspension was separated into different tubes (1/6, 2/6 and 3/6 of total

volume). Antibody-protein complexes were then pooled down by centrifugation (4000 g,

4˚C, 1 min). Finally, immunoprecipitates were washed 3 times in lysis buffer, followed by

quick spin down (4000 g, 4˚C, 1 min). Ensuing, sepharose pellets were re-suspended in

kinase reaction buffer (40 mM Tris HCl pH 7.5, 20 mM MgCl2, 0.1 mg/ml BSA), supple-

mented with 0.2 mg/ml phosphatidylinositol substrate (PI, Sigma Aldrich, cat. no. 79403)

and incubated on ice for 20 min. Enzymatic reaction was started after addition of 50 μM

ATP and precipitates were incubated for 30 min at room temperature. Remaining experi-

mental steps were carried out according to the manufacturer‘s protocol. Luminescence was

measured with a Modulus Microplate reader (Turner Biosystems).

Immunofluorescence

HEK293 cells were grown on glass coverslips. After 10% formalin fixation (10 min), coverslips

were washed 3x10 min in phosphate buffered saline (1x PBS: 137 mM NaCl, 2.7 mM KCl, 18

mM KH2PO4, 10 mM Na2HPO4) and cells were subsequently permeabilized with a 1x PBS,

0.3% Triton-X100 solution. Following blocking with a 1% BSA, 0.2% gelatin, 0.05% saponin in

1x PBS solution and washing with a 0.1% BSA, 0.2% gelatin, 0.05% saponin in 1x PBS solution,

fixed cells were treated overnight at 4˚C with a mouse anti-MycTag (9E10 epitope) antibody

diluted in an adequate buffer (0.1% BSA, 0.1% sodium azide, 0.3% triton X-100 in 1x PBS).

Then, coverslips were rinsed 3 times in washing solution. Cells were further incubated with a

fluorescent secondary anti-mouse-Alexa647 antibody (1:500, ThermoFischer, cat. no. A32728)

to detect antigen-antibody complexes and counter-stained with DAPI (500 ng/ml, Sigma

Aldrich, cat. no. 32670-25MG). Slides were scanned with a Pannoramic Midi II scanner

(3DHISTECH Ltd.).
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In silico meta-analysis

A SQCC data set sequenced by the TCGA and available on cbioportal [26,27] was analyzed in

relation to PIK3C2B sequencing information. Raw data were visualized and formatted with

Excel and Prism7 (GraphPad).

Statistical analyses

All experiments were performed in triplicates. Statistical analyses were conducted using Prism

7. The statistical test used is indicated in the legend of the figure. A value of p<0.05 was consid-

ered to be significant.

Results

Cohort validation

To ensure robust sequencing data, it had to be ascertained, that assay sensitivity was sufficient

to detect tumor specific mutations and that the obtained cohort was representative. To validate

the former, different ratios of PIK3C2BWT and PIK3C2BA3623G plasmids were analyzed via

Sanger sequencing. Detection of 10% mutated plasmid combined with 90% wildtype plasmid

was possible (Fig 1A).This result was considered to be sufficient for further analyses, as paraf-

fin punches contained tumor fractions > 30%. To ensure that the cohort was representative, it

was screened for the charge reversing hotspot mutations p110αE542K and p110αE545K. Both

mutations were present in the cohort (Fig 1B). Relying on mutation data from the COSMIC

database (cancer.sanger.ac.uk), a subsequent χ2 test revealed no significant difference between

the observed and expected frequencies in the screened cohort (E542K p = 0.383, E545K

p = 0.475).

PIK3C2B screening

After isolation of DNA from paraffin embedded tissue, samples were screened for the reported

mutations via Sanger sequencing (screened regions indicated on Fig 1C in orange). The entire

cohort of primary tumors and metastases was sequenced to detect the potential kinase domain

mutations PIK3C2BG3542T and PIK3C2BA3623G. Eventually, neither could be identified, or any

other mutation in the conserved catalytic and activation loop motifs in exon 25 of PIK3C2B
(Fig 1D). Likewise, no alterations were found at amino acids positions 117 or 1469 (Fig 1D).

The only observed sequential deviations were already documented SNPs in exon 3 and exon

25 of PIK3C2B (S1A Fig)

PIK3C2B in silico

To put the results of the screening into a broader context, a set of 504 SQCC provided by the

TCGA (cbioportal.org) was assessed in relation to PIK3C2B aberrations. As for somatic muta-

tions, data were available for 177 tumors. Those harbored PIK3C2B alterations in 4% (7/177)

of all cases, which were non-redundant and spread across the gene. Interestingly, previously

described alterations P117A and H1208R were also found in the cohort. PIK3C2B mutations

were not associated with a poorer overall or disease-free survival prognosis (Fig 2A). As for

alterations in mRNA expression, a data set of 501 samples was available. Applying a z-score

threshold of ± 1, the set was altered in 71/501 cases (upregulation in 50 cases, downregulation

in 21 cases). Likewise, deviations in mRNA expression were not associated with significant

deterioration of overall or disease-free survival (Fig 2B). Also, there was no observable pattern

between American Joint Committee on Cancer (AJCC) tumor stages and the appearance of

somatic mutations or mRNA expression levels (Fig 2C, n = 328). Protein expression level
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measured by reverse phase protein arrays (RPPA) was not altered in any of the samples after

applying a z-score of ± 1(S1B Fig).

Functional analysis of PI3KC2βC1181F/ PI3KC2βH1208R

To assess the PI3KC2β mutations C1181F and H1208R on a functional level, they were cloned

into a Myc-tagged PIK3C2B expression vector via site directed mutagenesis. Successful

sequence alteration was verified by Sanger sequencing (Fig 3A). As a negative control, the

ORF was removed to produce an empty backbone vector (EPIK2B). After CaCl2 transfection

Fig 1. Screening of NSCLC-SQCC tumors for somatic PIK3C2B mutations. A Chromatograms of different PIK3C2BWT / PIK3C2BA3623G ratios to

determine maximal assay sensitivity B Table with incidence and position of detected hotspot alterations E542K and E545K in PIK3CA with representative

chromatograms of screened genomic regions C Structural domains of PIK3C2B with localization of reported mutations P117A, C1181F, H1208R and

L1469F. Genomic regions analyzed via Sanger sequencing are highlighted in orange D Table with incidence and position of found alterations in PIK3C2B with

representative chromatograms.

https://doi.org/10.1371/journal.pone.0187308.g001
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of HEK293 cells, PIK3C2B overexpression was examined on a transcriptional and translational

level. Results of the conducted qPCRs and Western blots indicated strong overexpression on

both levels (Fig 3B & 3C). Via immunofluorescence targeting the c-terminal Myc-tag of the

protein, expression of exogenous PI3KC2β was witnessed in 65–75% HEK cells after transfec-

tion (Fig 3D).

In addition, potential alterations in kinase activity caused by C1181F/ H1208R were mea-

sured. Following immunoprecipitation of exogenously expressed PI3KC2β variants from

HEK293 cells with a MycTag antibody, kinase activity was measured with the ADP-Glo-Kinase

Assay kit. Ultimately, no significant changes between PI3KC2βWT, PI3KC2βC1181F and

PI3KC2βH1208R were detected (Fig 4A).

Alterations in PI3K pathway activation were analyzed with Western blots. HEK293 cells

were transfected with plasmid variants and subsequently kept at starved (0.5% FCS) or

unstarved (10% FCS) conditions for 24 hours. Neither PI3KC2βC1181F nor PI3KC2βH1208R led

Fig 2. Meta-analysis of TCGA NSCLC-SQCC sequence data. A Kaplan-Meier estimates of overall and disease free survival of patients with and without

somatic mutations in PIK3C2B. Log rank test B Kaplan-Meier estimates of overall and disease free survival of patients with and without alterations in

PIK3C2B mRNA expression. Z-score threshold ±1, RNA Seq V2 RSEM; log rank test C Scatter plot of PIK3C2B mRNA expression in all AJCC tumor

stages. x-axis: AJCC tumor stages, y axis: RNA Seq V2 RSEM, log 10; log rank test.

https://doi.org/10.1371/journal.pone.0187308.g002

Impact of reported PIK3C2B mutations on squamous non-small cell lung cancer oncogenesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0187308 October 31, 2017 8 / 15

https://doi.org/10.1371/journal.pone.0187308.g002
https://doi.org/10.1371/journal.pone.0187308


to a significant increase in the phosphorylation of the pathway effector proteins AKT, S6 or

ERK after transient overexpression compared to the wildtype allele (Fig 4B). As a positive con-

trol for pathway modulation, HEK cells treated with phorbol 12-myristate 13-acetate (PMA)

were included (100nM, 30 min). Being a strong promotor of phosphokinase C, it led to the

expected induction of ERK phosphorylation and a decrease in phosphorylation of AKT Ser473

(Fig 4B).

Discussion

Here, a large cohort of NSCLC-SQCC tumors was screened for four reported PIK3C2B mis-

sense mutations leading to amino acid exchanges (P117A, C1181F, H1208R, L1469F) [20]. In

addition, kinase domain mutations C1181F and H1208R were assessed on a functional level.

Fig 3. PIK3C2B plasmid engineering and validation. A Chromatograms of engineered PIK3C2B vectors B Relative mRNA expression of PIK3C2B after

transfection of HEK293 cells (36h) with plasmid constructs. PIK3C2B expression was normalized to housekeeping genes hypoxanthin

phosphoribosyltransferase 1 (HPRT) and TATA box binding protein (TBP). Means ± SEM; n = 3 independent experiments C Relative protein expression of

PI3KC2β after transfection of HEK293 cells (36h) with plasmid constructs. Protein expression levels were normalized to empty vector EPIK2B. Means ± SEM;

n = 3 independent experiments D Expression of exogenous PI3KC2β, visualized with immunofluorescence after transfection of HEK293 cells with plasmid

constructs. Staining with DAPI (blue) and MycTag antibody (violet).

https://doi.org/10.1371/journal.pone.0187308.g003
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The main focus lay on the two mutations in the kinase domain (C1181F, H1208R) bearing

the highest potential for oncogenesis. None of these alterations were identified in 362 patient-

derived tumor samples (Fig 1D). Assuming the frequency found in Liu et al., a complete

absence of the mutations by chance in the significantly larger cohort had a p-value < 0.0001.

The screening was then extended to L1469F, a mutation described in the phosphoinositide-

binding domain (PX-domain). After screening the first half of the cohort, no mutations were

found in 163 samples. Finally, the cohort was also screened for P117A, a mutation that

occurred in the proline-rich domain of the protein. This region has been proposed to play a

role in kinase activity regulation and clathrin binding [29]. There, the mutation was undetect-

able in 160 tested samples. The absence of any mutations in the cohort suggests that they

might not confer a significant advantage in NSCLC-SQCC oncogenesis/signaling.

The lack of any detected mutations led to a thorough validation of the employed assay and

the cohort. The technical approach was challenged by mixing different ratios of wildtype and

mutant plasmids. Ultimately, the sequencing assay was found to be sensitive enough to detect

the mutations at a 1:9 ratio (Fig 1A). The obtained sensitivity was satisfying since the samples

contained a minimum fraction of 30% tumor tissue. Next, the cohort was challenged by

Fig 4. Functional Analysis of PI3KC2βWT, PI3KC2βC1181F and PI3KC2β H1208R. A Lipid Kinase activity of PI3KC2βWT, PI3KC2βC1181F and PI3KC2β H1208R

measured 36 hours after transfection of HEK293 cells with plasmid constructs. Exogenously expressed PI3KC2βwas immunoprecipitated with sepharose

beats. Different volumes (1x, 2x, 3x Vol.) of immunoprecipitates were exposed to 0.2mg/ml of PI substrate. Means ± SEM; n = 3 independent experiments;

one-way ANOVA B Ratios of P-AKT/AKT, P-S6/S6 and P-ERK/ERK after transfection of HEK293 cells with plasmid constructs. 12h after transfection, cells

were further kept in complete DMEM medium for 24h with 0.5% or 10% FCS. As a positive control for pathway alteration, cells were treated with 100nM PMA

for 30 min. Protein expression levels were normalized to empty vector EPIK2B in unstarved conditions. Means ± SEM; n = 3 independent experiments;

unpaired two tailed t-test.

https://doi.org/10.1371/journal.pone.0187308.g004
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screening it for p110α mutations E542K and E545K. Both are charge reversing hotspot muta-

tions that were proven to be oncogenic and frequently found in NSCLC-SQCC [25]. There,

both mutations were detected at the expected frequency (Fig 1B) according to the COSMIC

database. These two experiments showed that the absence of detected mutations was neither

due to a technical issue nor to a singularity of the cohort.

To put the findings of the screening into a broader context, a NSCLC-SQCC dataset pro-

vided by the TCGA was analyzed in regard to PIK3C2B alterations. As for somatic mutations

(n = 7/177), they were non-redundant, rare and did not change clinical outcomes (Fig 2A).

Interestingly, P117A and H1208R were also present once in the cohort. One potential explana-

tion could be that both are passenger mutations that are more frequent in the screened north-

ern American cohorts. Alterations in mRNA expression (up or down) did likewise not change

clinical outcomes (Fig 2B) and did not translate into overexpression at the protein level (S1A

Fig). Also, neither somatic mutations nor mRNA expression levels of PIK3C2B were associated

with a particular tumor stage (Fig 2C).

In line with the findings of the screening, transient overexpression of the reported protein

variants PI3KC2βC1181F and PI3KC2βH1208R in HEK293 cells (Fig 3) did not reveal an effect of

the mutations on lipid kinase activity (Fig 4A) or PI3K/ERK pathway activation (Fig 4B) in

either direction. This shows that the two mutations do not confer any additional effect than

the effect of the wildtype protein.

Taken together, the present data do not suggest a driver function of somatic PIK3C2B
mutations in NSCLC-SCC and that aberrant PI3K pathway activation in NSCLC-SQCC

occurs through alterations in more central compartments of the signaling axes like EGFR,

PIK3CA and PTEN (25). Also, a recent study analyzed the mutational patterns in lung adeno-

carcinomas and squamous cell carcinomas [30]. In accordance with the aforementioned find-

ings, PIK3C2B was not found to be significantly mutated in either. As a more promising

approach, future studies could investigate alterations in PIK3C2B concomitantly with alter-

ations in other, potentially redundant PI3K isoforms.

In terms of cancer genetics, evidence for oncogenic implications of somatic PIK3C2B alter-

ations is scarce. The only exception is a single nucleotide polymorphism that has been reported

to be significantly associated with prostate cancer risk [31]. So far, studies have mainly

described amplifications of the genomic PIK3C2B locus. Gain at 1q32.1, the chromosomal

region encoding for PIK3C2B and MDM4 has been reported in studies assessing copy-number

alterations in glioblastoma multiforme [32,33]. In ovarian cancer, copy number gains of

PIK3C2B have been reported as well [34].

Increased levels of cellular PI3KC2β have repeatedly been associated with oncogenesis. A

study downregulating 779 kinases via RNAi in breast cancer cells (MCF7) ranked the siRNA

targeting PI3KC2β as one of the top 20 to sensitize cells to tamoxifen [35]. Another in vitro
study overexpressing PI3KC2β in oesophageal squamous cells (Eca109) reached a similar con-

clusion. Overexpression of PI3KC2β led to a 4-fold reduction in sensitivity to cisplatin. siRNA

mediated down-regulation of the enzyme resulted in restoration of sensitivity to the drug [17].

Conversely though, promotion of resistance to thiopurines in leukemia cells through deletion

of PI3KC2β has also been described [36]. The effect of PI3KC2β may thus be drug specific.

In vivo, overexpression of PI3KC2β in suprabasal and basal epidermal cell layers in mice

did not affect epidermal growth and differentiation [37]. In the same study, mice with ubiqui-

tous homozygous deletions of PIK3C2B were viable, fertile and without any reported

phenotype.

Apart from cellular outcomes and phenotypes, the molecular consequences of PI3KC2β
amplification on pathway signaling remain to be determined.
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This task is complicated by the fact that PI3KC2β was discovered on the basis of sequence

homologies rather than a functional context [38]. Assuming that PI3KC2β is able to generate

PtdIns(3,4)P2 [28], several studies investigated the possibility that the isoform is able to activate

AKT kinase, a cardinal node in diverse signaling cascades. So far, contrasting evidence is pres-

ent in the literature. Silencing of PI3KC2β has been shown to reduce AKT activation in neuro-

blastoma models [18]. Conversely though, no effect on AKT phosphorylation was detected in

epidermoid carcinoma cells (A-431) overexpressing PI3KC2β when compared to parental cells

[39]. Another study described an attenuation of AKT phosphorylation in PI3KC2β overex-

pressing HEK293 cells [40]. To explain these seemingly contradictive effects on AKT activa-

tion, an indirect cross-talk mechanism with other signaling molecules not relying on the

generation of specific phosphoinositides was proposed [41]. Consistent with this hypothesis, a

recent study found an indirect, even tissue specific effect of AKT activation upon PI3KC2β
inhibition [42].

PI3KC2β may fulfill context dependent tasks in different cell types. Hence, it could pose a

considerable challenge to determine direct downstream targets and the exact physiological

conditions under which PI3KC2β acts. Nevertheless, it is a necessary prerequisite to integrate

it into the precise context of cancer formation as it does not appear to be a classic oncogene.

Supporting information

S1 Fig. A Alterations in PI3KC2β protein expression measured with reverse-phase protein

array (RPPA). Z-score threshold ±1 B Table with incidence rate and position of found

PIK3C2B single nucleotide polymorphisms (SNP).

(TIF)

S2 Fig. A Relative mRNA expression of PIK3C2B after transfection of PC9 cells (36h) with

plasmid constructs. PIK3C2B expression was normalized to housekeeping genes hypoxanthin

phosphoribosyltransferase 1 (HPRT) and TATA box binding protein (TBP). Means ± SEM;

n = 2 independent experiments. Relative protein expression of PIK3C2β after transfection of

PC9 cells (36h) with plasmid constructs. Mean ± SEM; n = 2 independent experiments B

Transfection efficacy measured in PC9 cells via immunofluorescence. Cells were transfected

with a GFP plasmid for 36h. Staining with DAPI (blue). Share of GFP+ cells: 10–20%.

(TIF)
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