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Abstract

Background: Although much has been written on the implications of friction generated between orthodontic
archwires and labial brackets, information on lingual brackets is still limited. Hence, we set out to investigate the
frictional resistance exerted by different lingual and labial brackets, including both conventional and self-ligating
designs. The effect of various factors, namely bracket/base width, slot size, inter-bracket distance, and first- (ΘcI)
and second-order (ΘcII) critical contact angles were evaluated and compared.

Methods: A plaster model of a pretreatment oral cavity was replicated to provide 18 (9 upper and 9 lower)
identical versions. The anterior segments of each were taken, and the canine and lateral and central incisors were
mounted with either lingual (7th Generation, STb, New STb, In-Ovation L, ORJ) or labial (Mini-Mono, Mini Diamond,
G&H Ceramic) brackets. Mechanical friction tests were performed on each type of bracket using a universal testing
machine. The maximum force necessary to displace NiTi wires of two different diameters (0.012, 0.014) was
measured, using both elastic and metal ligatures with conventional brackets.

Results: The frictional force necessary to displace the wires increased as the diameter of the wire increased in all
tested brackets (p < 0.01). Friction was significantly higher (p < 0.001) with elastic ligatures, as compared with metal
ones, in all conventional brackets. In the lower lingual group, significantly lower friction was generated at
conventional lingual New STb brackets (p < 0.01) and ORJ lingual brackets (p < 0.05) than at self-ligating In-Ovation
L lingual brackets. A significant statistical correlation between (ΘcI) and friction was detected in the lower labial
bracket group.

Conclusions: Friction resistance is influenced not only by the bracket type, type of ligation, and wire diameter but
also by geometric differences in the brackets themselves.

Background
Previous studies have emphasized the importance on
the influence of the various mechanical properties that
characterize orthodontic materials on friction [1-6]. Al-
though the levels of friction generated between labial
brackets and archwires have been described, information
on the frictional behavior of lingual brackets is still very
limited [7-14]. Frictional resistance (FR) has been attrib-
uted to many factors, such as bracket type, wire size and
alloy, method of ligation, contact angles, and slot size
[3]. Kusy and Whitley provide us with a precise descrip-
tion effect of the critical angle on friction in both active
and passive configurations, concluding that if the angle

between the archwire and the bracket slot is less than
the critical contact angle, only classic friction is influ-
ential, because binding [1,15] and notching are non-
existent in a passive configuration [16,17].
Several studies have also been carried out to elucidate

the causes and effects of resistance to sliding in the passive
configuration. Wire alloy, bracket material, surface modifi-
cation, and roughness have been investigated [2,12,18-27],
revealing that as the angle between the bracket and the
archwire increases, the clearance between the archwire
and the bracket slot is reduced. In this situation, binding
occurs and in turn influences resistance to sliding, creating
an active configuration [15,28]. The active configuration
itself, however, has received considerably less attention.
Although similar to labial brackets, lingual brackets

feature several differences in terms of dimensions and
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clinical features, and labial mechanics cannot be applied
to lingual devices [29,30]. As the lingual arch radius is sig-
nificantly narrower than the labial, a smaller inter-bracket
distance is required in the former, especially in the lower
anterior area, where the difference is particularly pro-
nounced [29-31]. Hence, almost all lingual brackets are
single and have a narrower M-D width [13]. To offset the
reduced inter-bracket distance, more resilient archwires
must be used to provide adequate rotation and torque
control [32]. To better suit these smaller, more resilient
archwires and due to the limited space available, lingual
brackets generally have a 0.018 slot [32].
Despite these differences, few studies have attempted to

evaluate frictional forces in lingual brackets. That being
said, Park et al. did measure the friction generated by
cobalt-chromium, stainless steel, and B-titanium archwires
in two different lingual brackets, ORM and FJT, using a
novel pin and disk friction tester. They found that cobalt-
chromium wires generate significantly higher friction
values than stainless steel and B-titanium versions and
that friction was significantly lower when tests were
performed with artificial saliva rather than in the dry state
[13]. More recently, a comparative in vitro study of lingual
brackets showed that as wire size and second-order angu-
lation increased, so did the friction generated at all tested
brackets, and friction can be reduced in self-ligating In-
Ovation L lingual brackets using round rather than rect-
angular stainless steel wires [14].
In order to provide a comprehensive overview of the

topic, we set out to evaluate the friction generated in both
active and passive configurations of different lingual and
labial brackets using plaster dental models, and to identify
any correlation between frictional behavior and slot size,
type of ligation, archwire diameter, bracket width, inter-
bracket distance, and both first- and second-order critical
contact angles.

Methods
Eighteen plaster models (9 upper and 9 lower) were rep-
licated from impressions of an untreated patient's oral
cavity. The models featured a full set of fully erupted but
misaligned permanent anterior teeth of normal shape
and size, with no interproximal restoration, fractures,
caries or age-related wear. No fractures or bubbles were
present on the models, and crowding (Little's index) was
no greater than 2 to 3 mm in order to limit potential
notching between the archwire and bracket. Models of
both the upper and lower arches were divided into seg-
ments featuring three teeth per sample: central incisor,
lateral incisor, and canine (Figure 1). No distinction was
made between the left and right segments. A total of
eight commonly used orthodontic bracket types were
tested, all with a 0.018 slot height, five lingual brackets
namely In-Ovation L*, (DENTSPLY GAC International,

Islandia, NY, USA), 7th Generation STb (Sybron Dental
Specialties Ormco, Orange, CA, USA), New STb (Sybron
Dental Specialties Ormco), ORJ lingual brackets (Hangzhou
ORJ Medical Instrument & Materials, Hangzhou City,
China), and STb (Sybron Dental Specialties Ormco) and
three labial brackets namely Mini-Mono (Forestadent,
St. Louis, MO, USA), Ormco Mini Diamond (Sybron Den-
tal Specialties Ormco), and G&H Ceramic (G&H Wire
Company, Greenwood, IN, USA). The lingual group in-
cluded one example of a self-ligating bracket, indicated
with an asterisk.
All brackets were measured using an electronic gauge

(Mitutoyo) and precision pins (Azurea) to obtain a precise
mesiodistal bracket (slot) width, slot height, and distance
between the two adjacent brackets (Table 1). Two bracket
widths were measured for the New STb brackets, one as
above (slot) and the other encompassing the two cleats in
the mesial and distal parts of the slot. Only the maximum
width was considered in the analysis. Likewise, two inter-
bracket distances were measured for the New STbs, and
only the smallest was considered (see Figure 2). The diam-
eters of the two types of archwire were also measured
using the same micrometer. The first- and second-order
critical contact angles, ΘcI and ΘcII, respectively, were
calculated as per the formulas shown in Figure 3 [17].
A total of 54 brackets were bonded in a clinically ap-

propriate position, with the slot at the halfway point of
the clinical crown, using a cyanoacrylate adhesive. Each
typodont was inspected for general anatomical suitability
before friction testing was performed. Two diameters of
superelastic NiTi wire, 0.012 and 0.014 (G&H), both
supplied in straight lengths, were tested. The ligatures
used with conventional brackets were elastomeric mod-
ules (G&H) and SS ligatures (Preformed .010; G&H).
The frictional force was determined by means of a uni-

versal testing machine (INSTRON Corp, 1011, Norwood,
MA, USA). Samples were placed in a fixed position, and
wires were clamped to the machine. The force necessary

Figure 1 Segmented plaster model with bracket positioned at
halfway point of clinical crown.
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to displace each wire was determined at a cross-speed of 1
mm/min. The wires were pulled in a distal direction in
order to simulate the initial stage of alignment and level-
ing, when the archwires must slide through the brackets.
The resistance of each bracket/archwire combination was
tested in the dry state on each of the three teeth, and each
measurement was performed in triplicate. Tests on con-
ventional brackets were conducted with both elastic and
metal ligatures.

Statistical analysis
The bracket width, slot height, and archwire size were
calculated as a mean of 10 measurements. To calculate
the slot depth, we used the technical information sup-
plied by the manufacturer. Due to their particular
construction, we used two different measurements for
the width and inter-bracket distance L for New STb
brackets. In the subsequent statistical analyses, we used
the mean values of ΘcI and ΘcII, and the mean width

Table 1 Bracket groups, mean values of friction, width, inter-bracket distance, and first- and second-order critical
contact angles

Group ID code Bracket Mean friction Width L ΘcI ΘcII

Lower lingual A1 In-Ovation L 4.73 2.18 2.73 8.19 4.21

A2 7th Generation 3.19 1.77 3.11 10.13 5.31

A3 New STb 1.1 2.53/1.50 2.43/3.42 12.13 3.71

A4 O.R.J. 1.79 2.28 2.72 7.80 3.91

A5 OldSTb 2.32 2.04 2.82 8.77 4.50

Lower labial A6 Forestadent 3.17 2.57 5.13 6.92 3.77

A7 Ormco Mini Diamond 2.65 2.68 4.46 6.63 3.60

A8 G&H Ceramic 4.64 2.83 4.35 6.26 3.41

Upper lingual B1 7th Generation 4 2.36 3.48 7.56 3.91

B2 O.R.J. 2.43 2.81 3.56 6.32 3.34

B3 OldSTb 2.1 2.53 3.84 7.03 3.71

B4 New STb 1.79 2.56/1.51 3.89/4.58 12.04 3.68

B5 In-Ovation L 2.6 2.17 3.82 8.21 4.22

Upper labial B6 Forestadent 3.27 3.55 6.30 4.99 2.68

B7 Ormco Mini Diamond 2.62 3.49 6.07 5.08 2.71

B8 G&H Ceramic 4.38 3.48 6.04 5.08 2.69

There were two different bracket widths for the New STb (Figure 2).

Figure 2 Measurements of the width, slot height, and distance L. Width (mean value for three distances W1, W2, W3). Distance between
adjacent brackets (mean value for two distances L1, L2). Two different measurements for New STb bracket.
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derived from three different brackets (central incisor, lat-
eral incisor, and canine) for each bracket type.
The repeatability of measurements was assessed using

ANOVA applied to the three friction values (each bracket/
archwire combination was measured on each of the three
teeth, and each measurement was performed in triplicate),
and an α of 0.05. For statistical purposes we divided the
study sample into four groups: Lower lingual (A1 to A5)
Lower Labial (A6 to A9), Upper lingual (B1 to B5) and
Upper labial (B6 to B9), as shown in Table 2.
A linear mixed models test was used to analyze the fric-

tion within each of the four groups and to determine the
impact of ligatures and wire size on friction. Pearson's
correlation coefficient r was used to analyze the relation-
ship between the critical angle and friction, width and fric-
tion, and inter-bracket distance and friction, taking into
account the compatibility of the analyzed distributions
with the parameters of normal distribution (Kolmogorov-
Smirnov test). Finally, a linear mixed model was used to
analyze the statistical effect of the brackets on friction,
keeping other variables constant (wire and ligature).

Results and discussion
Results
Descriptive values of friction are reported in Table 2 as
the means of each bracket/wire/ligation combination.
The ANOVA test showed no statistically significant dif-
ferences between the friction measurements (p > 0.05).
Wire dimension significantly influenced the sliding of

the wire in all bracket types (p < 0.01) (Figure 4). The
0.014 wire generated higher friction levels for both the
conventional and the self-ligating brackets. The method
by which the wire was held in the slot also significantly
influenced sliding. In all conventional brackets, elastic
ligatures, as compared with metal ones, significantly in-
creased friction (p < 0.001) (Figure 5).
Figure 6 shows the mean friction values for all groups.

In the Lower lingual group, the conventional lingual
brackets (A3, New STb, and A4, ORG) generated signifi-
cantly lower friction (Bonferroni's post-hoc test p < 0.01
and p < 0.05, respectively) than self-ligating lingual
brackets (A1, In-Ovation L) (Table 3). The self-ligating
brackets also produced the greatest friction in the Upper

Figure 3 Formulas for calculating first- and second-order critical contact angles. SD, slot depth; ST, slot width; SH, slot height; AH, archwire
size (for round wire, AH = AD).

Table 2 Values of friction for different bracket and wire/ligature combinations and mean friction values

Group ID
code

Bracket Mean
friction

Friction 0.012 Friction 0.014

Elastic Wire Elastic Wire

Lower lingual A1 In-Ovation L 4.73 3.55 5.90

A2 7th Generation 3.19 3.42 1.28 5.20 2.85

A3 New STb 1.1 0.81 0.59 1.80 1.18

A4 O.R.J. 1.79 1.86 1.72 1.77 1.82

A5 OldSTb 2.32 1.73 1.48 3.40 2.65

Lower labial A6 Forestadent 3.17 4.63 1.86 4.50 1.70

A7 Ormco Mini Diamond 2.65 3.95 2.24 2.50 1.90

A8 G&H Ceramic 4.64 4.80 1.07 8.10 4.61

Upper lingual B1 7th Generation 4 4.45 2.24 7.00 2.29

B2 O.R.J. 2.43 2.99 1.56 2.80 2.39

B3 Old STb 2.1 2.34 0.76 2.90 2.39

B4 New STb 1.79 2.01 0.67 2.37 2.10

B5 In-Ovation L 2.6 1.67 3.52

Upper labial B6 Forestadent 3.27 4.53 1.63 5.50 1.40

B7 Ormco Mini Diamond 2.62 3.84 0.62 4.00 2.03

B8 G&H Ceramic 4.38 5.30 1.70 8.17 2.36
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lingual group, but neither this nor any other inter-group
differences between brackets were significant.
Table 1 reports mean values of friction, width, inter-

bracket distance L, and both first- and second-order crit-
ical contact angles. A negative statistical correlation was
noted between ΘcI and friction in the Lower labial
group (p < 0.05), indicating that the higher the mean
angle, the lower the friction. Statistically speaking, a
first-order critical contact angle was found to contribute
to friction by 29%. No significant correlation was found
in the other groups of brackets. In the Upper labial

group, friction rose with increasing values of the width
(p < 0.05) and decreasing values of inter-bracket distance
L (p < 0.05). A similar tendency was observed for the
inter-bracket distance L in both Upper and Lower lin-
gual bracket groups (Table 4).
The linear mixed model revealed that the different types

of brackets had different effects on friction (Figure 7). In
the Lower lingual group, keeping the other variables con-
stant (wire and ligature), the In-Ovation L bracket pro-
duced higher values of frictional forces as compared to
New STb.

Figure 4 Influence of wire size on friction.

Figure 5 Influence of type of ligation on friction.
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Discussion
Of the three types of labial brackets, in both the upper
and lower arches, the ceramic (G&H) brackets generated
the most friction, in line with that previously described by
various authors [19,21-34]. Also in line with previous find-
ings [1,3,22,35], we found that labial brackets generated
far greater friction in the lower, with respect to the upper
arch, except the upper bracket Mini-Mono (Forestadent),
where the difference was almost imperceptible. The dis-
parity between friction measurements for the upper and
lower jaws can be explained by the fact that the lower jaw
is considerably smaller than the upper, meaning inter-
bracket distances are smaller, and rotation and torque are
increased.
Examining the results for the lingual brackets, it is inter-

esting to note that the values of friction were particularly
high for the self-ligating brackets In-Ovation L with re-
spect to the conventional brackets (Bonferroni's post-hoc
test, p < 0.05), with the lowest values being found for STb
brackets. Although little has been published on the issue
to date, the only other study [14] to test the friction gener-
ated at lingual brackets, by Ortan et al., found very differ-
ent results, namely that less friction was generated with
self-ligating (In-Ovation L and The Magic), as opposed
to conventional (Generation 7 and STb) brackets, in all
bracket/wire/angulation combinations tested. However,

these differences could be due to differences in study de-
sign. Indeed, Ortan et al. tested a single bracket mounted
on a block, without considering the premolar dentition or
other adjacent brackets. Furthermore, the three types of
steel archwires examined (0.016, 0.016/0.016, and 0.017/
0.025) are normally used in the final, rather than the initial
stages of treatment. What is more, they focused on a
bracket from a posterior segment, where there are no
major differences between lingual and labial orthodontic
techniques [29]. Moreover, they did not take into consid-
eration the inter-bracket distance, a crucial factor in the
lingual technique. Indeed, the anterior segment is always
shorter in the lingual arch than that in the labial [31], and
the inter-bracket distance will therefore be affected by dif-
ferent bracket sizes. This is particularly important in the
anterior region, where the distances between adjacent
brackets are very small, and should be a focus of any in-
vestigation into friction in the early stages of lingual ortho-
dontic treatment.
Friction increased as archwire size increased when

both conventional and self-ligating brackets were tested,
and the smaller NiTi archwire (0.012) produced lower
values than the larger (0.014) in all four bracket groups
(p <0.01). These results are consistent with previous
findings [2,7,20,22,36-38]. Unlike previous studies, how-
ever, we focused on round (nickel titanium 0.014 and

Figure 6 Diagram showing friction values for all groups of bracket.
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0.012), as opposed to rectangular wires to investigate the
friction that develops in the first stages of treatment. In-
deed, round small-diameter archwires are preferred in
the alignment and leveling phase, where they are used
to increase elasticity and minimize friction (sliding
mechanics).
Several studies have previously described the increase

in frictional force seen with decreasing values of Θc
[4,5,35,39-42]. Nonetheless, these studies tended to focus
on second-order Θc, whereas we felt that it was import-
ant to look for increasing values of friction upon both
vertical and horizontal displacement [43]. Indeed, our
study revealed a negative statistical correlation (p < 0.05)
between friction and ΘcI in the Lower labial group.
As expected from previous articles on the subject

[36,39-41], elastic ligatures generated greater friction
(p < 0.001) than their metallic counterparts with both la-
bial and lingual brackets.
The influence of bracket width on FR has already been

described on several occasions, but, to our knowledge,
only one of these studies evaluated this factor in the ac-
tive configuration. Our finding that friction increases at
greater bracket widths (upper labial group (p < 0.05)
confirms the results of that study [1], which also set out
to identify any correlation between FR and inter-bracket
distance L [1,26]. Once again, our results confirmed the

Table 3 Comparison of mean friction generated at lingual brackets (p < 0.05)

Bracket
(I)

Bracket
(J)

Mean
difference (I-J)

Std.
error

Sig. 95% Confidence interval

Lower bound Upper bound

A1 A2 1.5383333 .8037706 .749 −1.102888 4.179554

A3 3.6308333- .8037706 .004 .989612 6.272054

A4 2.9333333- .8037706 .024 .292112 5.574554

A5 2.4091667 .8037706 .090 −.232054 5.050388

A2 A1 −1.5383333 .8037706 .749 −4.179554 1.102888

A3 2.0925000 .8037706 .200 −.548721 4.733721

A4 1.3950000 .8037706 1.000 −1.246221 4.036221

A5 .8708333 .8037706 1.000 −1.770388 3.512054

A3 A1 −3.6308333- .8037706 .004 −6.272054 −.989612

A2 −2.0925000 .8037706 .200 −4.733721 .548721

A4 −.6975000 .8037706 1.000 −3.338721 1.943721

A5 −1.2216667 .8037706 1.000 −3.862888 1.419554

A4 A1 −2.9333333- .8037706 .024 −5.574554 −.292112

A2 −1.3950000 .8037706 1.000 −4.036221 1.246221

A3 .6975000 .8037706 1.000 −1.943721 3.338721

A5 −.5241667 .8037706 1.000 −3.165388 2.117054

A5 A1 −2.4091667 .8037706 .090 −5.050388 .232054

A2 −.8708333 .8037706 1.000 −3.512054 1.770388

A3 1.2216667 .8037706 1.000 −1.419554 3.862888

A4 .5241667 .8037706 1.000 −2.117054 3.165388

Table 4 Correlation of width and inter-bracket distance L
with friction

Group Mean friction

Mean width Mean distance L

Lower lingual Pearson correlation .339 −.404

Sig. (two-tailed) .144 .078

n 20 20

Lower labial Pearson correlation .306 −.164

Sig. (two-tailed) .249 .544

n 16 16

Upper lingual Pearson correlation .179 −.405

Sig. (two-tailed) .451 .077

n 20 20

Upper labial Pearson correlation .609- −.606-

Sig. (two-tailed) .012 .013

n 16 16

Significant correlation only in Upper lingual group; statistical tendency
between distance L and friction in both lingual groups (p < 0.05); with an
increase in the value of width, friction increases r = 0.61, p < 0.05 (n = 16);
with a decrease in the value of distance L, friction increases r = −0.61, p < 0.05
(n = 16).
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previous finding that L is inversely related to friction, i.e.,
the latter increases with lower values of L, which could
explain the negative statistical correlation (Upper labial
group), and negative tendency (both lingual groups) we
found between L and FR.
Our final aim was to determine whether the type of

bracket had any statistically significant effect on friction.
Keeping the other variables constant (wire and ligature),
we found that this was indeed the case, a reminder to
the clinician that bracket selection is crucial to the suc-
cess of treatment in terms of anchorage control, particu-
larly in extraction cases, due to the large arch length
discrepancy in lingual orthodontics [1,8,22].
As far as we know, this is the first study to examine the

effect of different lingual brackets bonded onto typodont
and other factors on the friction generated between the
archwires and slots in the initial stage of orthodontic treat-
ment in an active configuration. Our findings have import-
ant implications on clinical sliding mechanics, but the
study does have its limitations. In particular, rigid plaster
models cannot mimic the physiological capabilities of the

teeth in vivo, which would normally possess force-
absorbing mechanisms. Nevertheless, typodonts are useful
when assessing arch and tooth size limitation [8], and a
previous comparison of in vivo and in vitro test values
showed that laboratory and clinical frictional forces of im-
mobile brackets are similar [44]. That being said, even
though all brackets and archwires tested were precision
measured, we only assessed one set of upper and lower
brackets, meaning that we did not take into account the
potentially significant intra-bracket variations that can
occur [45-48].
This study looked at various factors that contribute to

frictional force in different types of brackets, and it was
not possible to establish the most influential factor.
Nevertheless, significant differences in distance between
the brackets mounted on the lingual surface especially in
the lower arch shows that major factors may include the
width of the bracket, although the present study failed to
find a statistically significant correlation between friction
and this factor in the lingual group. However, we did
find a significant tendency, in both the upper and lower

Figure 7 Caterpillar plot: effect on friction for different types of brackets. The straight lines represent the confidence intervals (CI) of the
friction generated at each bracket, keeping the other variables constant (wire and ligature). If two different brackets have overlapping CIs, these
brackets have a significantly different effect on friction.
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lingual groups, for frictional forces to increase with de-
creasing values of L, which is directly correlated to the
width of the brackets. We also made the discovery that
self-ligating brackets may not reduce frictional force in
the lingual technique, something which needs to be
investigated further to suggest improvements to future
generations of lingual brackets.

Conclusions
The type of bracket (self-ligating or conventional), bracket
construction material, size of the wire, type of ligation,
and geometric differences in the brackets all have an influ-
ence on the frictional force. However, more research into
lingual brackets is required, particularly to confirm that
frictional force is not reduced when lingual self-ligating
brackets are used.
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