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Abstract

Background

Intrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remark-

ably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon

binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to

interact with a broad range of partners. However, the broader network properties that could

provide additional insights into the functional role of IDPs are not known.

Results

Here, we report the first comprehensive survey of network properties of IDP-induced sub-

networks in multiple species from yeast to human. Our results show that IDPs exhibit great-

er-than-expected modularity and are connected to the rest of the protein interaction network

(PIN) via proteins that exhibit the highest betweenness centrality and connect to fewer-

than-expected IDP communities, suggesting that they form critical communication links

from IDP modules to the rest of the PIN. Moreover, we found that IDPs are enriched at the

top level of regulatory hierarchy.

Conclusion

Overall, our analyses reveal coherent and remarkably conserved IDP-centric network prop-

erties, namely, modularity in IDP-induced network and a layer of critical nodes connecting

IDPs with the rest of the PIN.

Introduction
Complex biological processes that govern cellular functions cannot be entirely understood at
the level of individual genes and proteins. Instead, a systems-level investigation that includes
interactions among genes and proteins is essential to gain a comprehensive appreciation of
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how complex biological systems function and interact with their environment [1]. Recent avail-
ability of large-scale interaction data as well as other high-throughput datasets [2] have fuelled
systems-level approaches that apply network theory to gain insights into how biological sys-
tems are organized to facilitate robust and rapid information processing [3].

Previous investigations have shown that biological networks such as protein interaction net-
works (PINs) adopt a scale-free architecture, wherein relatively few nodes have high connectiv-
ity (hubs) and the vast majority of nodes have a diminishingly low degree of interaction [4].
Furthermore, beyond the analysis of hubs and degree distribution, several groups have eluci-
dated other network properties such as clustering coefficient, shortest path length, betweenness
centrality, etc. [5,6,7,8].

Our focus here is on a very important class of proteins – intrinsically disordered proteins
(IDPs) [9]. IDPs lack a stable tertiary structure in isolation [10,11], but typically possess the re-
markable ability to undergo disorder-to-order transitions upon binding to their biological tar-
get, a phenomenon referred to as coupled folding and binding [12]. Structural flexibility and
plasticity represent a major functional advantage for the IDPs enabling them to interact with a
broad range of binding partners [10,11]. At the same time, because of their inherent flexibility,
IDPs are prone to initiate promiscuous molecular interactions when overexpressed, resulting
in toxicity/pathology. Indeed, IDPs are frequently overexpressed in several pathological states
[13] and not surprisingly, IDPs tend to be dosage-sensitive [14]. Consequently, their expression
is tightly regulated from transcript synthesis to protein degradation [15].

Beyond their tendency to have a greater number of interactions, other distinguishing and
evolutionarily conserved characteristics of IDP-induced networks are not known. In the pres-
ent study, based on the available PINs as well as protein disorder annotation in four broadly
distributed species, namely, Saccharomyces cerevisiae (yeast), Drosophila melanogaster (fly),
Mus musculus (mouse) andHomo sapiens (human), we have analyzed, for the first time, a com-
prehensive set of network properties (Table 1) of the sub-networks induced by the IDPs
(NetIDP). Previous investigations of regulatory networks have proposed a hierarchical struc-
ture, where certain transcription factors assume the role of master regulators and affect gene
expression at the bottom level via a layer of “middle level”managers [16]. Considering the cen-
tral role of IDPs, we analyzed various properties of immediate neighbors of IDPs to assess their
roles as mediators. Broadly, our results suggest that IDPs are enriched at higher levels of regula-
tory hierarchy and exhibit relatively high modularity and low efficiency. IDPs are connected to
the rest of the network via a middle layer of non-IDP (structured) proteins that critically medi-
ate, as evidenced by high betweenness centrality, the communication between the IDPs and the
rest of the PIN.

Results

Overview
Our overall goal was to assess whether IDP-induced sub-networks exhibit unexpected topolog-
ical properties. To define IDPs, we used annotations provided in MobiDB database (see Materi-
als & Methods). The disorder score for a protein sequence is calculated as the fraction of
protein sequence covered by disordered regions. For all analyses, we used two stringent thresh-
olds for the disorder score– 50% and 70%. Independently in all four species, we estimated a
broad array of network properties (Table 1) of sub-networks induced by IDPs (NetIDP) and
the entire PIN (NetAll). We assessed the statistical significance of NetIDP’s topological proper-
ties based on the distribution obtained from 300 degree-preserving randomizations of NetIDP.
With minor exceptions, all cases that were deemed significant using our analytical approach
(see Materials & Methods), were also significant using a direct empirical estimate.
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Besides applications to four species and using two disorder thresholds, to further ascertain
robustness of our results, we repeated our analyses using multiple sources for protein networks
(see Materials & Methods): (1) STRING Physical Interaction: For human, mouse, fly, and
yeast, we used the physical interactions from STRING database [17]. (2) BIOGRID: For human
and yeast we used BIOGRID database [18]. For mouse and fly, BIOGRID does not contain suf-
ficient data for statistical analyses. (3) STRING integrated (functional) network: For the four
species, we also used the integrated STRING database.

All network properties for all four species at all disorder stringencies and all network data-
bases are listed in Table A in S1 File. The statistical significance of NetIDP properties are in-
cluded in Tables B and C in S1 File. Further details of various aspects of our pipeline are
provided in Materials and Methods section. Next we present our analyses of various network
properties of NetIDP. Unless otherwise mentioned our results refer to those based on STRING
physical interaction at 70% disorder threshold.

Table 1. Network properties investigated.

Network Density: The ratio of the numbers of edges in the network and the total possible edges.

Clustering Coefficient: Nu is the set of neighbors of a node u. The local clustering coefficient for node u is
the ratio of number of edges between nodes in Nu and the total possible number of edges between nodes
in Nu, that is, Nu-choose-2. The clustering coefficient of a network is the average local clustering coefficient
of all nodes.

Transitivity Coefficient: It is related to the clustering coefficient, and is the ratio of the number of closed
triplets (u connected to v connected to w connected to v) to the number of connected triplets (at least 2 of
the 3 edges present) of nodes in the network.

Rich Club Coefficient: It is related to the network density but only includes the nodes with degree above a
threshold k. That is, for a given k, the rich club coefficient is the ratio of the number of actual to the number
of potential edges between nodes with degree greater than k [19]. The normalized rich club coefficient was
calculated, with respect to a degree-preserving randomized network. Thus, a normalized rich club
coefficient >1 indicates that the network has a rich club structure, whereas a value <1 indicates otherwise.

Characteristic Path Length: Shortest path length between a pair of nodes is the number of edges in the
shortest path between the two nodes. Characteristic path length is the average pairwise shortest path
lengths between all pairs of nodes. The standard convention to estimate characteristic path length in a
disconnected graph ignores the cross-component node pairs [52].

Efficiency: The global efficiency is defined as the harmonic mean of all pairwise shortest path lengths [21].
It measures the efficiency with which nodes in a network can exchange information with each other.
Efficiency is not monotonically related to characteristic path length, and for a fixed characteristic path
length, efficiency attains a maximum value when the pair-wise shortest path lengths have low variability.

Modularity: The network is divided into ‘communities’. Each community consists of disjoint set of nodes
that are linked more with other nodes in the same community, compared to the nodes of another
community [20]. This is done such that the number of edges between different communities is minimized,
and the number of nodes within a community is maximized. Given a community structure, modularity is the
fraction of the edges that connect two nodes within the same community minus the expected fraction if
edges were distributed at random [53]. Formally, modularity is computed as: Q = ∑u2M[euu – (∑v2Meuv)

2],
where M is the set of non-overlapping modules that the whole network is sub-divided into, and euv is the
proportion of all the links that connect nodes in module u with those in v.

Betweenness Centrality: For node u, betweenness centrality is the fraction of all shortest paths (between
all node pairs) that pass through u. Thus, a higher value of betweenness centrality indicates a greater
participation of that particular node in the shortest paths between any two nodes of the network [54].

IDP Identification. MobiDB database [45] integrates multiple sources to provide a consensus annotation of
disorder for each residue in a protein. We defined disordered regions as stretches of at least 30 disordered
residues. As described previously, the overall disorder score of a protein is the fraction of protein sequence
covered by disordered regions [9,46]. A protein was designated as an IDP if the disorder score was above
a certain threshold. We used two thresholds, namely, 50% and 70% disorder.

doi:10.1371/journal.pone.0126729.t001
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Network Density
S1 Fig shows the degree distribution of IDPs (at 70% threshold) and all nodes for the 4 species,
based on STRING physical interaction data. The overall degree distributions do not reveal an
obvious difference between IDPs and non-IDPs. However, by and large, with very few excep-
tions, in four species, for two thresholds, and for three different network data sources, the net-
work density of NetIDP is greater than that of NetAll, (Table A in S1 File). When we explicitly
assessed the enrichment of hubs (defined as nodes with degree>mean + standard deviation of
all degrees in NetAll) we did not see a robust and consistent signal for enrichment of hubs
among IDPs as observed previously [9].

Clustering, Transitivity and Rich club Coefficient
The two related measures, clustering and transitivity coefficient (also called ‘global’ clustering
coefficient) capture local clustering of nodes; while clustering coefficient measures the extent to
which neighbors of a node are connected to each other, the transitivity coefficient quantifies
whether ‘the friend of a friend is a friend’. Given a slightly greater edge density in NetIDP
relative to NetAll, probabilistically, one would expect a greater clustering and transitivity coeffi-
cient. Indeed this is largely true for transitivity coefficient, but unexpectedly, clustering coeffi-
cient for NetIDP tends to be lower than that for NetAll (Table A in S1 File). However, when
compared directly against degree-preserving randomizations of NetIDP, both coefficients are
significantly greater than expected (Table 2 and Tables B and C in S1 File).

Rich Club Coefficientmeasures interconnectivity among nodes with degree above a certain
threshold and is normalized against degree-preserving randomized graphs (Table 1). Normal-
ized rich club coefficient for NetIDP, and NetAll for drosophila are shown in Fig 1. Plots for
other species are qualitatively similar (the trend is strongest in yeast and drosophila) and not
included. We found that across all species, NetIDP (but not NetAll) showed a rich club coeffi-
cient (values>1), which generally increases with increasing node-degree. Rich-club phenome-
non represents a greater than expected inter-connectivity among large degree nodes, which is a
crucial indicator of the presence of dominant communities [19].

Modularity
Modularity quantifies how a network is organized into relatively independent communities.
Modularity is estimated relative to a particular community structure, for which we used the ap-
proach described in [20], which maximizes the difference between intra-community edges to
its expected value assuming random edge assignment. It is non-trivial to directly compare
modularity of different graphs (NetIDP and NetAll in this case). Therefore using the commu-
nity structure derived from NetAll, and by projecting IDPs onto that community structure, we
estimated the modularity of NetIDP and compared it against its own degree-preserving ran-
domized versions. Consistent with our expectations from the results above, we found that in in
all cases (species, threshold, network source combination) without exception, NetIDP modu-
larity was greater than expected (Table 2 and Tables B and C in S1 File). This suggests that
highly disordered proteins are organized into modules.

We further investigated the distribution of IDPs among the NetAll-derived communities,
and found that generally IDPs are uniformly distributed among the NetAll communities. We
specifically tested whether each of the communities was enriched for IDPs using Fisher Exact
test and found this not to be the case. For instance, in the human at 70% threshold, only 2 out
of 23 communities are enriched for IDPs (p-value< 0.05) which is not significant after multi-
ple testing correction; the same is generally true for all species and both thresholds.
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Characteristic Path Length and Efficiency
These are two related measures where the characteristic path length is the mean and efficiency
is the harmonic mean of all pair-wise shortest paths. Efficiency relates to the physical efficiency
of information exchange within a network [21]. A shorter path length generally implies greater
efficiency. Note that these properties for NetIDP cannot be compared directly with those for
the corresponding NetAll, because only the IDP nodes are considered for shortest path calcula-
tion. Instead, as for other properties, we assess the values for NetIDP relative to those for de-
gree-preserving randomized NetIDPs. In our analysis, the two measures displayed a consistent
trend. Out of 12 significance tests (4 species using STRING physical interaction network and
human and yeast using BIOGRID, at two thresholds), in 11 cases, NetIDP’s characteristic path
length is greater than expected and efficiency is lower than expected. A greater path length
(correspondingly, low efficiency) in conjunction with greater-than-expected modularity may
suggest that NetIDP consists of well-separated communities. This is consistent with a previous
report that showed that, in social network context, modularity is inversely correlated with effi-
ciency [22].

Table 2. Topological properties of NetAll and NetIDP for the four species at disorder threshold of 70%.

NetIDP

Properties Species NetAll Measure p-value Mean Std dev

Network Density Yeast 0.0116 0.0141 - - -

Drosophila 0.0042 0.0033 - - -

Mouse 0.0038 0.0045 - - -

Human 0.0024 0.0024 - - -

Clustering Coeff Yeast 0.1622 0.0682 5.29E-195 0.0344 0.0079

Drosophila 0.1561 0.0626 0.00E+00 0.0149 0.0038

Mouse 0.2054 0.1362 0.00E+00 0.0309 0.0044

Human 0.1957 0.0746 0.00E+00 0.0111 0.0032

Transitivity Coeff Yeast 0.1071 0.0953 8.05E-201 0.0585 0.0082

Drosophila 0.1360 0.1588 0.00E+00 0.0475 0.0082

Mouse 0.11 0.1857 0.00E+00 0.0540 0.0058

Human 0.0684 0.1473 0.00E+00 0.0338 0.0065

Efficiency Yeast 0.4359 0.1599 -1.38E-125 0.1720 0.0039

Drosophila 0.3277 0.0352 -4.72E-204 0.0541 0.0019

Mouse 0.3452 0.0675 -0.00E+00 0.0946 0.0020

Human 0.3612 0.039 -6.22E-257 0.0511 0.0017

Charac Path length Yeast 2.4173 3.5271 5.84E-53 3.4714 0.0510

Drosophila 3.2666 4.0255 1.65E-180 3.7837 0.0633

Mouse 3.0592 4.3021 0.00E+00 3.5209 0.0416

Human 2.9304 4.5982 3.68E-212 4.2151 0.0776

Modularity Yeast 0.292 0.4901 4.63E-220 0.4572 0.0086

Drosophila 0.3892 0.6111 3.1855e-314 0.5212 0.0082

Mouse 0.4003 0.6476 0.00E+00 0.4593 0.0062

Human 0.4154 0.7182 0.00E+00 0.5952 0.0067

The significance is assessed for each of the sub-networks based on degree preserving graph randomization whose mean and standard deviations are

shown. The sign of the p-value indicates the directionality of the observed value relative to the mean of control values.

doi:10.1371/journal.pone.0126729.t002
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Properties of IDP neighbors
Next we assessed the manner in which IDPs connect with the rest of the PIN. Toward this goal
we first computed the betweenness centrality of every node and compared the values for three
sets of nodes: (i) IDP nodes, (ii) non-IDP nodes connected to an IDP node, and (iii) the re-
maining nodes. As shown in Table 3 (and Table D in S1 File), we found that consistently, non-
IDP nodes connecting the IDP nodes to the rest of the network have significantly higher be-
tweenness centrality. This result supports a model where IDPs communicate with the rest of
the network via an intermediate layer of critical, non-IDP mediators.

Next, given that IDPs are organized into communities or modules, we assessed whether IDP
neighbors exhibit a non-random association with the IDP modules. For each non-IDP node
that is connected to at least one IDP, we determined the number of distinct modules that the
IDPs connected to the non-IDP node belong to. We then compared the number of IDP

Fig 1. Normalized Rich club coefficient for NetIDP and NetAll for drosophila. The x-axis shows the
degree threshold and y-axis shows the normalized rich club coefficient for nodes with a degree equal or
greater to the threshold. Error bars are estimated based on bootstrapping over the nodes in the graph, and
represent one standard deviation.

doi:10.1371/journal.pone.0126729.g001
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modules for the IDP neighbors with the corresponding numbers for randomized NetIDPs
where the nodes in each module were randomly swapped with nodes in other modules (i.e.
module assignment was randomized while preserving the module sizes). As shown in Table 4
(and Table E in S1 File), without exception, IDP neighbors connect to fewer than expected IDP
modules. This suggests that the modularity of IDPs extends in the way they are connected to
their neighbors.

Table 3. Betweenness centrality of NetIDP, their neighbors and the rest of the non-neighbor nodes.

Yeast

NetIDP 0.0003±0.0013

NetIDP Neighbors 0.0007±0.0067

Wilcoxon Test neighbors' centrality > IDP centrality (p = 1.1075e-09)

NetIDP non-neighbors 0.00005±0.00012

Wilcoxon Test neighbors' centrality > non-neighbors' centrality (p = 0)

Drosophila

NetIDP 0.0004±0.0037

NetIDP Neighbors 0.0010±0.0048

Wilcoxon Test neighbors' centrality > IDP centrality (p = 3.7346e-76)

NetIDP non-neighbors 0.00013±0.00032

Wilcoxon Test neighbors' centrality > non-neighbors' centrality (p = 0)

Mouse

NetIDP 0.0002±0.0015

NetIDP Neighbors 0.0007±0.0056

Wilcoxon Test neighbors' centrality > IDP centrality (p = 2.0934e-66)

NetAll/NetIDP+ 0.00006±0.00022

Wilcoxon Test neighbors' centrality > non-neighbors' centrality (p = 0)

Human

NetIDP 0.0001±0.0006

NetIDP Neighbors 0.0006±0.0138

Wilcoxon Test neighbors' centrality > IDP centrality (p = 6.4789e-87)

NetAll/NetIDP+ 0.00005±0.00023

NetIDP non-neighbors neighbors' centrality > non-neighbors' centrality (p = 0)

doi:10.1371/journal.pone.0126729.t003

Table 4. Analysis of number of NetIDPmodules connected to a NetIDP neighbor.

Species Disorder (%) Avg #connected modules mean Std Deviation p-value

Yeast 70 2.1322 2.5945 0.0339 0.00E+00

50 3.1019 3.6544 0.0426 0.00E+00

Drosophila 70 1.6148 2.3682 0.0495 0.00E+00

50 2.2837 3.3397 0.0667 0.00E+00

Mouse 70 1.6507 2.5410 0.0658 0.00E+00

50 2.0739 3.1360 0.0491 0.00E+00

Human 70 1.6830 2.2142 0.0364 0.00E+00

50 2.0096 2.8535 0.0393 0.00E+00

The mean and standard deviation is estimated from 300 randomized module assignments of NetIDP (see text for details).

doi:10.1371/journal.pone.0126729.t004
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IDPs interact preferentially with other IDPs
A previous report has found that IDPs preferentially interact with other IDPs [23]. We assessed
the tendency of IDPs to assort with each other by comparing the observed ratio of IDP-IDP
edges to IDP-non-IDP edges with the expected ratio (based on number of IDP and non-IDP
nodes) via Fisher test. As shown in Table 5, in all cases, the tendency of IDPs to assort with
other IDPs is observed.

IDPs occupy higher levels in regulatory hierarchy
A previous analysis of regulatory networks suggests a regulatory hierarchy where the top-level
‘master’ regulators control the bottom-level proteins via a layer of so call mid-level managers.
We tested whether IDPs are enriched in a particular level of hierarchy. We obtained previously
inferred hierarchy of human regulatory genes [24]. Based on shortest path analysis we identi-
fied nodes at 5 levels, with 58, 2063, 778, 171, and 18 genes respectively. We found that 24% of
the top level genes are IDPs compared with 8.1%, 8.9%, 9.4%, and 5.5% at the next 4 levels re-
spectively. Thus, IDPs are significantly enriched at the top level of regulatory hierarchy relative
to other levels combined (Fisher exact test p-value = 0.0012).

Functional Enrichment Analysis
Using NIH’s DAVID tool [25], we assessed enriched functional terms among proteins in
NetIDP relative to NetAll. As shown in various tables in S1 File overall, the enriched Gene On-
tology (GO) terms in the four species recapitulate previous studies that have shown that IDPs
are enriched for GO terms related to transcription, chromosomal organization, development,
cell cycle regulation, etc. GO terms related to transcription and chromosomal organization are
enriched in NetIDP in all four species in our analysis.

Although functional properties of IDPs have been investigated before, the functions of the
proteins that connect with IDPs and mediate the communication between IDPs and the rest of
the PIN (middle layer in Fig 2) have not been investigated. We specifically assessed functional
enrichment among non-IDP proteins that are directly connected to an IDP. Interestingly, we
found that several functional terms were found enriched in NetIDP neighbors (at 70% thresh-
old) in at least 3 of the 4 species but were not found enriched in NetIDP in any of the species.
These are likely to represent unique functions enriched among structured proteins that interact
with IDPs. These functional terms are listed in Table “GO-Unique-Nb” in S1 File. We found
that in terms of molecular functions the IDP neighbors are uniquely enriched for DNA

Table 5. IDPs tend to preferentially interact with other IDPs.

Species Disorder % Observed ratio Expected Ratio Fisher test p-value

Yeast 70 0.0230 0.0188 3.83E-04

50 0.0735 0.0495 0

Drosophila 70 0.0315 0.0279 0.0171

50 0.1025 0.0799 0

Mouse 70 0.0278 0.0214 0

50 0.0878 0.0562 0

Human 70 0.0273 0.0225 9.30E-05

50 0.0716 0.0530 0

The observed ratio is for IDP-IDP edges and IDP-non-IDP edges. The expected ratio is based on number of IDP and non-IDP nodes.

doi:10.1371/journal.pone.0126729.t005
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binding, kinase, helicase, ATPase activities, etc. In terms of biological processes these proteins
are enriched for cell cycle, mRNA processing, translation, and transport.

Osmotic stress response network in yeast
As an illustrative case study, we focused on S. cerevisiae because of its superior quality of func-
tional annotation [26]. Osmotic stress response was one of the enriched biological processes
uniquely enriched among yeast IDPs. Moreover, among the neighboring non-IDP nodes con-
nected to IDP nodes, ‘kinase’ and ‘transcriptional regulator’ were two of the enriched terms.
Fig 3A illustrates the network composed of the 17 IDPs involved in osmotic stress and all non-
IDP nodes annotated to be either kinase or transcriptional regulators. To further clarify the os-
motic stress network, out of 17 IDPs we identified a completely connected community of 6
genes: MSN2, HSP12, GRE1, SIP18, STF2, and USV1. We then identified 21 non-IDP nodes
(18 kinases and 3 transcriptional regulators) that were connected to at least 4 of the 6 IDP
nodes listed above. Fig 3B shows the 21 non-IDP nodes and their connectivity. For clarity we
have excluded the IDP nodes because the 21 non-IDP nodes are densely connected with the 6
IDP nodes which form a clique among themselves. The majority of these neighboring nodes
connected to the osmotic stress response genes are themselves involved in mediating various
kinds of stresses including osmotic stress, hypoxia, starvation, heat, radiation, and replication
stresses. This illustrative example suggests that a core IDP sub-network may coordinate the

Fig 2. Proposedmodel. This figure illustrates the proposedmodel suggested by our comparative analysis of topological properties of IDP sub-networks.
Our results are consistent with a network model wherein intrinsically disordered proteins (IDPs) are organized into a loose federation of relatively small tightly
knit communities (topmost layer). The IDP layer is connected to the rest of the protein interaction network (bottom layer) via an intermediate layer (middle
layer) of proteins, which have high betweenness centrality and connect to fewer than expected NetIDP modules.

doi:10.1371/journal.pone.0126729.g002
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activities of several tightly linked kinases and transcriptional regulators to mediate the response
to various stressors in yeast.

Discussion
Networks of genes and proteins underlie the information processing capability of biological
systems. Therefore, the architecture of PINs must critically determine the functional complexi-
ty, robustness, and evolvability of biological systems, thus motivating an investigation of their
topological properties [5,6,7,8,27]. Due to their ability to interact with multiple partners
[10,11], IDPs occupy central positions in PINs [9]. They are involved in key biological process-
es including development. Furthermore, perturbations of IDPs and IDP networks can lead to
pathological states including cancer [28,29,30]. While the distinctive status of IDPs in PINs is
well known, the broader topological properties induced by IDPs have not been investigated
previously. Such topological properties could be important in understanding the broad func-
tional role of IDPs in development and disease. Here, we conducted a comprehensive survey of

Fig 3. Yeast osmotic stress response network. (A). The figure shows the 17 IDP nodes involved in osmotic stress (red) as well as all other non-IDP nodes
that are annotated as either ‘kinase’ (green) or ‘transcriptional regulator’ (blue) and connected to one of the 17 IDP nodes. Nodes are organized by the
degrees. (B) Six of the 17 IDP genes (MSN2, HSP12, GRE1, SIP18, STF2, and USV1) were completely connected to each other. The figure shows 21 non-
IDP genes annotated as ‘kinase’ (18 in green) or ‘transcriptional regulator’ (3 in blue) and connected to at least 4 of the 6 IDP genes. The 21 nodes and their
connectivity are shown. Larger versions of the two figures are provided in additional files S2 and S3 Figs.

doi:10.1371/journal.pone.0126729.g003
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the topological properties of IDP-induced sub-networks independently in four different spe-
cies. However, we emphasize that the conservation of topological properties across species is
not simply due to conserved networks, because the fraction of genes that have identifiable
orthologs (www.ensembl.org) in each of the four species included here ranges from 5% to 32%.

Incompleteness and false positive of available PPI databases plagues all studies relying on
large PPI networks. There are numerous PPI databases, each with overlapping focus and un-
derlying philosophy, but ultimately, all of them relying on some form of literature-based cura-
tion and include high-throughput assays such as Yeast two hybrid (Y2H). While in the absence
of a large ‘gold standard’ set, it is not clear how to tease out database specific biases, highly in-
teracting and well-studied proteins are better represented in these databases. Based on our de-
gree distribution comparison of IDPs and the rest of the proteins, high interaction is not likely
to bias our analyses. We have used STRING experimental track for our main discussion, which
integrates 7 independent PPI databases—BIND, DIP, GRID, HPRD, IntAct, MINT, and PID,
and in doing so it is expected to implicitly minimize database-specific biases. And more gener-
ally, by analyzing multiple species, as there can be species-specific biases in database quality,
and also a stand-alone database –BioGRID, not included in STRING, we tried to ensure that
the trends we observe are robust.

We observe a greater edge density in NetIDP than NetAll, and although a greater-than-ex-
pected overlap between IDPs and hubs has been previously reported [9], this specific trend is
not clearly recapitulated in our analysis. The correspondence between hubs and IDPs is likely
to be weak, if at all, and as such there are important differences between ‘hubs’ and IDPs that
are worth clarifying. While hubs, as a broad class, are evolutionarily conserved [31], IDPs are
known to evolve under relaxed purifying selection [32,33]; however, there are examples of pro-
teins where the disordered regions seems to be evolutionarily more conserved than the ordered
regions [32,34,35]. Moreover, hubs tend not to interact directly with other hubs, whereas IDPs
preferentially interact with other IDPs and this tendency is much stronger for non-hub IDPs
[23]. This general tendency of IDPs to have higher connectivity and assortativity with other
IDPs bears out in our analysis. In fact, our analysis further clarifies these previously observed
tendencies by revealing a modular organization among IDPs, which is consistent with both
greater connectivity and greater assortativity.

While IDPs commonly interact with multiple partners, there are instances where a struc-
tured protein, acting as a hub, interacts with multiple, disordered partners, e.g., the members of
14-3-3 protein family [36]. Interestingly, various 14-3-3 paralogs maintain a distinct set of in-
teracting partners, and the average disorder of the partners of each 14-3-3 paralog was shown
to correlate with the clustering coefficient of the sub-network composed of the paralog and the
partners. This correlation between average disorder and clustering coefficient is expected due
to greater tendency of IDPs to interact with other proteins. Interestingly, in our analysis, we
found that NetIDP has a lower clustering coefficient relative to NetAll suggesting that IDPs are
not connected with each other indiscriminately, but rather form a more structured modular
architecture.

We found that relative to degree-preserving randomized graphs, NetIDP has greater-than-
expected clustering, transitivity, and rich club coefficients. However, these are not a simple
consequence of greater edge density since we also see a greater-than-expected modularity and
characteristic path length in NetIDP. This may suggest that IDPs form smaller connected com-
munities with loose connectivity across communities, thus increasing the overall characteristic
path length in NetIDP.

Spurred by the finding that biological as well as many non-biological networks exhibit a
power-law degree distribution [4], a lot of attention thus far has been on the highly connected
nodes or hubs [37,38,39] as well as nodes with high betweenness centrality [40]. For instance, a
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centrality-lethality rule was posited based on the tendency of hub proteins to be essential
[41,42]. However, later studies have further resolved hubs and placed particular importance on
the so-called date hubs which are transiently connected to their partners and when deleted,
have a much greater effect on network connectivity as they tend to connect distinct functional
modules i.e., they have greater betweenness centrality [39,43,44]. Instead of ascribing a high be-
tweenness centrality to IDPs, our analysis shows that the non-IDP nodes directly connected to
IDPs have an even greater betweenness centrality. Moreover the non-IDP neighbors of IDPs
connect to fewer-than-expected IDP modules. Together, these results may suggest that the IDP
neighbors serve as entry-points mediating the communication between (a small set of) IDP
modules and various pathways and processes.

Previous research suggests that hierarchical modularity may represent a robust and generic
property of biological networks and that most functional classes appear as relatively segregated
sub-networks within the hierarchy [8]. For instance, such a hierarchical structure has been pre-
viously posited for regulatory networks, where certain transcription factors assume the role of
master regulators and affect maximum gene expression changes via a layer of middle level
managers, which in turn communicate with regulatory proteins at the bottom level [16]. Even
though, unlike the regulatory networks in [16], PINs we employ do not have directionality of
information flow [16], our results show, for the first time, that IDPs are in fact significantly
overrepresented among the top-level regulators. Taken together, our analysis suggests an IDP-
centric organization where IDP modules, at higher levels of regulatory hierarchy, communicate
with the rest of the PIN via a middle layer of critical proteins that facilitate communication be-
tween a small number of IDP modules and the rest of the PIN.

Conclusion
Overall, we have reported the first detailed analyses of topological properties of IDP-induced
sub-networks in four highly diverged species. Taken together, our results are consistent with a
network model wherein IDPs are organized into communities that, from a higher level of regu-
latory hierarchy, communicate with the rest of the PIN via an intermediate layer of proteins
with high betweenness centrality and which connect to smaller-than expected IDP modules.
Although the observed trends are suggestive of a particular organizational structure, deeper
evolutionary and functional insights into these intriguing, albeit preliminary, observations will
require a more detailed analysis aided by directed experiments of specific biological pathways
enriched in IDPs.

Materials and Methods

IDP Identification
MobiDB database [45] integrates multiple computational and experimental sources to provide
a consensus annotation of disorder for each residue in a protein sequence. Thus, MobiDB an-
notations were obtained for each of the four species investigated. We defined disordered re-
gions as stretches of at least 30 consecutive amino acids. As described previously, the overall
disorder score for the entire protein sequence was calculated as the fraction of protein sequence
covered by disordered regions [9,46]. A protein was designated as an IDP if the disorder score,
i.e., fractional coverage of the protein with disordered residues, was above a certain threshold.
We used two thresholds, namely, 50% and 70% disorder.

There are alternative databases for characterizing protein disorder. For instance, the D2P2
database [47] integrates multiple computational predictions into a consensus score at each resi-
due of a protein. Overall the disorder scores calculated by MobiDB and D2P2 are highly corre-
lated (overall correlation of 0.72 for the four species, and as high as 0.92 for fly). Given the
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overall consistency and the fact that MobiDB relies on experimental data in addition to compu-
tational predictions, we performed all our analyses using MobiDB annotations.

Protein interaction networks
For each of the four species, we obtained the PINs from the STRING database [17] which inte-
grates multiple sources of information to obtain high confidence interactions between protein
pairs. For the primary analyses we only used the physical interaction ‘experimental’ track with-
out any filtering (mainly to assure sufficient data for statistical robustness) but for secondary
analyses we used the integrated STRING database with default setting. For human and S. cere-
visiae, we additionally used BIOGRID [18] as an alternative source for the PINs. From the en-
tire network (NetAll) of each species, we derived NetIDP at different IDP thresholds.

Network properties
The network properties included in this study are defined in Table 1. The network properties
were calculated using the Brain Connectivity Toolbox [48] implemented in Matlab [49].

Estimating significance of differences in a network property
For a specific network property for NetIDP (say, clustering coefficient), to estimate its signifi-
cance, we applied a degree-preserving graph randomization approach implemented in Matlab,
where the randomized network has identical degree distribution as the actual network. Based
on clustering coefficient values for 300 such randomized graphs, we calculated a p-value for the
observed clustering coefficient. We first checked whether the values from control samples
come from a normal distribution using Lilliefors test [50]. In the rare cases when they did not,
we applied the Box-Cox transformation [51] to obtain a normal distribution. Once normality
was assured, we applied the Student's t-test to obtain the required p-value. We decided to do
only 300 randomizations for computational speed. However, we think it is sufficient given that
in a vast majority of cases the distributions fit a normal distribution.
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