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Aging is the main risk factor for Alzheimer’s disease (AD); being associated with
conspicuous changes on microglia activation. Aged microglia exhibit an increased
expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and
reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective,
it becomes dysregulated in the presence of a persistent stimulus, or in the context
of an inflammatory environment, as observed in aging. Thus, neuroinflammation can
be a self-perpetuating deleterious response, becoming a source of additional injury to
host cells in neurodegenerative diseases. In aged individuals, although transforming
growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced
and neuroinflammation persists. This age-related Smad3 impairment reduces protective
activation while facilitating cytotoxic activation of microglia through several cellular
mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically
discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its
relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis,
although observed in aged animals, are not further induced by inflammatory stimuli
and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger
receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to
TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional
co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated
regulation could at least partially mediate age-associated microglia changes, and,
together with other changes on inflammatory response, could result in the reduction
of protective activation and the potentiation of cytotoxicity of microglia, resulting in the
promotion of neurodegenerative diseases.

Keywords: aging, cytokines, Glia, MAPK, NFκB, neurodegenerative diseases, neuroinflammation, transforming
growth factor-β

OVERVIEW: GLIAL CELLS AND NEUROINFLAMMATION

Homeostasis of the nervous system is maintained by the finely tuned interaction of glial cells and
neurons, involving a complex network of signaling pathways. Inflammation, a primarily beneficial
process mediated by the activation of glia in response to injury, illness or infection, allows for
the elimination of harmful stimuli and the repair of damaged tissue. However, this process
can become dysregulated, when the activating stimulus cannot be removed, or in the context
of a maintained inflammatory environment, as observed in aging (von Bernhardi et al., 2010).
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Thus, neuroinflammation can also be a self-perpetuating
deleterious response, with persistent activation of glia, sustained
release of inflammatory mediators, and increased oxidative and
nitrosative stress; becoming a source of additional injury to
host cells. Chronic neuroinflammation plays a role in a number
of neurodegenerative diseases (Block and Hong, 2005; von
Bernhardi et al., 2007; Gao and Hong, 2008), inducing neuronal
injury.

Microglia are the brain resident innate immune system
(Hemmer et al., 2002; Ransohoff and Perry, 2009; Rivest, 2009).
When stimulated, microglia activate and change their functional
properties (Liu et al., 2001; von Bernhardi and Eugenin, 2004;
Lue et al., 2010). They can sense and respond to a wide range
of stimuli, including central nervous system (CNS) trauma,
ischemia, infection, toxic, and autoimmune insults (Kreutzberg,
1996; Streit, 2002; Kim and de Vellis, 2005; Schwab and
McGeer, 2008; Lue et al., 2010; von Bernhardi et al., 2010).
In fact, microglia are activated in virtually all CNS diseases
(Kreutzberg, 1996; Hanisch and Kettenmann, 2007; Neumann
et al., 2009). They are the main producers of a broad spectrum
of inflammatory mediators, such as eicosanoids, cytokines
(Nakamura, 2002; Kim and de Vellis, 2005; Tichauer et al., 2007),
chemokines, reactive oxygen species (ROS), nitric oxide (NO)·,
small metabolite mediators, and proteases (α-antichymotrypsin
and α-antitrypsin) (Benveniste et al., 2001; Nakamura, 2002;
Streit, 2002; Li et al., 2007; Tichauer et al., 2007; Neumann et al.,
2009; Lue et al., 2010).

Other glial cell type, astrocytes, which will not be discussed
in this work, share several functions with microglia. They are
important for neurotrophic support and metabolism, synaptic
regulation and several other functions, in addition to their
participation in β-amyloid (Aβ) clearance (Rossner et al., 2005;
Murgas et al., 2012). Inflammatory mediators regulate the innate
immune defense, induce bystander damage, and modify synaptic
function (Aldskogius et al., 1999; Selkoe, 2002; Di Filippo et al.,
2008) according to environmental conditions (Li et al., 2007;
von Bernhardi, 2007). Depending on the activation context,
microglia secrete inflammatory cytokines such as interleukin
1β (IL1β), tumor necrosis factor α (TNFα) and interferon
gamma (IFNγ), and reactive species (Kettenmann et al., 2011),
as well as regulatory cytokines like interleukin 10 (IL10) and
transforming growth factor β (TGFβ1; Nakajima et al., 2007;
Sierra et al., 2007;Welser-Alves andMilner, 2013). Inflammatory
cytokines trigger the production of several inflammatory factors
that could affect neuronal function. In response to IFNγ, for
example, glia produce NO· by up-regulation of inducible nitric
oxide synthase (iNOS) and release superoxide radicals (O2·

−)
by a nicotinamide adenine dinucleotide phosphate (NADPH)-
oxidase mediated mechanism (Hu et al., 1995; Calabrese et al.,
2007). Neuroinflammation affects neuron-glia crosstalk and
establishes interactions with oxidizing agents through redox
sensors in enzymes, receptors, and transcription factors, all of
which can affect neuronal function (Liu et al., 2012), inducting
neurodegeneration (Raj et al., 2014). Oxidative stress, in turn,
further increases inflammatory cytokines, creating a vicious
cycle (Rosales-Corral et al., 2010), with profound impact in cell
homeostasis and survival (Satoh and Lipton, 2007).

Astrocyte and microglia activation occur through the
phosphorylation of MAPKs and the activation of nuclear
factor kappa B (NFκB) pathway, inducing the expression
of inflammatory mediators (Van Eldik et al., 2007; Glass
et al., 2010; Heneka et al., 2010). MAPKs include extracellular
signal-regulated protein kinases (ERKs) and stress activated
protein kinases c-Jun NH2-terminal kinase (JNK) and P38.
Activated MAPKs exert their actions both in the cytoplasm
and translocating into the nucleus, phosphorylating transcription
factors. Noteworthy, ERK and P38 appear to be key actors in
the production of free radicals (Bhat et al., 1998; Marcus et al.,
2003; Qian et al., 2008). The ERK pathway is regulated by
pro- and anti-inflammatory cytokines, determining the timing
of microglia activation (Saud et al., 2005; Glass et al., 2010).
In addition, P38 is involved in the production of NO· by up-
regulating iNOS (Saha et al., 2007; Munoz and Ammit, 2010),
and enhances the expression of inflammatory cytokines, such
as TNFα, through both transcriptional and post-transcriptional
mechanisms. P38 can induce transcription of the TNFα gene
by increasing activator protein-1 (AP-1) activity (Spriggs et al.,
1992) and enhances its production by increasing the stability and
translation of TNFα mRNA (Dean et al., 2004).

Activation of microglia shows a broad functional spectrum
associated with specific expression patterns of cytokines
and their receptors (Town et al., 2005). Depending on the
stimuli they receive, they show different activation profiles
(Gordon, 2003; Martinez et al., 2008; Mosser and Edwards,
2008), including: (i) classical activation (M1 activation), which
under certain conditions will be cytotoxic; (ii) alternative
phagocytic/neuroprotective (M2 activation; Gordon, 2003;
Martinez et al., 2008); or (iii) regulatory activation (Mosser
and Edwards, 2008). Activation of interferon-regulatory factor
5 (IRF5), defines commitment to the M1 macrophage lineage
(Satoh et al., 2010), while IRF4 controls M2 polarization (Satoh
et al., 2010; Krausgruber et al., 2011). In M2 macrophages,
activation of NFκB-p50 appears to be associated with the
inhibition of M1-polarizing genes (Porta et al., 2009). M2-type
induction, through secretion of IL4, IL10 and TGFβ, promotes
humoral immune responses and down-regulates M1 responses,
inhibiting many macrophage inflammatory functions (Town
et al., 2005). A third group, regulatory macrophages, arises
at later stages and have a primary role limiting inflammation
(Mosser, 2003; Lucas et al., 2005; Mosser and Edwards, 2008).

AGE-RELATED CHANGES
OF MICROGLIAL CELLS

The term ‘‘inflamm-aging’’ was coined in reference to the
state of mild chronic inflammation (Franceschi et al., 2000)
observed in aged individuals, functionally characterized
by a reduced capability to deal with stressing stimuli.
The age-related immune changes, known as immune-
senescence (Larbi et al., 2008), would be also induced
by cumulative low-level inflammation, which induces
changes in gene expression related to inflammation and
immune response (Lee et al., 2000; de Magalhães et al.,
2009), increases plasmatic levels of inflammatory cytokines
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(Singh and Newman, 2011), and activates inflammatory
intracellular pathways (Helenius et al., 1996).

In aged animals, protein homeostasis is impaired at
multiple levels, including chaperone-mediated protein folding
and stability, protein trafficking, protein degradation and
autophagy. A major consequence of these impairments is
the aggregation of abnormal proteins, which are related to
neurodegenerative diseases, such as Parkinson’s disease (PD)
and Alzheimer’s disease (AD; Taylor and Dillin, 2011). Aged
microglia undergo multiple functional changes (reviewed in von
Bernhardi et al., 2015), impacting the neuronal environment and
promoting development of cognitive impairments (Figure 1).
Among these changes, microglial cell production of ROS
and inflammatory cytokines could contribute to the onset
of chronic neurodegenerative diseases (von Bernhardi, 2010).
Decline of lysosomal and mitochondrial functions results in an
exacerbated generation of ROS and inflammatory mediators by
microglia. Moreover, aged microglia show a decreased ability to
phagocytose Aβ in comparison with young microglia (Floden
and Combs, 2011).

In aging, activated microglia remain as the principal source
of inflammatory molecules and oxidative products of the CNS
(Pawate et al., 2004; Qin et al., 2005; Hayashi et al., 2008). Both
basal production of IL-6 and lipopolysaccharide (LPS)-induced
secretion of IL-6 and IL1β are higher in aged microglia than

FIGURE 1 | Age-related changes of microglial cell function. In aged
brains, there is an increased number, size and activation of microglia.
Age-related microglia changes depend both on gained and lost functions.
Diverse stimuli or injury processes can further promote an inflammatory
environment, promoting cytotoxic microglial cell activation. Aged microglia
show increased basal phagocytic activity, although a reduced capacity to
induce phagocytosis when stimulated, together with reduced lysosomal
activity, resulting in a decreased clearance activity. They also have increased
production of inflammatory cytokines and reactive species. Those changes
result in a shift of balance towards decreased protective functions and an
increased neurotoxicity. PRRs, pattern recognition receptors; SRs, scavenger
receptors; TLRs, Toll-like receptors.

in younger cells (Ye and Johnson, 1999; Sierra et al., 2007).
In fact, mild stimulatory events or minor injuries, otherwise
innocuous, could induce a robust and potentially damaging
response. Thus, a stimulus that normally would trigger a
protective response, in presence of age-related impairment of
regulation could determine a persistent activation, associated, for
example, to oxidative stress (von Bernhardi, 2007; Herrup, 2010).
Similarly, aged microglia become more inflammatory than their
younger counterparts upon systemic inflammatory stimulation,
exacerbating damage (Combrinck et al., 2002; Cunningham et al.,
2005; Godbout et al., 2005; Sierra et al., 2007). Accordingly, when
exposed to endotoxin, microglia derived from adult mice secrete
high amounts of ROS, whereas those from young animals mostly
produce NO (Tichauer et al., 2014). Those effects depend, at
least partly, on the upregulation of Toll-like receptors (TLRs),
increased expression of the TLR4 co-receptor CD14 (Letiembre
et al., 2007), changes in TLR4 signaling, and changes on the
expression profile of scavenger receptors (SRs; Yamamoto et al.,
2002; Hickman et al., 2008).

The activation of TLRs, CD14, and SRs by specific ligands
is associated with microglial cell activation (Godoy et al.,
2012; Murgas et al., 2012; Nakajima et al., 2007), production
of inflammatory mediators, and uptake of macromolecules,
including Aβ (Alarcón et al., 2005). There is conflicting evidence
regarding the effect of age on phagocytosis. In contrast with
reports indicating that microglia from aged mice have a
decreased ability to phagocytose Aβ compared with young mice
(Floden and Combs, 2011), we observed that basal phagocytosis
of aged microglia is slightly increased compared with that from
young mice, but phagocytosis fails to be induced by TGFβ
(Tichauer et al., 2014) or LPS (Cornejo et al., 2014). Class A
SR (SR-A) appears to play a key role for Aβ internalization by
microglia (Chung et al., 2001) and degradation by cathepsin B
(Yang et al., 2011), and for activation of microglia (Cornejo and
Von Bernhardi, 2013). SR-A participates in the phagocytosis of
Aβ and other anionic molecules, leading to the production of
ROS (El Khoury et al., 1996). In AD, microglia expressing SR-
A have been observed in close association with senile plaques
(Honda et al., 1998; Bornemann et al., 2001). SR-A inhibition
appears to increase Aβ burden in the brain of AD patients,
potentially promoting neurotoxic effects and disease progression
(Frenkel et al., 2013). The expression of these receptors decreases
in the brain of aging animal models of AD (Hickman et al., 2008).
Age-related changes in the expression of receptors involved in
inflammatory activation could account for part of the function
impairment of microglia, and provide insight regarding cell
phenotypes that could play a role in the pathophysiological
changes leading to neurodegenerative diseases. Given the various
protective functions served by microglia, rather than seeking the
inhibition of microglia, the regulation of those receptors involved
in microglia activation could reduce some of the deleterious
effects secondary to age-related microglial cell dysfunction.

MICROGLIA AND ALZHEIMER’S DISEASE

Neuropathology in AD is characterized by the deposition
of Aβ plaques and neurofibrillary tangles, constituted
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by hyper-phosphorylated tau, in the brain parenchyma
(Hardy and Selkoe, 2002), intimately associated with activated
microglia and astrocytes (Kim and de Vellis, 2005; Jellinger,
2006; Heneka and O’banion, 2007; von Bernhardi, 2007; von
Bernhardi et al., 2010), and loss of synapses and neurons
(Uylings and de Brabander, 2002). Worth mentioning, Aloise
Alzheimer already stated in the early 1900’s that plaques and
tangles probably were markers of an upstream process rather
than the disease cause (Davis and Chisholm, 1999).

Microglial cell reactivity to Aβ and phagocytic activity
are modulated by astrocytes, attenuating the cytotoxic
response of microglia (DeWitt et al., 1998; von Bernhardi
and Ramírez, 2001). However, modulation is abolished when
microglia exposed to Aβ was previously primed (von Bernhardi
and Eugenin, 2004), condition in which microglia show
increased cytotoxicity, Aβ precursor protein (APP) synthesis, Aβ

aggregation, and impairment of the uptake and degradation of
Aβ compared with non-activated microglia (Rogers et al., 2002;
von Bernhardi et al., 2007; Ramírez et al., 2008).

P38 appears to be involved in several pathological processes
of AD. P38 becomes activated at early stages of the disease (Pei
et al., 2001; Sun et al., 2003), being one of the kinases that
phosphorylates specific sites in tau (Feijoo et al., 2005; Churcher,
2006). Inhibition of P38 abolishes Aβ-induced neuronal death in
vitro (Zhu et al., 2005). P38 and NFκB appear to have a critical
role for glial cell activation. Activation of those pathways are
involved in Aβ-mediated induction of NO and TNFα production
by glia (O’Neill and Kaltschmidt, 1997; Akama et al., 1998; Saha
et al., 2007; Munoz and Ammit, 2010), which correlates with Aβ-
induced cognitive impairment (Tran et al., 2001; Wang et al.,
2005; He et al., 2007; Medeiros et al., 2007). Stimulation by
Aβ induces a transient phosphorylation of P38, and a slower
activation of NFκB (Flores and von Bernhardi, 2012) depending
on the up-regulation of the transcriptional activity of NFκB by
P38 (Saha et al., 2007), which contributes to neuroinflammation
by activating AP-1 and by stabilizing mRNA and enhancing
activity of NFκB. Production of TNFα and NO have different
temporal profiles, in agreement with the early induction of
cytokines by Aβ that appears to be needed for the subsequent
induction of iNOS expression (Akama and Van Eldik, 2000).

The “Glial Dysfunction Hypothesis”
The consideration that brain innate immune response can be
involved in the genesis of neurodegenerative diseases (Nguyen
et al., 2002; Bjorkqvist et al., 2009; von Bernhardi et al.,
2010), lead to re-consider the role of Aβ and propose glia as
a leading factor in AD pathology (Figure 2; von Bernhardi,
2007). However, for most scientists who adhere to the ‘‘amyloid
cascade hypothesis’’, Aβ is viewed as the cause of AD and
neuroinflammation is considered just a consequence of glia
activation (Akiyama et al., 2000; Heneka and O’banion, 2007;
Hirsch and Hunot, 2009).

Astrocytes modulate microglia cytotoxicity and phagocytosis
of Aβ (von Bernhardi and Ramírez, 2001). TGFβ1, secreted by
astrocytes and neurons among other cells, regulates microglia
activation, reducing release of inflammatory cytokines and
reactive species (Chen et al., 2002; Mittaud et al., 2002;

FIGURE 2 | The “Glial Cell Dysregulation Hypothesis” for Alzheimer’s
disease (AD). The glial cell dysregulation hypothesis proposes that AD has its
cause on changes on the activation and impaired regulation of microglia,
which become increasingly cytotoxic decreasing their protective functions.
Microglia is under the regulation of astrocytes which, among other factors,
secrete TGFβ. Inflammatory activation, secondary to aging and to certain
forms of pathological stimuli, can result in glial cell dysregulation. Dysregulated
glia, though the abnormal release of cytokines, reactive species, and other
mediators, contributes to the increased expression of Aβ precursor protein
(APP) and aggregation of Aβ, as well to functional and degenerative changes
of neurons, perpetuating abnormal activation of glia, synaptic dysfunction and
cell damage.

Herrera-Molina and Von Bernhardi, 2005; Herrera-Molina et al.,
2012), protecting neuronal cells in vitro (Hu et al., 1995; Lieb
et al., 2003; Herrera-Molina and Von Bernhardi, 2005) and
promoting phagocytosis (Wyss-Coray et al., 2001). However,
chronically activated microglia show a reduced response to such
a modulation (von Bernhardi and Eugenin, 2004), showing
instead an increased cytotoxicity and impaired uptake of Aβ

(von Bernhardi et al., 2007; Ramírez et al., 2008). Regulation by
TGFβ1 depends on a Smad3-mediated mechanism (Flores and
von Bernhardi, 2012; Tichauer and von Bernhardi, 2012). Age-
related inhibition on the activation of Smad has a profound effect
on the regulation of microglia by TGFβ (Tichauer et al., 2014).

In the context of the ‘‘glial cell dysregulation hypothesis’’
neurotoxicity is not viewed as a consequence of hyperactive
but rather of ‘‘mis-active’’, dysfunctional microglia (von
Bernhardi, 2007). Solid evidence show that adequately
activated microglia are needed as scavenger cells in the CNS,
participating for example in Aβ clearance (Paresce et al., 1996;
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Alarcón et al., 2005). However, lost response to normal
regulatory feedback and/or an impaired ability to clear Aβ

(Paresce et al., 1997; von Bernhardi, 2007), could lead microglia
to develop predominantly cytotoxic features, establishing an
inflammatory environment with increased oxidative stress,
conditions that are amyloidogenic (Gabuzda et al., 1994; Wang
et al., 2004), and promote neuron dysfunction (Figure 2).
Thus, microglia, initially protective, would become chronically
activated and show an exacerbated reactivity, contributing to
brain cytotoxicity and neurodegeneration (Nguyen et al., 2002;
Wyss-Coray and Mucke, 2002; Saud et al., 2005).

Regulation of glial cell activation appears to be impaired
under sustained inflammatory stimulation (Ramírez et al., 2008),
as those observed in the aged brain (Tichauer et al., 2014).
Whereas inflammatory activation of glia by Aβ is relatively
mild in culture, it is markedly potentiated in primed glia
(von Bernhardi et al., 2007). Likewise, attenuation of microglia
reactivity by astrocytes is greatly reduced when glia are exposed
to inflammatory conditions (von Bernhardi and Eugenin, 2004).
The priming of glia, rather than Aβ, could be the main trigger for
abnormal glia activation in response to a stimulus that normally
would not produce a sustained robust activation, a condition we
named ‘‘dysregulated glia’’ (von Bernhardi, 2007). In that sense,
in contrast to microglia normally reacting mildly when exposed
to Aβ, microglia have an enhanced activation under chronic

inflammatory conditions. Enhanced activation in turn could
result in an increased cytotoxicity (von Bernhardi et al., 2015).

ROLE OF TGFβ IN THE “GLIAL CELL
DYSREGULATION HYPOTHESIS”

TGFβ is present in three isoforms, TGFβ1, TGFβ2 and TGFβ3.
Astrocytes secrete preferentially TGFβ1. Increased production
of TGFβ1 in response to inflammatory conditions is one
of the regulatory mechanisms secondary to cell activation
(Herrera-Molina and Von Bernhardi, 2005) that limits the
temporal and spatial extent of neuroinflammation (Ramírez
et al., 2005; Saud et al., 2005), and neurotoxicity (Eyupoglu
et al., 2003). The modulation exerted by TGFβ1 is mediated
by the activation of Smad3, which is down regulated in AD
patients (Colangelo et al., 2002) and aged mice (Tichauer
et al., 2014), and the activation of ERK (Saud et al., 2005),
which also appears to be neuroprotective under certain
conditions (Zhu et al., 2002, 2004). In addition to Smad,
dynamic regulation of PI3K and MAPK, which are activated
as part of the TGFβ signaling pathway (Figure 3) as well
as with other inflammatory cytokines, can be key factors
for cell viability and the regulation of inflammation. In the
following sections, we will discuss how inhibition of Smad3
pathway and increased levels of TGFβ, as observed in aging,

FIGURE 3 | Transforming growth factor β (TGFβ) signaling pathways and aging. Binding of TGFβ to the type II TGFβ receptor dimer (TGFβRII) triggers
recruitment of type I receptor dimer (TGFβRI), generating the heterotetrameric TGFβ receptor capable of activating the intracellular signaling pathways for TGFβ

action. The activation of this complex activates (a) the canonical TGFβ signaling, with the phosphorylation of Smads 2 and/or 3 dimers, which bind to Smad 4 and
translocate into the nucleus to regulate gene transcription, together with the activation of (b) non-canonical TGFβ signaling, which includes activation of MAPKs
(ERK, extracellular signal-regulated protein kinase; JNK, c-Jun NH2-terminal kinase; and P38) and PI3K. Aging results in several changes on TGFβ signaling,
including an increased production of TGFβ, as well as inhibition of the Smad pathway and activation of the phosphatase MAPK phosphatase (MKP-1).
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could modify regulatory signals, leading to glia dysregulation.
The lack of inhibition of microglia inflammatory activation
by TGFβ could result in cytotoxicity and neurodegenerative
changes as those observed in AD. Impairment of TGFβ-
Smad3 signaling could reduce the capability of microglia to
deal with injury, inhibiting beneficial responses while inducing
progression towards a more inflammatory state in the aging
brain (Franceschi et al., 2000). This neuroinflammatory state
could favor the development of age-related neurodegenerative
diseases (Larbi et al., 2008), affecting the regulation of several
inflammatory signaling pathways as we will discuss on the
following sections.

TGFβ SIGNALING PATHWAYS AND THEIR
REGULATION

TGFβ1 is a pleiotropic cytokine and a potent regulator of
neuroinflammation and cytotoxicity. Many beneficial effects
depend on the regulation of microglial cell activity by TGFβ1 (Hu
et al., 1995; Lieb et al., 2003; Herrera-Molina and Von Bernhardi,
2005). In the brain, TGFβ1 is associated with neuroprotection in
excitotoxicity, hypoxia, and ischemia, as well as with interfering
with cell death cascades induced by compounds such as Aβ

(Caraci et al., 2011). TGFβ1 secreted at the injury site promotes
microglia recruitment, allowing for an efficient removal of
the noxious stimulus. Stimulation of hippocampal cultures
with LPS and IFNγ increases the secretion and activation of
TGFβ1 (Uribe-San Martén et al., 2009). TGFβ1 secreted by
hippocampal neurons and astrocytes in vitro (Ramírez et al.,
2005; Tichauer et al., 2007) and microglia (Welser-Alves and
Milner, 2013) decreases release of inflammatory mediators, O−2
and NO by microglia (Chen et al., 2002; Mittaud et al., 2002;
Herrera-Molina and Von Bernhardi, 2005; Saud et al., 2005;
Herrera-Molina et al., 2012), and increases viability of neurons
(Hu et al., 1995; Lieb et al., 2003; Herrera-Molina and Von
Bernhardi, 2005). Inhibition of LPS-induced macrophage
and microglia activation by TGFβ1 is regulated in a Smad3-
dependent manner (Werner et al., 2000; Le et al., 2004).
The same mechanism is also involved in astrocyte-mediated
neuroprotection against N-methyl-D-aspartate (NMDA)-
induced neuronal injury (Docagne et al., 2002; Katayama et al.,
2010) that results from the sustained activation of the ERK
pathway, playing also a pivotal role in astrogliosis (Chu et al.,
2004).

TGFβ signaling pathway (Figure 3) is activated when TGFβ
interacts and induces assembly of an heterotetrameric receptor,
containing two serine/threonine kinase receptors, type II and
type I (Rahimi and Leof, 2007). In mammals, there are five type
II receptors, TβRII, ActR-II, ActR-IIB, BMPR-II, AMHR-II,
and seven type I receptors, the activin receptor-like kinases
1-7 (ALK1-7; Rahimi and Leof, 2007). In canonical TGFβ
signaling pathway, ligand binding induces type II receptor
to phosphorylate and activate type I receptor, which then
phosphorylates receptor activated members of the Smad family
(R-Smad). TGFβ activates the phosphorylation of Smad2
and Smad3, their assembly with a Smad common-partner,
Smad4, and the nuclear translocation of the heterotrimeric

complex (Smad2/Smad2/Smad4, Smad3/Smad3/Smad4 or
Smad2/Smad3/Smad4). In the nucleus, the complex interacts
with AGAC enriched Smad binding elements (SBE) on the
DNA, acting as a transcriptional co-activator (Wrighton et al.,
2009). They bind to specific sequences where they can activate or
inhibit transcription, regulating gene expression of target genes
associated with inflammatory activation (Schmierer and Hill,
2007; Heldin and Moustakas, 2012), including that of Smad 7
(Ross and Hill, 2008) that belongs to a third type, the inhibitory
Smads (I-Smads: Smad6/7), which are an endogenous inhibitory
system.

Smad pathways act as co-factors coupled to master
transcriptional factors to direct gene expression in a cell-
specific manner (Mullen et al., 2011). The main regulation
of TGFβ signaling occurs on Smad. For example, Smad2/3
can be acetylated by transcriptional co-activators such as
p300 and CREB-binding protein (CBP) in a TGFβ-dependent
way (Simonsson et al., 2006; Tu and Luo, 2007). This post-
transduction modification favors binding of the Smad complex
to DNA, and the transcription of its target genes (Simonsson
et al., 2006). Also, phosphorylation of Smad3 mediated by CDK2
and CDK4 inhibits its transcriptional activity (Liu, 2006; Buxton
and Duan, 2008), and Smad3-PIAS (protein inhibitor of activated
STAT) interaction suppresses Smad3 activation by TGFβ and
favors its SUMOilation (Imoto et al., 2003). These and others
post-transduction modifications, such as MAPKs-mediated
phosphorylation (see below), can also regulate Smad activity
and therefore TGFβ-mediated transcription (Ross and Hill,
2008).

In addition to TGFβ-mediated Smad activation, TGFβ
activates a complex Smad-independent (TGFβ-non canonical
pathways) signaling pathway (Weiss and Attisano, 2013;
Figure 3). Non canonical signaling includes MAPK pathways
ERK, P38 and JNK, and PI3K/Akt (Derynck and Zhang, 2003;
Weiss and Attisano, 2013), and participate in many biological
processes such as cell cycle inhibition, immunosuppression and
neuroprotection, among others (Bosco et al., 2013).

REGULATION
OF INFLAMMATION-RELATED GENES
BY TGFβ

TGFβ orchestrates the expression of numerous genes associated
with inflammation and the immune response. In the nervous
system, the TGFβ pathway is involved in the regulation of
genes associated with cell cycle, cell proliferation, preservation
of neural progenitor cells, oligodendroglia and neuronal
differentiation, neuron survival and function, and the several
neurotransmission-related genes (Kandasamy et al., 2014). TGFβ
has a role in adult neurogenesis (He et al., 2007), and in
the differentiation of adult neural progenitor cells, inducing
the expression of several voltage-dependent channel subunits
(Kcnd3, Scn1b, Cacng4, and Accn1) and other neuronal proteins,
such as Cadps, Snap25, Grik4, Gria3, Syngr3, Gria4, doublecortin
(DCX), Nrxn1, Sept8, and Als2cr3, suggesting that TGFβ
participates, at least in part, in the induction of a functional
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neuronal phenotype, (Kraus et al., 2013). In addition, TGFβ
participates in cell migration by modulating the expression of
cell adhesion proteins such as nCAM, integrin α3, αV and β1
(Siegenthaler and Miller, 2004; Milner, 2009).

TGFβ regulates MHC class II expression in astrocytes, (Johns
et al., 1992). It also regulates the expression of some constituents
of its own pathway, including receptors type I TGFβ receptor
(TGFβRI) and type II TGFβ receptor (TGFβRII), Smad7 and
Smad3 (Ma et al., 2007; Qin et al., 2009). Microglia treated
with TGFβ show a reduced expression of the immune mediators
CCL3, CCL2, IL1a, IL1rl2, CCR5 and CD11c (Abutbul et al.,
2012; Butovsky et al., 2014), and upregulation of CX3CR1, CSF3
and TLR3 expression (Chen et al., 2002; Butovsky et al., 2014), as
well as SRs, which will be discussed in a later section.

AGE-RELATED CHANGES ON THE TGFβ

PATHWAY

In the brain, TGFβ favors cell survival, modulating the expression
of Bad, Blc-2 and Bcl-x1 as a mechanism of neuroprotection
against apoptosis (Dhandapani and Brann, 2003). TGFβ also
participates in the regulation of temporal transition between
early and late phases of neurogenesis and the regulation of
the stem cell potency (Dias et al., 2014). Increased levels of
TGFβ have been reported in several brain areas, including the
hippocampus and hypothalamus, during aging (Bye et al., 2001;
Werry et al., 2010). Cells showing increased production of TGFβ
apparently do not include neurons, since TGFβ transcripts level
are severely reduced in aged neurons (de Sampaio e Spohr et al.,
2002).

Aging also affects the circadian variation of TGFβ expression.
It has been reported a loss of the diurnal pattern of TGFβ
expression, as well as a loss of the day/night expression of
activated Smad3 compared with the pattern observed in young
animals (Beynon et al., 2009) that have profound functional
effects. In addition, the pedunculopontine (PPT) nucleus of aged
rats, a structure related to sleep and cognitive functions, shows
an over activation of the TGFβ-Smad signaling pathway that
appears to be involved in sleep-related memory impairment in
aging (George et al., 2006).

There are age-related changes on TGFβ signaling at several
levels. Some depend on changes on the level or the pattern of
secretion of TGFβ, or in its canonical signaling pathway, Smad
(Figure 3). Others depend on changes on the interaction of TGFβ
with other inflammatory mediators or their transcription factors,
such as IFNγ and NFκB, or on regulatory components, such
as MAPK phosphatases (MKP-1). Finally, there are age-related
changes on its regulation on cellular processes, as observed with
stem cells. The various changes will be discussed on the following
sections.

Aging-Related Inhibition of the TGFβ-Smad
Pathway
TGFβ1, produced by astrocytes in vitro, decreases microglial
NO and ROS production induced by LPS and IFNγ (Herrera-
Molina and Von Bernhardi, 2005). Induction of both NO and
ROS is prevented by TGFβ1 in neonatal, but not in adult animals.

Therefore, response to inflammatory stimulation appears to
become more oxidative, and for that reason, potentially more
cytotoxic in aged animals (Tichauer et al., 2014). Moreover,
modulation by TGFβ1 also is abolished in microglia obtained
from animals previously exposed to inflammatory conditions
(Tichauer et al., 2014).

TGFβ-Smad pathway is very important on the regulatory
and neuroprotective effect of TGFβ1 (Derynck and Zhang,
2003), being involved in the induction of the quiescent
phenotype of microglia (Abutbul et al., 2012). Activation of
the TGFβ1-Smad3 pathway induces glial cells to produce MKP-
1, a phosphatase exerting negative regulation on inflammatory
activation that inhibits Aβ-induced MAPK and NFκB signaling
(Figure 4), and decreases production of TNFα and NO (Flores
and von Bernhardi, 2012). MKP-1 appears to preferentially
dephosphorylate P38 and JNK, but it also dephosphorylates ERK
in some cell types (Liu et al., 2007; Boutros et al., 2008).

TGFβ1-dependent regulatory mechanisms are impaired in
aging. Aged microglia show a basal activated status, which has
been linked to neuronal damage, cognitive impairment, and
an increased susceptibility to neurodegenerative diseases, such
as AD (Block et al., 2007). Age-related alteration of TGFβ
pathway includes changes in TGFβ release, Smad3 activation,
and on microglial response induced by inflammatory stimuli in
the hippocampus of aged mice, as well as abolition of TGFβ-
induced phagocytosis (Tichauer and von Bernhardi, 2012) by
aged microglia (Tichauer et al., 2014). In addition, Smad2/3
expression pattern is altered, showing increased expression of
Smad3 in aging. In contrast, Smad2 (Deltaexon3), a splice form
of Smad2 that directly binds to the DNA, is highly expressed
prenatally and in early postnatal life, but it diminishes with aging
(Ueberham et al., 2009).

Both age and inflammatory status affect the amount and
phosphorylation of Smad3 protein in mice hippocampus
(Tichauer et al., 2014). Whereas 2-month old mice show a
robust increase of Smad3 in the hippocampus after a systemic
inflammatory stimulus, 12-month old animals maintain Smad3
at its increased basal level (Figure 3). Similarly, phosphorylation
(activation) of Smad is not induced by inflammation in old
animals (Tichauer et al., 2014). The activation of the Smad
pathway in young animals could depend on the effective
elevation of TGFβ1 levels induced by inflammatory stimulation
(Wynne et al., 2010). The induction of Smad3 expression
could depend on the activation of MAPK1 (Ross et al.,
2007). In contrast, in adult mice, increased basal levels
of TGFβ1 (Colangelo et al., 2002; Lukiw, 2004) maintains
elevated Smad3, becoming unresponsive to new inflammatory
stimulation. Increased levels of TGFβ1 with a reduced activation
of Smad signaling can result in an unbalance between the
various TGFβ1 activated pathways (Schmierer and Hill, 2007).
Furthermore, considering that the non-Smad TGFβ1 pathways
MAPKs and PI3K, also participate in inflammatory activation
signal transduction, and their activation is not abolished in aged
mice, inhibition of Smad could abolish the regulatory effect of
TGFβ1 on inflammation, facilitating the cytotoxic activation of
glia. The partial inhibition of TGFβ1-Smad3 signaling in aging
could explain the persistent activation of microglia and mild
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FIGURE 4 | Regulation of Janus activated kinase (JAK)-Stat and nuclear factor kappa B (NFκB) signaling by TGFβ through MKP-1. Modulation of
Interferon gamma (IFNγ)- and Interleukin 1β (IL1β)- induced signaling pathways (as models of inflammatory activation) by TGFβ1 reveals, at least partially, the
anti-inflammatory effects of TGFβ1. IFNγ activates JAK- signal transducer and activator of transcription-type-1 (STAT1) pathway, increasing pSTAT1tyr, pERKs and to
a lesser extent pP38. ERK and P38 MAPKs potentiate STAT1 activation by phosphorylation of a serine residue. IFNγ-induced signaling pathway inhibits Smad
signaling by increasing synthesis of its endogenous inhibitor Smad7. TGFβ1 is also able to activate MAPKs. Particularly, TGFβ1 can activate ERK and P38 and also,
through the activation of the Smad3 pathway, induces an increase in MKP-1 expression. Particularly in microglia, TGFβ1 inhibits IFNγ-induced STAT1 activation via a
MKP-1-mediated inhibition of ERK1/2. Cytokines, such as IL1β induces activation of glial cells and the production of TNFα and nitric oxide (NO) through the
activation of P38 and NFκB pathways. TGFβ1, by inducing an increase in MKP-1 levels, inhibits P38 and NFκB pathways, reducing production of TNFα and NO. In
aging, there are increased levels of IFNγ, inhibiting activation of the TGFβ1-Smad signaling pathway, as well as reducing induction of MKP-1, which will result in a
decreased regulation of MAPKs and NFκB pathways. An alternative pathway observed in aging leads to atypical TGFβ1 signaling that through inducing sequestering
of IκB, induces activation of NFκB. Furthermore, age-related inflammation and increased production of reactive oxygen species (ROS) are strong activators of NFκB.

neuroinflammation, regardless the elevated levels of TGFβ1 in
aged mice. The lost ability to modulate microglia activation,
together with the increased ROS production by aged animals,
could result in a predominantly cytotoxic activation.

Age-Related Changes on TGFβ and NFκB
The transcription factor NFκB is a robust candidate for showing
age-dependent changes due to its role in the regulation of
immunity, inflammation, and cell death (Adler et al., 2007).
Blockade of NFκB in aged mice has been reported to reverse the
gene expression program and cell morphology, ‘‘rejuvenating’’
old mice (Adler et al., 2008). Robust evidence in a variety of
cell and animal based experimental systems show that oxidative
stress and inflammation are strong inducers of NFκB activation
(Muriach et al., 2014). They are frequently associated with aging,
and are involved in the pathophysiology of several chronic
diseases observed in aged individuals, like diabetes and AD.
In fact, Aβ can be a strong inducer of NFκB in neuron cell
death via the induction of intracellular ROS (Lee et al., 2005b;
Valerio et al., 2006), and through tumor necrosis factor receptor
1 (TNFR1) signaling, which result in neuronal apoptosis (Li et al.,

2004; Valerio et al., 2006). Inhibition of these pathways could
be beneficial in the treatment of neurodegenerative diseases,
including AD (Lee et al., 2005a,b; Munoz et al., 2007; Paris
et al., 2007; Wang et al., 2008a). The effect appears to involve
attenuation of Aβ-induced activation of ERK1 and P38 MAPKs,
which are upstream NFκB signaling pathway (Pannaccione et al.,
2005; Valerio et al., 2006).

TGFβ1 can also promote inflammatory activity under
certain conditions. Yan et al. showed that TGFβ1 injection to
the hypothalamus resulted in inflammatory NFκB signaling.
Activation is via the TGFβ-R2 receptors expressed on neurons
of the medial basal hypothalamus. It induces formation of
RNA stress granules that accelerate the decay of IκBα, resulting
in activation of NFκB (Yan et al., 2014). Although the work
was oriented to understanding mechanisms of diabetes, similar
conditions are also observed in aging.

In addition to this novel mechanism of TGFβ-dependent
activation of NFκB, aging also shows reduction of MKP-1
(see subsection ‘‘Age-Related Changes on TGFβ and MKP-1’’)
that impairs inhibitory regulation over NFκB and MPAKs,
potentiating cell reactivity, inflammatory activation, and
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potentially oxidative stress and cytotoxicity. In addition,
increased production of ROS and neuroinflammation will result
in an independent activation of NFκB.

Age-Related Changes on TGFβ and IFNγ
IFNγ is a potent activator of microglia (Ng et al., 1999; Klegeris
et al., 2005). IFNγ increases in the aged brain although its
endogenous cell source remains unidentified (Lyons et al.,
2011). The main signaling pathways induced by IFNγ are signal
transducer and activator of transcription-type-1 (STAT1) and
MAPKs (Figure 5; Blanchette et al., 2003; Platanias, 2005;
Gough et al., 2008). STAT1 is activated by a Janus activated
kinase (JAK)-dependent phosphorylation on tyrosine Y701
(pSTAT1tyr) and then translocates into the nucleus to induce the
expression of target genes. Full transcriptional activity requires a
second phosphorylation on serine S727 (pSTAT1ser; Wen et al.,
1995).

STAT1 is a key signaling pathway involved in the up-
regulation of iNOS and NO· production (Dell’Albani et al., 2001;
Gough et al., 2008). Inhibition of ERK1/2 and P38 decrease
IFNγ-induced pSTAT1ser, which correlates with a reduction in
NO· production. Decrease of pSTAT1ser and NO· production is

additive when both MAPK are inhibited, indicating that ERK1/2
and P38 are needed for full activation of the STAT1 pathway
in glia (Figure 4), and other cell types (Blanchette et al., 2003;
Platanias, 2005; Gough et al., 2008). In contrast, O2·

− production
induced by IFNγ depends on increased levels of pERK1/2, but
not pP38 (Bhat et al., 1998; Dang et al., 2003).

IFNγ suppresses TGFβ signaling through up-regulation of the
inhibitory Smad7 (Ulloa et al., 1999), and there is a reciprocal
regulatory interaction between TGFβ1 and IFNγ activated
pathways (Figure 4). TGFβ1 released by hippocampal cells
induce a transient increase of pERKs and a persistent increase
of pP38, decreasing IFNγ-induced O2·

− and NO· production
by glia (Herrera-Molina and Von Bernhardi, 2005), decreasing
activation of STAT1 and ERK by IFNγ (Figure 5). Also, after
persistent stimulation, IFNγ decreases TGFβ1 induced P38
signal transduction (Herrera-Molina et al., 2012). IFNγ-TGFβ1
crosstalk regulates the production of radical species through the
modulation of STAT1, ERK1/2 and P38 activation. Co-treatment
with TGFβ1 and IFNγ results in decreased IFNγ-induced
pERK1/2, pSTAT1ser, pSTAT1tyr, total STAT1 and also reduces
induction of P38 activation by TGFβ1. Suppression of pSTAT1ser

appears to be mediated by a TGFβ1-induced decrease of pERKs.

FIGURE 5 | Reciprocal regulation of TGFβ and Jak-Stat signaling. Crosstalk between IFNγ- and TGFβ1- induced signaling pathways. IFNγ activates
JAK-STAT1 pathway, increasing pSTAT1tyr, which will translocate to the nucleus and activate transcription of several cytokines and other mediators and receptors
involved in inflammatory activation. In addition, it will also activate pERKs and to a lesser extent pP38. ERK and P38 MAPKs potentiate STAT1 activation and induce
inducible nitric oxide synthase (iNOS), increasing production of NO, as well as production of O−

2 . IFNγ-induced signaling pathway inhibits TGFβ1-Smad signaling by
inducing its endogenous inhibitor Smad7 (see Figure 4) and through inhibition by ERK. On the other hand, TGFβ1, through the activation of the Smad3 pathway,
inhibits IFNγ-induced STAT1 activation via a MKP-1-mediated inhibition of ERK1/2 and iNOS expression, reducing production of NO and O−

2 . In aging, there are
increased levels of IFNγ, inhibiting activation of the TGFβ1-Smad signaling pathway, as well as a reduced activation of TGFβ1-Smad, which will result in a reduced
regulation of MAPKs (and NF-κB pathways as shown in the previous figure).
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In contrast, inhibition of pSTAT1tyr depends on the decrease of
total STAT1 mediated by TGFβ1 (Figure 5). Increased MKP-1
activity appears to be responsible for the reduction of IFNγ-
induced activation of glia induced by TGFβ1 co-treatment.
In fact, transfection with MKP-1 siRNA significantly reduces
modulation of IFNγ-induced NO· production by TGFβ1. Thus,
MKP-1 induction appears to be responsible of the effects on
MAPK pathways and link them with those observed on the
STAT1 pathway (Figure 4; Flores and von Bernhardi, 2012;
Herrera-Molina et al., 2012). The regulatory interaction between
TGFβ1 and IFNγ has been well described in tissue repair
in vivo. IFNγ null mice show increased amounts of TGFβ1
and activation of TGFβ1 signaling, indicating that IFNγ exerts
negative regulation of TGFβ1 activity (Ishida et al., 2004). On
the other hand, TGFβ1 null mice has elevated levels of IFNγ

and STAT1 activation, and iNOS andNO· production, indicating
that absence of TGFβ1 results in the deregulation of IFNγ

pathway and its target genes (McCartney-Francis and Wahl,
2002).

Age-related increase of IFNγ and changes on MPK-1
regulation could be key elements for the increased activation of
microglia in aged animals. Aged animals show increased levels of
IFNγ, directly potentiating inflammatory signaling and further
inhibiting the Smad pathway through the induction of Smad7.
On the other hand, decreased activation of TGFβ-Smad3 by
both age-related changes and increased IFNγ, further reduce
MKP-1 induction, suppressing the regulatory effect of TGFβ on
inflammatory activation.

Age-Related Changes on TGFβ and MKP-1
Among the molecular mechanism underlying the anti-
inflammatory and neuroprotective effects of TGFβ1, negative
regulation of MAPK signaling, key inducer of glial cell activation,
is exerted by a group of MKP. In the brain, induction of MKP-1
expression in response to anti-inflammatory molecules has been
demonstrated for both astrocytes and microglia (Eljaschewitsch
et al., 2006; Lee et al., 2008). TGFβ1 increases MKP-1 in glia, and
other cells (Jono et al., 2003; Tong and Hamel, 2007), induction
that is not affected by the presence of inflammatory conditions.
Increased MKP-1 reduces the activation of P38 and NFκB
pathways and decreases the NO and TNFα production induced
by Aβ (Flores and von Bernhardi, 2012). siRNA transfection
targeting MKP-1 attenuates the effects of TGFβ1, causing a
significant amelioration of the modulation of Aβ-induced TNFα
and NO production by TGFβ1 (Flores and von Bernhardi, 2012).
Furthermore, MKP-1 null mice show increased P38 and JNK
activity and cytokine and NO production, suggesting that this
phosphatase serves as an immune regulator (Liu et al., 2007;
Boutros et al., 2008).

Induction of MKP-1 is mediated by the Smad3 pathway
(Figure 4). Smad3 inhibition greatly reduces TGFβ1-mediated
MKP-1 induction, suggesting that it is a transcriptional target
for Smad3, and results in a significant amelioration of the
inhibition of TNFα and NO production. MKP-1 stability and
enzymatic activity can be regulated through phosphorylation and
acetylation, respectively (Liu et al., 2007; Boutros et al., 2008).

Although other mechanisms are involved in the regulation of
the production of inflammatory mediators by TGFβ1, Smad3-
mediated MKP-1 induction is a novel manner of TGFβ1 action
on glia that supports its anti-inflammatory role. Increased MKP-
1 levels appears also to be the mechanism of action for other
anti-inflammatory molecules, such as glucocorticoids (Kassel
et al., 2001; Jang et al., 2007; King et al., 2009), and it has
been demonstrated that this phosphatase participates in STAT1
dephosphorylation (Venema et al., 1998).

Age-related decrease on MKP-1 secondary to the inhibition
of the Smad pathway results in the impairment of the inhibitory
regulation on NFκB and MAPK pathways, potentiating
inflammatory activation and cytotoxicity.

Effect of TGFβ on Stem Cells and Aging
As the brain ages, TGFβ has important roles both in
neuronal survival and in the promotion of stem cell quiescence
(Kandasamy et al., 2014). In the hippocampus, TGFβ appears
to potentiate the survival and proliferation of intermediate
progenitor cells in the dentate gyrus of aged mice, by a Smad3-
dependent mechanism (Tapia-González et al., 2013). Regarding
regulation of neural stem cells in the aged brain (Dias et al.,
2014), TGFβ lengthens G1 phase of the cell cycle in activated
stem cells, impairing cell cycle progression of neural progenitors
and neurogenesis (Daynac et al., 2014). Because of those effects,
blockade of TGFβ signaling could improve neurogenesis in the
aged brain (Pineda et al., 2013).

Although TGFβ serves key role in neuronal surveillance and
stem cell proliferation, most of the cellular changes induced by
aging have been described in glial cells. Expression of TGFβ by
oligodendrocytes is reduced in aging, condition that interferes
with oligodendrocytes recruitment and reduces remyelination
(Hinks and Franklin, 2000). In aged microglia and astrocytes,
TGFβ expression shows a regional specificity. TGFβ signaling
increases after brain infarct in aged individuals (Doyle et al.,
2010). In contrast, microglia and astrocytes located close to
the leptomeninges show reduced TGFβ expression with age,
reduction that could have a role on the increased permeability of
leptomeninges during systemic inflammation (Wu et al., 2008).

TGFβ SIGNALING AND ITS ROLE IN
ALZHEIMER DISEASE

There is evidence that impaired TGFβ signaling could be
involved in the pathogenesis of AD. AD patients show
decreased plasmatic levels of TGFβ1 (Mocali et al., 2004;
Juraskova et al., 2010), but increased levels in cerebrospinal
fluid (Blobe et al., 2000; Tarkowski et al., 2002), and
within Aβ plaques (Burton et al., 2002). Brains of AD
patients have reduced levels of TGFβRII (Tesseur et al.,
2006). Reduced levels of Smad3 and impairment of Smad3
signaling have been observed in the AD brain, associated
with increased Aβ accumulation, Aβ-induced neurodegeneration
and neurofibrillary tangle formation (Luterman et al., 2000;
Colangelo et al., 2002; Katsel et al., 2005; Tesseur et al., 2006).
In addition to decreased expression of Smad3 in hippocampi
of AD patients, hippocampal neurons show increased levels of
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activated Smad2 (Lee et al., 2006), along with alterations in the
subcellular localization of phosphorylated Smad2/3 (Colangelo
et al., 2002; Lee et al., 2006), which remains in the cytoplasm
of neurons, instead of translocating into the nucleus (Lee et al.,
2006; Ueberham et al., 2006). The ectopic localization of activated
Smads in AD could be attributed to another pathological
feature observed in AD, the hyperphosphorylation of tau.
Hyperphosphorylated tau is associated with the sequestration
of activated Smad2/3, and the disruption of TGFβ signaling
(Baig et al., 2009). Both reduced presence of TGFβRII and
defects on Smad are associated with inhibition of TGFβ
signaling.

The TGFβ pathway exerts direct regulation over some of the
pathological features of AD, since it upregulates the expression
of the APP in normal human astrocytes by a Smad4-dependent
mechanism (Burton et al., 2002). TGFβ also favors stabilization
of the APP mRNA by binding it to a RNA-protein complex
that reduces the rate of APP mRNA decay (Amara et al., 1999).
In addition, TGFβ1 has been implicated on the promotion
of amyloid angiopathy in frontal cortex and meninges (Wyss-
Coray et al., 1997, 2000; Mazur-Kolecka et al., 2003), and on
the increased production of Aβ by astrocytes in APP/TGFβ1
transgenic mice (Lesne et al., 2003). Notoriously, this amyloid
angiopathy appears at a younger age when the overexpression of
TGFβ1 in astrocytes occurs in the absence of SR-A (TGFβ1/SR-
A−/− mice) (Lifshitz et al., 2013), which lead us to further
inquire on the expression of that receptor, as discussed on the
next two sections. Furthermore, those effects appear to depend
on the activation of astrocytes that stimulate the production
of APP due to the presence of a TGFβ1 response element in
the 5’UTR of APP. Moreover, Tg2576 mice with a dominant
negative TGFβ1-receptor II that blocks Smad2/3 signaling show
a conspicuous reduction of amyloid deposits in the brain (Town
et al., 2008).

In contrast with those potentially deleterious effects of TGFβ1,
increased TGFβ1 has been also associated with a lower burden
of Aβ in the parenchyma, which correlates with an increased
microglia activation. Several reports show that TGFβ1 has anti-
amyloidogenic roles, reducing the Aβ burden and inhibiting the
formation of neuritic plaques, effects that appear to be mediated
by the promotion of microglia-mediated Aβ degradation (Wyss-
Coray et al., 2001). The neuroprotective role of TGFβ1 against
Aβ toxicity has been studied in vitro and in vivo models of AD
(Prehn et al., 1996; Caraci et al., 2008). Furthermore, TGFβ1
Smad3 also inhibits the production of radical species induced by
inflammatory stimuli, and induces phagocytosis of Aβ in vitro
(Tichauer and von Bernhardi, 2012).

However, induction of phagocytosis is lost as animals age (von
Bernhardi et al., 2011). Smad3 pathway is altered in microglia
from adult mice, affecting the induction of Aβ phagocytosis and
the modulation of radical species production by TGFβ1.

The uncoupling of TGFβ1 signal transduction pathway could
result in an altered pattern of microglial activation and reduced
clearance of amyloid; effects that in fact are observed in aging
and in AD. Impairment of TGFβ signaling can potentiate
neuroinflammation, favoring neuronal dysfunction and
neurodegenerative changes (Tesseur and Wyss-Coray, 2006).

Reduced TGFβ-Smad3 signaling results in age-related
neuroinflammation and neurodegeneration and in increased
accumulation of Aβ (Tesseur et al., 2006). The accumulation
of Aβ could depend on a reduction of its clearance, and be
mediated by the reduced expression of SR-A by glia (Tichauer
and von Bernhardi, 2012). These changes could facilitate
cytotoxic inflammation and neurodegenerative diseases in aging
(von Bernhardi et al., 2011). If accumulation of Aβ depends
indeed on impaired clearance, it could situate Aβ as the result
of disease progression instead of being its primary cause, as
we propose in the ‘‘microglial cell dysregulation’’ hypothesis
for AD.

TGFβ REGULATES SR-A

The effect of TGFβ is cell and tissue specific. Whereas TGFβ
reduces expression of some SRs in circulating macrophages,
TGFβ increases expression of SR-A, while decreases expression
of SR-BI by microglia (Tichauer and von Bernhardi, 2012).
Given the relevance of SRs as well as other pattern recognition
receptors (PRRs) on the inflammatory activation and the
scavenger function of microglia, changes on the expression of
these receptors could have a profound effect on microglial cell
activation (von Bernhardi, 2007).

In addition to phagocytosis, SR-A is also involved in the
regulation of glia activation (Murgas et al., 2014). Accordingly,
the use of SR-A antagonists appears to improve the phenotypic
features of AD (Handattu et al., 2009) by reducing microglial
activation (Handattu et al., 2013). These results support the idea
that SR-A activity could be part of the molecular mechanism
involved in glial cell activation. In contrast to most SRs, SR-A
expression is not necessarily downregulated, but can be increased
by its ligands (Nikolic et al., 2011). In addition, binding of
ligands to SRA recruits SRs to the membrane surface by a PI3K-
activated mechanism (Cholewa et al., 2010). In macrophage cell
lines, like THP-1 and J774A.1 (Bottalico et al., 1991; Nishimura
et al., 1998; Draude and Lorenz, 2000; Argmann et al., 2001;
Michael et al., 2012) and humanmonocytes (Draude and Lorenz,
2000), TGFβ1 reduces SR-A expression, through a mechanism
that depends on Smad-2 (Michael et al., 2012). In addition,
it has been also reported that induction of TGFβ1 by statin
treatment, abolish induction of SR-A by inflammatory stimuli,
in a mechanism mediated by ERK activation (Baccante et al.,
2004).

In addition of increasing their expression of SR-A, TGFβ1 also
increases Aβ uptake by microglia, an effect that is prevented by
the Smad3 inhibitor SIS3 (Tichauer and von Bernhardi, 2012).
Studies by our laboratory have also shown that induction of
Aβ phagocytosis by TGFβ1 is decreased in aged mice (Tichauer
et al., 2014). Reduction of induction of Aβ phagocytosis, together
with decreased expression of SR-A in the brain of aged APP/PS1
mice (Hickman et al., 2008), suggest the existence of an altered
regulation of SR-A expression in aging. Given its participation
in Aβ uptake, SR-A impairment could be involved in the
accumulation of Aβ during aging, with a mechanism associated
with TGFβ1-Smad3 signaling (Tichauer and von Bernhardi,
2012), and could be related with AD pathogenesis.
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GENE TRANSCRIPTION REGULATION BY
TGFβ SR-A AS A MODEL

Given our observation of increased protein expression of SR-
A in microglia exposed to TGFβ through a Smad3-dependent
mechanism (Tichauer et al., 2014), we performed in silico
analyses of human genomic data to determine if the effect
could be mediated by the transcriptional co-factors Smad2/3
over the MSR1 gene coding SR-A. As shown in Figure 6A,
MSR1 gene is located at chromosome 8 and its transcription
commonly generates three main splicing variants (Figure 6B).
Analysis of ChIP-Seq data generated by Kim et al. revealed a
significant peak of binding of Smad2/3 and Smad4 at the intron
7 of the MSR1 gene when human embryonic stem cells (hESC)
were treated with activin (Figure 6C), a TGFβ receptor agonist
(Kim et al., 2011). In addition, the MSR1 gene is ubiquitously
bound by CTCF (Figure 6D), a protein factor having a key

role in chromatin topological regulation (Ong and Corces,
2014) and previously described as a robust transcriptional
repressor (Holwerda and De Laat, 2013) in various cell lines. The
chromatin state segmentation data shows that the CTCF binding
site is located in a genomic insulator region that is surrounded
by highly repressed chromatin (Figure 6E), and is correlated
with the presence of a topological domain predicted from Hi-
C experiments (Figure 6F; Dixon et al., 2012). The presence of
a CTCF peak in the MSR1 gene and the fact this gene is in a
topologic domain suggest that MSR1 is highly repressed in most
cell types (Figures 6D–F). This could explain the tissue specificity
of this gene, which is almost exclusively present on themonocyte-
macrophage lineage (Christie et al., 1996; Godoy et al., 2012), and
astrocytes (Alarcón et al., 2005).

We also analyzed data of DNase sensitivity and ChIP-Seq
available at WashU Epigenome Browser (Zhou et al., 2013),
finding that H1-hESC cells differentiated into mesenchymatic

FIGURE 6 | Binding of transcriptional co-factors Smad2/3 and 4 to the MSR1 gene. SR-A gene structure is shown using UCSC gene annotation, ChIP-Seq
available data, and chromatin structure associated to this gene. (A) Ideogram of chromosome 8. The region labeled in red shows the MSR1 gene location. (B) MSR1
gene structure, indicating the three most common isoforms. Arrows indicate the direction of transcription and boxes symbolize exons. (C) ChIP-Seq data for Smads
using four different antibodies before activin treatment (day 0) and 5 days after treatment of human embryonic stem cells (hESC; Kim et al., 2011); black bars show
significant signals of ChIP-Seq indicating Smad2/3 and Smad 4 binding to MSR1 gene after activin treatment (day 5). (D) ChIP-Seq results provided by ENCODE
project for 161 transcription factors from various cell lines. Boxes represent ChIP-Seq significant signal for a specific transcription factor. The darkness of the box is
proportional to the maximal signal intensity of ChIP-Seq observed in a cell line, shown next to the box, in a lowercase letter, cells where this signal was found
significant. (E) Chromatin segmentation state data generated by ENCODE project for H1-hESC (Aad et al., 2011); gray boxes represent heterochromatin sites, yellow
is used for enhancer sites, and blue are for insulators. (F) Genomic topological domains detected by using Hi-C data in hESC and IMR90 cell lines (Dixon et al., 2012).
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FIGURE 7 | DNase sensitive sites matching with CTCF binding sites after activin treatment. (A) DNase hypersensitivity data in H1-hESC cells differentiated
into mesenchymal cells (orange block) and treated with activin to differentiate H1-hESC cells into mesoderm (yellow block); different rows correspond to different
experiments. (B) ChIP-Seq data for CTCF in the whole brain (red bars) and for Smad 2/3 and 4 (black bars; Kim et al., 2011).

cells present a hypersensitivity peak to DNase coincidental to the
CTCF binding site (Figure 7A). In contrast, after treatment of
H1-hESC cells with activin to differentiate them into mesoderm,
the DNase hyper-sensitivity peak related to CTCF disappears,
but a new DNase hypersensitivity peak is observed, which match
with the Smad2/3 and Smad 4 binding site detected by the
previous ChIP-Seq data analysis (Figures 7A,B; Kim et al.,
2011). This shift between those two DNase hypersensitivity
peaks after activin treatment leads us to infer that TGFβ

pathway activation interferes with the binding of CTCF and
might promote a topological rearrangement that induces MSR1
transcription by a mechanism mediated by Smad2/3/4. This
hypothesis is currently been experimentally tested by our
group.

The brain of AD patients reveal changes on the methylation
pattern of some genes described as susceptible to be involved
in AD, such as PSEN1 y APOE, and in genes related to
homeostasis of gene methylation, like MTHRF and DNMT1

FIGURE 8 | Model for TGFβ1-Smad3 pathway regulation in aged microglia. Diverse stimuli, including inflammatory stimulation and hypoxia, induce astrocytes
to secrete TGFβ1. Binding of TGFβ1 to its receptor results in the activation of the Smad3 pathway, as well as MAPKs and PI3K signaling in microglia. Thus, TGFβ1
regulates the inflammatory activation of microglia in addition to modifying the SRs profile expressed by the cell. SRs appear to be involved both in the uptake of Aβ

and in the activation of glial cells. Several of the effects of TGFβ1 on cell viability, reduction of inflammatory cytokines and reactive species, and expression of SRs
depend on the activation of Smad3. In aging or after exposure to chronic inflammatory conditions, canonical activation of Smad3 is greatly reduced, whereas MAPKs
remains activatible. As result of this change on TGFβ1 signaling, microglia show increased cytotoxicity, undergo changes on their expression of SRs and decrease
their Aβ clearance. Thus, reduced TGFβ1-Smad3 activity on aged microglia appears to impair the beneficial effect of TGFβ1.
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(Wang et al., 2008b). This study also identified age-specific
epigenetic changes, suggesting that epigenetics could have a
role in the development of AD (Wang et al., 2008b). Given
that possibility, a future challenge is to assess the existence
of epigenetic changes on the MSR1 gene or on genes related
with the TGFβ pathway during aging and in AD. Changes
potentially affecting SR-A expression or function as the brain
ages would affect inflammatory activation and Aβ uptake
by glia.

CONCLUDING REMARKS

Age dependent changes such as microglia mis-activation,
production of ROS, and decreased proteasome activity could
establish the grounds for microglial cell dysfunction, leading to
cytotoxicity and accumulation of Aβ or other protein aggregates.
The combined effect of various age-associated changes, in
addition to the individual endophenotypic condition and diverse
environmental stimuli can initiate the vicious circle of cytotoxic
activation of microglia.

Innate immune response, with microglia as the pivotal
player, is recognized to have a profound immune-modulatory
and reparative potential. However, chronic activation and
dysregulation of microglia can lead to deleterious effects,
inducing malfunction and damage of the CNS. Microglia
activation appears to undergo different phases depending on
their environmental and functional context. Whereas inhibition
of microglia can be beneficial at a certain phase of disease
progression it can become detrimental at another. A critical area
of research would be to understand their activation process,
developing pharmacologic tools directed towards selected
properties of microglia. That would be a major improvement
respect the present approach of turning off microglial cell
activation as a whole, which likely has a major bearing in the

limitations of past thinking about immunoinhibitory drugs for
neurodegenerative diseases.

Our interest in identifying protective and regulatory
pathways, to potentiate them while inhibiting cytotoxic
activation of microglia, lead us to study the effect of TGFβ
on microglia function in aging and various inflammatory
conditions. TGFβ-Smad3 is involved in many protective
functions of microglia, and shows major changes with aging.
Our working model (Figure 8) shows that upon activation
by various stimuli, TGFβ binds to its receptor activating a
complex signaling pathways that includes activation of both
the canonical Smad pathway as well as the non-canonical
MAPKs and PI3K. As result of the activation of those pathways,
among many changes, there will be changes on the expression
pattern of SRs, the phagocytic activity and the production of
inflammatory cytokines and other inflammatory and oxidative
stress mediators. In aged microglia, increased amounts of TGFβ
will act upon its receptor. However, secondary to age-related
changes or chronic inflammation, the activation of Smad3
pathway is inhibited. Inhibition of Smad3 activation in the
context of increased TGFβ levels shifts the regulatory signaling
towards a dysregulated inflammatory activation, potentially
leading to the impairment of protective response, development
of an increased cytotoxicity and to neurodegenerative changes.
Thus, increased neuroinflammation, decreased Aβ clearance and
impaired cell viability could be consequence of the impaired
TGFβ signaling.
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