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Abstract: The proper pharmacological control of pain is a continuous challenge for patients and
health care providers. Even the most widely used medications for pain treatment are still ineffec-
tive or unsafe for some patients, especially for those who suffer from chronic pain. Substances
containing the chromone scaffold have shown a variety of biological activities, including analgesic
effects. This work presents for the first time the centrally mediated antinociceptive activity of
5-O-methylcneorumchromone K (5-CK). Cold plate and tail flick tests in mice showed that the
5-CK-induced antinociception was dose-dependent, longer-lasting, and more efficacious than that
induced by morphine. The 5-CK-induced antinociception was not reversed by the opioid antagonist
naloxone. Topological descriptors (fingerprints) were employed to narrow the antagonist selection to
further investigate 5-CK’s mechanism of action. Next, based on the results of fingerprints analysis,
functional antagonist assays were conducted on nociceptive tests. The effect of 5-CK was completely
reversed in both cold plate and tail-flick tests by GABAA receptor antagonist bicuculline, but not
by atropine or glibenclamide. Molecular docking studies suggest that 5-CK binds to the orthosteric
binding site, with a similar binding profile to that observed for bicuculline and GABA. These results
evidence that 5-CK has a centrally mediated antinociceptive effect, probably involving the activation
of GABAergic pathways.

Keywords: chromone; analgesic; GABA; docking

1. Introduction

Pain is a symptom associated with a variety of pathological states, frequently it is
the first or the most important manifestation of a disease. However, sometimes pain can
turn into a disease itself. When pain exceeds its biological function of protection and
becomes chronic it negatively impacts both day-to-day life and mental health [1,2]. The
proper pharmacological control of pain is an unsolved challenge for patients and health
care providers. The ongoing treatment is primarily based on the use of opioid analgesics
and non-steroidal anti-inflammatory drugs (NSAID). Even though those pharmacological
classes are among the most widely used medications, they still are ineffective or unsafe for
some patients, especially for those who suffer from chronic pain [3,4]. Yet, there are few
drug development efforts that focus on targeting novel pathophysiological mechanisms to
supply the treatment of patients who do not respond to available drugs [5,6].

Chromones are a class of naturally occurring substances, widely distributed through-
out nature, which has been recognized as a privileged structure for drug discovery since it
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has been associated with a variety of biological activities such as antifungal, antidiabetic, an-
tiviral, and anti-hypertensive [7,8]. In addition, several molecules containing the chromone
moiety display anti-inflammatory [9] and analgesic [10–12] activities. Chromone-like com-
pounds were found to be opioid ligands [13], but their analgesic activities have also been
associated with other types of receptors [10,14]. Some could also potentially interact within
the endogenous analgesia system by acting as serotonin receptor ligands [15,16]. Besides,
these compounds are considered promising for pharmaceutical development because they
possess low toxicity and are available in the human diet, due to their wide distribution
among edible plants [17].

Previously, we reported that a chromone compound isolated from Dictyoloma vandel-
lianum (Adr. Juss), named 5-O-methylcneorumchromone K (5-CK), has consistent anti-
inflammatory activity and favorable pharmacokinetic properties, an interesting feature for
drug development [18]. Based on the analgesic properties already described for chromones,
the present work was designed to investigate whether 5-CK has intrinsic analgesic proper-
ties and to investigate its mechanism of action using in vivo and in silico approaches.

2. Results
2.1. Assessment of Antinociceptive Activity: Screening with Formalin Test

To assess the antinociceptive activity of 5-CK the formalin test was employed, a
screening tool widely used to identify analgesic molecules. Figure 1 shows the effect of
different doses of 5-CK on the formalin test in mice. Overall, mice pretreated with the
vehicle spent more time performing nociceptive behaviors than mice pretreated with 5-CK
or the gold standard drugs, morphine and indomethacin. In the early phase of the test,
the pretreatment with 5-CK at 50 and 12.5 mg/Kg diminished the nociception caused by
formalin (p < 0.05), indicating a potential analgesic activity. The late phase of the test was
inhibited by 5-CK at doses up to 3.125 mg/Kg (p < 0.001). As expected, morphine inhibited
both the early and late phases (p < 0.001), while indomethacin inhibited just the late phase
of the formalin test (p < 0.001). These results suggest a potential analgesic activity of 5-CK
as it exhibits a profile similar to that of morphine. There were no signs of motor impairment
in mice from the different experimental groups, as assessed by the rota-rod test (data not
shown), corroborating the antinociception suggested by the nociceptive test.

2.2. Further Characterization of 5-CK’s Antinociceptive Activity

To confirm and characterize the antinociceptive activity of 5-CK, tail-flick (Figure 2)
and cold plate tests (Figure 3), well-established assays to central analgesics, were conducted.
The dose-response relationship and time course of antinociception were established. In-
traperitoneal (ip.) administration of 5-CK enhanced the latency of the tail withdrawal
reflex at doses of 50, 25 and 12.5 mg/Kg (p < 0.001), which can be perceived as an in-
crease of the antinociception index in the tail flick test (Figure 2). This effect occurred in
a dose-dependent manner (p < 0.05). The antinociception started 40 min after the admin-
istration of 5-CK and lasted up to 3 h after its administration for the doses of 50 mg/Kg
and 25 mg/Kg (p < 0.001; p < 0.01). Importantly, the antinociceptive effect of 5-CK in the
tail flick test was more efficacious (2 h; p < 0.001) and lasted longer when compared to
morphine (5 mg/Kg, ip.), the gold standard drug in this test.

The administration of 5-CK also reduced the nociceptive behavior of mice in the
cold plate test in a consistent, dose-dependent, and long-lasting manner (Figure 3). The
pretreatment with 5-CK decreased the number of nociceptive events at all tested doses
(6.25−50 mg/Kg; p < 0.01). This antinociceptive effect was dose-dependent starting 40 min
after the administration of 5-CK. The doses of 50, 25 and 12.5 mg/Kg kept their effects up
to 6 h after the administration. As expected, the gold standard morphine (5 mg/Kg, ip.)
decreased the number of nociceptive events for up to 2 h (p < 0.001) after administration. In
accordance with the tail flick test, the antinociceptive effect of 5-CK was longer-lasting and
more efficacious than the one induced by morphine (2 h; p < 0.001). Taken together, these
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results corroborate the data from the formalin test and indicate that the antinociceptive
effect of 5-CK is, at least in part, centrally mediated.
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Figure 1. Effects of the systemic treatment with 5-CK in the early and late phases of the formalin 
test. Mice were treated with 5-CK (50-0.78 mg/Kg) or vehicle (CTRL, 50% propylene glycol in 
saline; control group) by intraperitoneal (ip.) route 40 min before formalin (injected at time zero). 
Morphine (Mor; 5 mg/Kg, ip.) and indomethacin (Indo; 10 mg/Kg, ip.) were used as reference 
drugs. Data are expressed as means ± SEM; n = 6 mice per group. * Significantly different from the 
control group (p < 0.05). ** Significantly different from the control group (p < 0.01). *** Significantly 
different from the control group (p < 0.001) as determined by ANOVA followed by Tukey’s test. 
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(ip.) route 40 min before the test. For the dose−response analysis, the effects of increasing doses 

Figure 1. Effects of the systemic treatment with 5-CK in the early and late phases of the formalin
test. Mice were treated with 5-CK (50–0.78 mg/Kg) or vehicle (CTRL, 50% propylene glycol in saline;
control group) by intraperitoneal (ip.) route 40 min before formalin (injected at time zero). Morphine
(Mor; 5 mg/Kg, ip.) and indomethacin (Indo; 10 mg/Kg, ip.) were used as reference drugs. Data are
expressed as means ± SEM; n = 6 mice per group. * Significantly different from the control group
(p < 0.05). ** Significantly different from the control group (p < 0.01). *** Significantly different from
the control group (p < 0.001) as determined by ANOVA followed by Tukey’s test.
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Figure 2. Antinociceptive effect of 5-CK on the tail flick test. Mice were treated by intraperitoneal (ip.) route 40 min before
the test. For the dose−response analysis, the effects of increasing doses (6.25 to 50 mg/Kg) were tested. To evaluate the
time-course of the antinociceptive effect, the thermal nociceptive threshold was measured before and up to 24 h following
administration of 5-CK, vehicle (CTRL, 50% propylene glycol in saline; control group) or morphine (Mor; 5 mg/Kg, ip.),
the reference drug. Data are expressed as mean ± SEM; n = 6 mice per group. $ Significantly different from morphine
group (p < 0.001) % Significantly different from 5-CK 50 mg/Kg group (p < 0.05). * Significantly different from the control
group (p < 0.05). ** Significantly different from the control group (p < 0.01). *** Significantly different from the control group
(p < 0.001). Two-way ANOVA followed by Bonferroni’s test.
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Figure 3. Antinociceptive effect of 5-CK on the cold plate test. Mice were treated by intraperitoneal route 40 min before
the test. For the dose−response analysis, the effects of increasing doses (6.25 to 50 mg/Kg) were tested. To evaluate the
time-course of the antinociceptive effect, the thermal nociceptive threshold was measured before (B) and up to 24 h following
administration of 5-CK, vehicle (CRTL, 50% propylene glycol in saline; control group) or morphine (Mor; 5 mg/Kg), the
reference drug. Data are expressed as mean times ± SEM; n = 6 mice per group. $ Significantly different from morphine
group (p < 0.001). % Significantly different from 5-CK 50mg/Kg group (p < 0.05). * Significantly different from the control
group (p < 0.05). ** Significantly different from the control group (p < 0.01). *** Significantly different from the control group
(p < 0.001). Two-way ANOVA followed by Bonferroni’s test.

2.3. Investigation of the Contribution of the Opioid System in 5-CK-Induced Antinociception

In order to investigate the possible mechanisms underlying 5-CK’s centrally mediated
antinociception, functional antagonist assays were conducted. Initially, naloxone (a non-
selective opioid receptor antagonist) was tested, since 5-CK showed an antinociceptive
profile similar to that of morphine. Naloxone completely reversed the antinociceptive effect
of morphine on cold plate (Figure 4A) and tail flick (Figure 4B) tests, as expected. On the
other hand, the pre-treatment (15 min) with naloxone did not revert the antinociceptive
effect induced by 5-CK on cold plate (Figure 4A) and tail flick (Figure 4B) tests, indicating
that this system does not contribute to the mechanism of action of 5-CK.

2.4. Target Selection by Ligand Similarity Approach

Topological descriptors (fingerprints) were employed to evaluate the chemical sim-
ilarity between 5-CK and several antagonists of receptors and ion channels related to
endogenous analgesia pathways (Supplementary Materials Figure S1), namely methy-
sergide maleate (serotonergic receptor antagonist); yohimbine (alpha-2 adrenergic receptor
antagonist); atropine (cholinergic receptor antagonist); bicuculline (gamma aminobutyric
acid-A—GABAA receptor antagonist); phaclofen (gamma aminobutyric acid-B—GABAB
receptor antagonist); L-arginine (precursor of nitric oxide); glibenclamide (ATP-sensitive
potassium channel blocker). In general, the Tanimoto coefficients are quite low (<20%) and
suggest that 5-CK’s target cannot be identified by this method. On the other hand, morpho-
logical analysis, which is a 3D method, suggests that 5-CK has a significant morphological
similarity to atropine (7.28), bicuculline (7.03), and glibenclamide (6.81) (Figure 5A). Al-
though 5-CK has a higher Surflex-sim score for atropine than bicuculline, a visual analysis
suggests that 5-CK is better aligned with bicuculline (Figure 5B,C).
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Figure 4. Effect of the pharmacological blockade of opioid receptors on the 5-CK-induced antinociception. Antagonism
assays were performed on cold plate; and (A) tail flick; (B) tests with naloxone (Nal, 5 mg/Kg), a non-selective antagonist
of opioid receptors. Naloxone was administered by intraperitoneal route (ip) 15 min before the administration of 5-CK
(50 mg/Kg, ip) or morphine (Mor; 5 mg/Kg, ip). Data are expressed as means ± SEM; n = 6 mice per group. # Significantly
different from Mor group (p < 0.05) * Significantly different from the control group (p < 0.05). *** Significantly different from
the control group (p < 0.001). One-way ANOVA followed by Tukey’s test.

2.5. Investigation of the Contribution of Different Analgesic Pathways to 5-CK-Induced
Antinociception Using Functional Antagonist Assays

Guided by in silico results, the antagonist selection was narrowed to further inves-
tigate 5-CK’s mechanism of action in vivo by performing functional antagonism assays
on cold plate and tail-flick tests (Figure 6). The selected antagonists were the top-scored
atropine, bicuculline, and glibenclamide. Intraperitoneal pretreatment with saline, atropine
(cholinergic receptor antagonist, 10 mg/Kg ip., 15 min pretreatment), or glibenclamide
(ATP-sensitive potassium channel blocker, 2 mg/Kg ip., 30 min pretreatment) did not
modify 5-CK’s antinociceptive effect. However, pretreatment with GABAA antagonist
bicuculline (1 mg/Kg, ip., 15 min pretreatment; p < 0.001) completely reversed the 5-CK-
induced antinociceptive effect in both cold plate and tail-flick tests. These results show the
contribution of GABAergic pathways activation to 5-CK’s antinociception and corroborate
the results provided by the flexible 3D alignment obtained with Surflex-sim.
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2.6. Molecular Docking Studies

Cold plate and tail flick results suggest that 5-CK interacts with GABAA receptors
and morphological similarity analysis is compatible with 5-CK binding to the bicuculline
binding sit. To shed light on the structural features that are required for this binding
mode profile, a molecular docking protocol was carried out. Although, several GABAA
receptors are available on protein data bank (PDB) server, only a low-resolution structure
(PDB: 3UHK, 3.75 Å) shows the binding coordinates for bicuculline. Due to the low
resolution, this structure is not suitable for docking studies. Instead, a higher resolution
GABAA receptor structure (PDB: 6 × 3T, 2.55 Å) was morphed to the coordinates of the
bicuculline-complexed structure [19] (Supplementary Materials Figure S2). The bicuculline
binding site in the morphed structure (frame 25), (RMSD to 6HUK = 0.43 Å) is similar
to the one observed in the low-resolution structure and the redocking of bicuculline
affords a pose (best ranked) with the same binding profile described in cryo-EM structure
(RMSD = 0.37 Å) (Supplementary Materials Figure S3). Therefore, it seems that GOLD
default docking parameters and the morphed structure are suitable to predict how 5-CK
will bind within the bicuculline site (Figure 7 and Supplementary Materials Figure S4).

According to docking results, 2-methylchromone moiety performs a π-π-stacking
interaction to Phe65B (3.6 Å). Additional hydrophobic interactions of this moiety, along
with dihydro-2H-pyran ring are found with Try157A, Phe46B, Phe65B, and Phe200B. The
carbonyl group hydrogen-bonds to Try97A, whereas the 2-penten-4-ol moiety interacts



Int. J. Mol. Sci. 2021, 22, 3413 7 of 17

with Arg67B and Asp44B which, to our knowledge, have not been explored in experimen-
tal studies.
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with Poseview (2D) and PLIP (3D) servers.



Int. J. Mol. Sci. 2021, 22, 3413 8 of 17

3. Discussion

Molecules containing the chromone moiety exhibit a wide variety of biological ac-
tivities, including anti-inflammatory and analgesic [9]. Although their analgesic effect
is mostly associated with an anti-inflammatory activity, it has also been linked to simul-
taneous peripheral and central antinociceptive mechanisms [20–23]. In a previous work
from our group, the natural chromone 5-CK showed anti-inflammatory properties [18].
Here we demonstrate that 5-CK has intrinsic analgesic properties, not directly linked to
the control of inflammation, and which involves the participation of the central nervous
system probably mediated by GABAA receptors.

To assess the antinociceptive activity of 5-CK the formalin test was initially employed
as a widely recognized screening test to analgesics. During the test, the nociceptive response
of mice to formalin injection is timed and shows a biphasic pattern with an early and a late
phase. The early phase is mostly related to direct activation of nociceptors and the late phase
is predominantly dependent on inflammatory mediators [24]. 5-CK was able to inhibit both
early and late phases, a profile similar to that of morphine, indicating it could be acting as a
pure analgesic. Indeed, central analgesics, like morphine and tramadol, that inhibit the pain
signal transmission are able to inhibit both early and late phases of the formalin test [25].
Interestingly, the nociceptive behavior on the inflammatory phase was greatly reduced.
This could be due to the combined inhibition of pro-inflammatory mediators, a previously
demonstrated effect of 5-CK [18] and modulation of nociceptive input. Reinforcing this
idea, aminopyrine and mefenamic acid, compounds with a central and a peripheral site of
action, showed an antinociceptive effect on both phases, but the second phase response
was inhibited by lower doses [26], as observed here. In order to investigate this hypothesis,
the involvement of a central component in the 5-CK antinociception was next evaluated.

For this proposal, cold plate and tail flick tests, both thermic models able to detect
centrally acting analgesics, were used. The tail flick test is considered a spinal reflex, but
could also involve higher neural structures [27], while the nociceptive behaviors of the cold
plate test are considered integrated responses at the supraspinal level [28]. These tests are
therefore widely used in the characterization of centrally acting analgesics. 5-CK increased
response latency on the tail flick test and consistently reduced the nociceptive behavior
on the cold plate test, thus, indicating that its analgesic effect is mediated by a central
component. The observed antinociceptive effect was dose-dependent and, importantly, it
was longer-lasting and more efficacious than that induced by morphine, the gold standard
painkiller drug. 5-CK inhibited the nociceptive behavior on cold plate test for up to 8 h,
which is consistent with previous reports of its high metabolic stability [18], a property of
interest for drug development.

Next, aiming to understand how 5-CK exerts this antinociceptive effect, a functional
antagonism assay was employed. Opioid receptors and their endogenous ligands are
widely distributed throughout the central nervous system, and for that reason are the most
explored pathway for pain modulation [29]. Based on the morphine-like antinociception
profile seen in nociceptive tests, and the fact that opioid ligands are the primary mediators
of central analgesia, the involvement of 5-CK with the opioid system was investigated first.
The pre-treatment with the opioid antagonist naloxone did not prevent the antinociceptive
effect of 5-CK on both tail flick and cold plate tests, which implies that 5-CK does not
interact with opioid receptors to produce its effect. Although opioid ligands are the primary
neurotransmitters involved within the endogenous analgesia system, pain has different
components and a great number of neurotransmitters can modulate the nociceptive input
and, therefore, be targets for pharmacological modulation. Therefore, other pathways and
receptors, such as α-adrenergic, serotonergic, cholinergic, GABAergic, nitrergic, and K+

ATP
channels, which play an important role in the neural pathways of conduction, processing,
and modulation of pain [29,30] may be involved in 5-CK antinociception.

Given the large number of pathways and neurotransmitters involved with pain mod-
ulation, an in silico approach was used to highlight putative targets of 5-CK. To that end,
a model was proposed comparing the 2D and 3D descriptors of 5-CK to that of antago-
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nists of key pain pathways, assuming that structurally similar compounds have similar
physicochemical properties and, consequently, similar biological targets [31–37]. Tanimoto
index is often employed for this task since values >85% imply a similar mechanism of
action [34]. The low values obtained in this analysis would suggest that 5-CK binds to a
different target than the antagonists related to common analgesia pathways. However,
there are cases where compounds with low 2D similarity still bind to the same target,
because they display high 3D similarity [38]. The morphological similarity analysis, carried
out in this work, underscores a similar trend, as 5-CK is predicted to have similar shape
and electrostatic/hydrophobic features to atropine, a cholinergic antagonist, bicuculline,
a GABAA channel antagonist, and glibenclamide, a K+

ATP channel blocker. Therefore,
testing efforts were next focused on assessing the participation of these pathways on the
5-CK-induced antinociception. The pharmacological blockade of muscarinic receptors or
K+

ATP channels did not alter 5-CK antinociception, indicating that they do not contribute to
5-CK’s mechanism of action. Conversely, the blockade of GABAA receptors abolished the
5-CK antinociceptive effect, indicating that activation of GABAergic receptors is important
for this antinociception. In fact, the interplay of chromone derivatives with the GABAergic
system has been previously described. A chromanone derivative isolated from Hypericum
lissophloeus was found to potentiate GABAA receptor currents [39], whereas the flavonoid
viscosine is also a positive modulator of GABAA receptors [40]. In addition, quercetin
and other dimethoxy flavones had their antinociceptive effect mediated by GABAergic
pathways [10,41].

GABA and GABAergic neurons are present throughout the pain pathway in the
central nervous system, in supraspinal regions that regulate endogenous analgesia systems,
and in the dorsal horn of the spinal cord, a key site of pain transmission [42]. Systemic
administration of GABAergic agonists generally produces antinociception in animal models
of acute and persistent pain [43]. As GABAA receptors are involved in the modulatory
processing of nociceptive input [44] these receptors have been considered a potential
pharmacological target for the treatment of pain. This concept has been reinforced by
preclinical [25,45] and clinical studies [46].

The development of new non-opioid analgesics is pivotal to approaching many
painful states in which opioids are not effective. Some peripheral neuropathies, for in-
stance, have in general a poor response to opioids. On the other hand, substances that
act on GABAergic pathways, chromones included, have shown preclinical efficacy on
different types of neuropathy, making them a potential source of relief to these painful
conditions [11,12,45,47,48].

In this study, the involvement of GABAergic pathways with the antinociceptive
activity of 5-CK was demonstrated, but this effect can be mediated by different types of
interaction within the GABAA receptor. The GABAA receptor function, and finally its
physiologic effect, can be modified both by agents that, such as bicuculline, interact directly
with the receptor recognition site (orthosteric sites), and by agents that interact with sites
other than the GABA ligand-binding domain (allosteric sites), such as benzodiazepines,
barbiturates and neurosteroids [42,49]. Effectively, several GABAA selective allosteric
modulators exert antinociceptive activity on animal models of neuropathic pain [48,50–52]
and pain conditions on human volunteers [53–56].

Although nociceptive tests evidence the involvement of GABAA receptor on the 5-CK-
induced antinociception, and in silico results suggest that 5-CK binds to the orthosteric
binding site, neither the steric, nor the electronic features of the GABAA binding site were
taken into account to support or oppose this hypothesis up to this point. Docking studies
were undertaken to fill this knowledge gap. According to this analysis, 5-CK displays
a similar binding profile to that observed for bicuculline and GABA (Supplementary
Materials Figure S4). First, the hydrophobic nature of chromone and dihydropyran rings
of the 5-CK enable its interaction with “aromatic box” residues [57] and this seems to be
a common interaction motif for several GABA receptor ligands such as bicuculline and
gabazine [58]. In addition, the 2-penten-4-ol moiety is predicted to interact with Arg67B,



Int. J. Mol. Sci. 2021, 22, 3413 10 of 17

as has been observed for muscimol and 4-PIOL analogs [59]. This interaction is expected
to anchor the carboxyl group of GABA [60], the benzodioxole of bicuculline, and it is
predicted to be important for several GABA analogs, such as THIP and muscimol [61]. Last
but not least, the carbonyl from the chromone core is predicted to make a hydrogen bond
to Try97A. GABA displays a similar interaction to this [57,61].

In conclusion, the present study showed that the natural chromone 5-CK possesses
intrinsic antinociceptive properties associated with central nervous system modulation.
Moreover, by using in silico approaches a light was shed on the mechanism of action of this
chromone. Using functional antagonism assays, the involvement of GABAA receptors in
the antinociceptive activity of 5-CK was demonstrated. Modeling also points to the GABA
binding site as a specific binding site to 5-CK within the GABAA receptor. These results
present 5-CK as a prototype of a novel multimodal non-opioid analgesic that could be used
on pain states when the therapy with opioids is neither safe nor effective. Plus, the different
scaffold opens a perspective to the synthesis of novel chromone compounds with analgesic
properties. Despite the evidence presented in this work, additional binding studies should
be carried out to confirm the exact binding site of 5-CK on GABAA receptors.

4. Materials and Methods
4.1. Animals

Experiments were performed on male Swiss Webster mice obtained from the An-
imal Facilities at Instituto Gonçalo Moniz (Salvador, Brazil). Animals (24–28 g) were
housed in temperature-controlled rooms (22–25 ◦C), under a 12:12 h light-dark cycle, with
access to water and food ad libitum until experimental initiation. All behavioral tests
were performed between 8:00 a.m. and 5:00 p.m. Animal care and handling procedures
were in strict accordance with the recommendations in the Guide for the Care and Use
of Laboratory Animals of National Institute of Health and Brazilian College of Animal
Experimentation. The protocol was approved by the Institutional Animal Care and Use
Committee of FIOCRUZ (CEUA/FIOCRUZ, permit number: L-IGM-015/2013, approved
at 23 December 2013). Every effort was made to minimize the number of animals used and
any discomfort. Behavioral tests were performed without knowing to which experimental
group each mouse belonged.

4.2. Extraction and Isolation

5-O-methylcneorumchromone K (5-CK) was isolated from the root bark of Dictyoloma
vandellianum (Rutaceae) collected in March 2005 in Piatã, Brazil (13◦140 43” S, 41◦450 28” W).
The plant was identified by Dr. Maria Lenise Silva Guedes from the Herbarium Alexandre
Leal Costa of the Federal University of Bahia, Brazil. A voucher specimen (no. 69163)
has been deposited at the Herbarium Alexandre Leal Costa. The procedures used for the
purification of 5-CK have been described [62]. The percent purity of 5-CK used in the
pharmacological experiments carried out was greater than 98%, as determined by high
performance liquid chromatography.

4.3. Formalin Test

Mice were placed in an open Plexiglas observation chamber for 30 min to acclimate
to their surroundings and then removed for formalin administration. Mice were gently
restrained while 20 µL of 2.5% formalin (1:100 dilution of stock formalin solution, 37%
formaldehyde in 0.9% saline) was administered subcutaneously to the dorsum of the hind
paw using a 30-gauge needle. Following injection, mice were returned to the observation
chamber for a 30 min observation period. A mirror was placed behind the chamber to
enable unhindered observation of the formalin-injected paw. Mice were observed from
0 to 10 min (early phase) and from 10 to 30 min (late phase), and a nociception score was
determined for each period by counting the time that the animal spent licking the injected
limb during the observation time [63]. Mice were treated with 5-CK (0.78–50 mg/Kg),
vehicle (50% propylene glycol in saline; control group), indomethacin (10 mg/Kg, reference
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drug), or morphine (5 mg/Kg, reference drug) by intraperitoneal (ip.) route 40 min before
formalin administration. Indomethacin and morphine were purchased from Cristália
(Itapira, São Paulo, Brazil).

4.4. Motor Function Assay: Rota-Rod Test

To evaluate a possible interference in the motor performance, mice were submitted to
the rota-rod test, as previously described [18]. The rota-rod apparatus (Insight, Ribeirão
Preto, Brazil) consisted of a bar with a diameter of 3 cm, subdivided into five compartments.
Mice received intraperitoneal administration of chromones (100 mg/Kg) or diazepam
(10 mg/Kg), used as the positive control, and 40 min afterward were placed on a rotating
rod (6 rpm) and the falling avoidance was measured for up to 120 s. The results were
analyzed as the average time (s) that the animals remained on the rota-rod in each group.
Diazepam was purchased from Cristália (Itapira, São Paulo, Brazil).

4.5. Tail Flick Test

The tail flick test in mice was conducted as described elsewhere [63]. The day before
the experiment, each animal was habituated to the restraint cylinder for 20 min/day for
5 consecutive days. On the day of the experiment, mice were placed in the restraint
cylinder, and the tail tip (2 cm) was submerged in a water bath at 48 ± 0.5 ◦C. The latency
of the tail withdrawal reflex was measured. Each submersion was terminated after 10 s
to minimize potential skin damage. Tail flick latency was measured before (baseline) and
after treatments. Mice were treated with 5-CK (6.25–50 mg/Kg), vehicle (50% propylene
glycol in saline; control group), or morphine (5 mg/Kg, reference drug) by ip. route.

4.6. Cold Plate Test

The cold thermal nociceptive threshold was evaluated in a cold plate device (Teca®,
Chicago, IL, USA) at a temperature of −2.5 ± 0.2 ◦C. The animals were kept for five
minutes on the cold plate and the nociceptive response was quantified by counting the
nociceptive behaviors namely, hind paw lifts, hind paw lickings, flinches, and jumps [64].
The animals were acclimated to the cold plate the day before the test, remaining for 2 min
at the same temperature used in the test. The results were expressed as nociception index,
which stands for the total amount of nociceptive responses in 5 min.

4.7. Functional Antagonism Assays

Further experiments were carried out to elucidate the possible mechanisms by which
5-CK exert its antinociceptive action. Antagonism assays were conducted employing tail
flick and cold plate tests, using the maximum effective dose of 5-CK (50 mg/Kg). Mice were
intraperitoneally pretreated with antagonists 15 min or 30 min prior to the administration
of 5-CK. The antinociceptive response was recorded 40 min after treatment with 5-CK. The
following antagonists were tested: non-selective opioid antagonist, naloxone (5 mg/Kg,
15 min before) [30]; ATP-sensitive potassium channel blocker, glibenclamide (2 mg/Kg,
30 min before) [65]; gamma aminobutyric acid-A GABAA receptor antagonist, bicuculline
(1 mg/Kg, 15 min before) [30]; cholinergic receptor antagonist, atropine (10 mg/Kg, 15 min
before) [30]. The tested drugs were purchased from Sigma-Aldrich (St Louis, MO, USA)
and naloxone was purchased from Cristália (Itapira, São Paulo, Brazil).

4.8. Chemical Similarity Analysis

The chemical similarity of 5-CK to known ligands of receptors and channels related
to endogenous analgesia pathways (methysergide maleate —serotonergic receptor antag-
onist; yohimbine—alpha-2 adrenergic receptor antagonist; atropine—cholinergic recep-
tor antagonist; bicuculline—gamma aminobutyric acid-A receptor antagonist—GABAA;
phaclofen—gamma aminobutyric acid-B receptor antagonist—GABAB; L-arginine—a pre-
cursor of nitric oxide; glibenclamide—ATP-sensitive potassium channel blocker) [30,65]
was assessed using 2D and 3D descriptors. First, all molecules were drawn in the Marvin®
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Sketch 19.1 software (Chemaxon, Budapest, Hungary). Then, for the 2D analysis, atomic de-
scriptors were calculated for pairs of atoms in each molecule based on the atoms types, the
shortest length between the atoms, the number of their pi electrons and the non-hydrogen
atoms attached to them [66]. Common and unique paths (fingerprints) were counted for
each molecule and then used to compute the Tanimoto similarity coefficient [67–69], as
available on the ChemMine tools server (http://chemminetools.ucr.edu/). The similarity
ranges from 0.0 (completely different) to 100.0% (equal molecules). Molecules in 2D format
were then converted to the 3D format using the Concord module (translate molecular files
with the standard parameters) available on the Sybyl®-X 2.1.1 (Tripos, 2013), had their
Gasteiger-Huckel charges [70,71] calculated (ε = 80.4) and then were energy minimized by
conjugate gradient (convergence criteria = 0.001 Kcal/mol), using Tripos force-field [72],
available in Sybyl®-X 2.1.1. The lowest energy conformation of 5-CK was employed as a
template for morphological similarity analysis, using standard parameters from Surflex-
Sim module, available on Sybyl-X 2.1.1. Briefly, known ligands (queries) were flexibly
aligned to 5-CK, aiming at maximizing the molecule’s shape overlap, so that hydrogen
bonding and electrostatic interaction between the template and each query are similar. The
morphological similarity score (MSS) ranges from 0.0 (completely different) to 10.0 (equal
3D shape and interaction profile) [73].

4.9. Docking Studies: Ligands and 3D Protein Structure Preparation

The Cryo-EM 3D structure of α1β3γ2 GABAA receptor complexed with gamma
aminobutyric acid (PDB: 6X3T) was used for docking studies. First, the atomic coor-
dinates of protein were morphed to fit the coordinates of GABAA receptor complexed with
bicuculline (PDB: 6HUK), using default parameters from Morphit Pro server [19], except
for the number of frames that was adjusted to 30. The morphed 3D structure (frame 25) was
then prepared for docking search using the Biopolymer module available on Sybyl®-X 2.1.1.
H-bond optimized hydrogens were then added and histidine, glutamate and aspartate
residues were manually checked for flip orientation, protonation and tautomeric states.
The protonation state of residues was estimated at physiological pH (7.4) using the Propka
3.1 server (https://server.poissonboltzmann.org/) [74,75]. Finally, “AMBER Force Field
99” charges [76] were assigned to all protein residues. The energy-minimized structures of
bicuculline and 5-CK were prepared as described in the chemical similarity analysis section.

4.10. Molecular Docking Studies

Conformational search and evaluation of the ligand poses were carried out in the
GOLD 2020.2 software (CCDC, Cambridge, UK) [77–80]. The search space was set with
the residues within 10Å radius from the center of bicuculline. The protein residues
were kept rigid throughout the calculations, while the ligands were held flexible, in-
cluding N-pyramidal and ring-corners. Docking calculations were performed using
a Lamarckian genetic algorithm (LGA) [81] and search efficiency settings adjusted to
very flexible (60,000 LGA operations). The three best-ranked poses, according to the
Piecewise Linear Potential score function (ChemPLP) [82,83], had their interaction pro-
file calculated with Poseview (http://poseview.zbh.uni-hamburg.de/) and PLIP (https:
//projects.biotec.tu-dresden.de/plip-web/plip) servers and, after that, were visually in-
spected in Pymol software version 1.8 (New York, NY, USA), to discard biologically irrele-
vant poses (i.e., a hydroxyl group buried in a hydrophobic pocket).

4.11. Statistical Analysis

Data are presented as means ± standard error of the mean (SEM) of measurements
made on 6–9 animals in each group. Comparisons between three or more treatments
were made using one-way ANOVA with Tukey’s post hoc test, or for repeated measures,
two-way ANOVA with Bonferroni’s post hoc test, as appropriate. All data were analyzed
using Prism 5 Computer Software (GraphPad, San Diego, CA, USA). Statistical differences
were considered significant at p < 0.05.

http://chemminetools.ucr.edu/
https://server.poissonboltzmann.org/
http://poseview.zbh.uni-hamburg.de/
https://projects.biotec.tu-dresden.de/plip-web/plip
https://projects.biotec.tu-dresden.de/plip-web/plip
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5. Conclusions

The present work described for the first time the intrinsic antinociceptive properties
of the natural chromone 5-CK. The administration of 5-CK produced a long-lasting and
dose-dependent antinociceptive response on cold plate and tail flick tests. Functional
antagonism assays provided evidence of the involvement of GABAA receptors with the
antinociceptive activity of 5-CK. The results also reveal that opioid receptors, muscarinic
receptors or K+

ATP channels do not participate on the 5-CK-induced antinociception. Plus,
the results from the in silico analysis also suggest that 5-CK act by interacting with the
GABA binding site at the GABAA receptor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22073413/s1. Figure S1: Two-dimensional (2D) structures of 5-CK and several antagonists
of receptors and ion channels related to endogenous analgesia pathway. Figure S2: Bicuculline
binding site highlighting the conformational change of residues. Figure S3: Bicuculine re-docking
pose in relation to Cryo-EM bicuculline position on GABAA receptor structure. Figure S4: Interaction
profile of Bicuculline and Gama amino butyric acid on GABA binding site generated by Poseview
server.
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