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Characteristics of three organic 
matter pore types in the Wufeng-
Longmaxi Shale of the Sichuan 
Basin, Southwest China
Haikuan Nie1,2,3, Zhijun Jin1,2,3 & Jinchuan Zhang4

A consensus has been reached through previous studies that organic matter (OM) pores are crucial to 
porosity in many shale gas reservoirs; however, their origins and types remain controversial. Here, we 
report the OM pore types hosted in algae, bitumen, graptolite and other fossil fragments in the Wufeng-
Longmaxi Formations of the Sichuan Basin, Southwest China. Algae types mainly include multicellular 
algae, unicellular algae, etc. The OM pores in multicellular algae usually exhibit irregular, bubble-like, 
spherical and/or elliptical profiles, and their diameters vary between 300 and 800 nm. The shapes of the 
OM pores in unicellular algae are either irregular or oval, and the pores are hundreds of nanometres in 
size. The pores associated with solid bitumen are sporadic, isolated and variable in size, ranging from 
500 nm to 3 μm. The pores in the graptolite, sponge spicule, radiolarian and other fossil fragments are 
much smaller and fewer. The pores may only have developed in the surface of the graptolite and bitumen 
by filling in the biological cavity of the sponge spicule. These new findings provide stronger evidence that 
multicellular algae are the main hydrocarbon generating organisms of OM pores development.

Understanding the characteristics of a shale gas reservoir is critical for shale gas exploration and development. 
Great progress has been made concerning the identification of pore types in shale gas reservoirs. Loucks et al.1 
proposed a pore type classification scheme, in which the pores were subdivided into interparticle pores (interP 
pores), intraparticle pores (intraP pores) and organic matter pores (OM pores)1. Nie et al.2 suggested that pores 
in shale could be subdivided into OM pores, mineral pores (M pores) and micro fractures2. Pores within OM are 
widely recognized as a significant component of pore systems in gas shales2–11, although other pore types are also 
of great importance1,4. Contribution of OM pores to the whole pore system of shale is well manifested by the obvi-
ous positive correlation between the total organic carbon content (TOC as wt. %) and the bulk porosity and total 
gas content2,5,12. Hence, greater gas storage and flow capacity are often recognized in shale intervals with higher 
TOC, where OM pores show a large abundance and connectivity1,6. Additionally, the potential economic value 
of a shale gas reservoir is largely dependent on the OM pores degree of development6,13; pore networks and OM 
pores connectivity are important for further shale gas exploration6.

Pore systems hosted within the organic matter of gas shales have been widely documented in recent years3–5,7,8,14.  
These OM pores are usually considered to be related to hydrocarbon generation and expulsion during the thermal 
evolution of kerogen15–17. Studies performed on shale samples with different thermal maturities5,7,18,19 indicated 
that the role of thermal maturity and OM types (kerogens of marine or terrestrial origin, or solid bitumen) in 
the formation of OM pores is poorly understood but potentially critical2,5,6,20. Defining the development of OM 
pores in shales with different organic matter types, as well as their control on OM pores development is essential 
for predicting the storage and production ability in the shale gas formation5. Less well-documented but more 
relevant to this study is the effect of OM types on the OM pores in shale gas reservoirs. Deciphering the controls 
of OM type and hydrocarbon generating organisms on OM pores development and distribution is critical for 
understanding the OM porosity network in shale. Therefore, a comparison of OM pores hosted in kerogen and 
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bitumen is needed. OM pores could be influenced by OM types, and in turn, hydrocarbon generating organisms 
may control the type, morphology and size of the OM pores2,6,21. Organic matter is largely responsible for OM 
porosity changes, because the convertible carbon is transformed into liquid and hydrocarbon, and the capacity 
of adsorption and expulsion in the crude oil is also an important factor in OM porosity changes. The contrasting 
distribution pattern of different OM-hosted pore types opens the possibility that OM pores may be formed by 
more than one type of hydrocarbon generating organism2,6.

Here, we identify and characterize OM types and OM pore types to gain key insights into the main factors 
controlling OM pore development in the Wufeng-Longmaxi Formations of the Jiaoshiba shale gas field in the 
Sichuan Basin, Southwest China. The OM pores in different types of OM (kerogen or hydrocarbon generating 
organisms, bitumen, etc.) are different in both morphology and abundance, and therefore, they have different 
effects on shale gas accumulation and production. The research results will be conducive to better understanding 
the OM pore network texture within shale.

Results
Geological setting and organic matter types.  The Sichuan Basin is a superimposed basin developed 
based on the Upper Yangtze Craton with the Longmenshan orogenic belt to the west, Micangshan-Dabashan 
orogenic belt to the north, Hunan-Guizhou-Hubei thrust belt to the east and Emeishan-Liangshan thrust belt 
to the south, which covers a large area of the Sichuan Province and Chongqing Municipality22. The sedimentary 
strata are mainly Paleozoic and Mesozoic (Figs 1 and 2). The Sichuan Basin and its surrounding areas are the 
main targets for shale gas exploration and development in the Wufeng-Longmaxi Formations in China2,6. In these 
areas, two national shale gas production demonstration zones have been established in the Fuling and Weiyuan-
Changning regions, both of which show great shale gas development potential. The Jiaoshiba shale gas field, 
which is the study area in this paper, is in the Fuling District of the municipality city of Chongqing, which is east 
of the Sichuan Basin. With an area of approximately 347 km2, the Jiaoshiba shale gas field is one of the most suc-
cessful shale gas exploration areas in China. By the end of 2017, the cumulative gas production from the Wufeng 
and Longmaxi formations in Jiaoshiba had exceeded 14 billion cubic metres.

Under a scanning electron microscope (SEM), OM is observed in the form of particulate debris. Most of the 
OM particles in the Wufeng-Longmaxi shale lack sharp edges and distinct shapes. Based on the morphology 
and inherited texture, the primary OM can comprise several hydrocarbon generating organisms, such as various 
algae (multicellular algae and unicellular algae, etc.), graptolite, sponge spicule, as well as various secondary OM 
types, such as bitumen, which occur in discrete amorphous OM, small organic domains or organoclay aggregates.

Algae.  Algae is a kind of aquatic plankton that maintains its biological morphology characteristics, which is 
indicative of an important hydrocarbon generating organism. The absence of authigenic crystals along mineral 
walls or within organic matter suggests that the organic matter is still a kerogen or byproduct, and the alignment 
may be related to the original structure of the kerogen3,14. Further investigation showed that nanoporous kerogen 
is mainly composed of algae. The appearance of OM pores in algae is more patterned or organized than that of the 

Figure 1.  Location map. Map of study area showing major shale gas fields and typical wells of the Wufeng-
Longmaxi Formations in the Sichuan Basin and its surrounding areas.
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randomly distributed pores found in bitumen. In addition, based on the organization of the pores, those OM con-
taining patterned pores are likely to be nanoporous kerogen—despite the thermal maturity level of the samples1,20. 
Algae usually fill in the interparticle pores, which in many cases can be easily identified due to their sharp edges 
and distinctive internal fabric. The chemical compositions of algae are mainly carbon, silicon and oxygen, which 
is created by the energy spectrum of algae and may contain a small amount of magnesium and sulphur. Algae 
such as multicellular algae and unicellular algae have been studied with great scrutiny in this area of research.

	(1)	 The multicellular algae include red algae, brown algae and other planktonic algae in the Wufeng-Longmaxi 
Formations, which are identified under microscope23,24. In this study, the diameter of a single multicellular 
algae (may be red algae cystocarp) ranges from tens of microns to more than one hundred microns, and 
the shape of the multicellular algae may be deformed by intense compaction. The multicellular algae are 
compounds of organic matter and silica (Fig. 3). Contents of carbon, oxygen, silicon, and aluminium in the 
siliceous shell of multicellular algae account for 9.8%, 42.21%, 47.61%, and 0.38%, respectively, while the 
overall contents of carbon, oxygen, and silicon in the multicellular algae account for 43.47%, 34.66% and 
21.87%, respectively (Fig. 3c and d). Other types of algae that do not have a siliceous shell usually fill in the 
mineral pores, and their size varies with the size of the mineral pores (Fig. 4). Without the protection of 
the siliceous shell, the shape of the algae is significantly altered. Strong compaction squeezes out the algae, 
which results in the directional alignment and/or flow-like structures in the narrow mineral pores due to 
internal structural rearrangement of the organic matter. There is no directional alignment of organic mat-
ter containing circular or approximately equant pores in the centre of the narrow mineral pores due to little 
difference in the compaction degree of organic matter.

Figure 2.  Stratigraphy maps. (a,b) a and b displaying the stratigraphy of the Upper Ordovician Wufeng 
Formation and lower Silurian Longmaxi Formation in wells Jiaoye 1 and Jiaoye 2, respectively; the locations of 
the two wells are shown in Fig. 1. Depths of the samples used for FE-SEM are also indicated. GR represents the 
results of the gamma ray (in American Petroleum Institute (API) units).
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Pores within algae, particularly in smaller porous OM domains, are similar in shape, distribution and size, 
and may be influenced by the biological precursor and original structure of algae21. Structured, colonial 
algal material with porosity are retained within the partially collapsed, individual algal cells and between 
individual cells25. The OM pores hosted in the multicellular algae tend to grow in clusters and can be sub-
divided into discernible subparts. The pores are likely inherited from the intrinsic biological texture of the 
algae but not subjected to mechanical compaction. Alginite bodies often remain in contact with abundant 

Figure 3.  Multicellular algae from black shale in the Wufeng Formation in well Jiaoye 1 (2415.19 m). (a) 
Overview of the profile showing abundant multicellular algae. The sizes of individual algae range from tens of 
microns to more than 100 microns (white and blue dotted circle in the picture). Some multicellular algae may 
have been deformed by intense compaction (such as blue dotted circle in the picture). The multicellular algae 
may be the red algae cystocarp. (b) Multicellular algae with ring structure show inherent variation in its internal 
structure. (c,d) The energy spectrum of the diatom in (b).

Figure 4.  Multicellular algae of black shale in the Wufeng Formation in well Jiaoye 2 (2570.89 m). (a) Overview 
of the profile displaying rich multicellular algae. The aligned OM pores may be a result of the inherent variation 
in the internal structure of the algae. (b) Unaligned OM pores.
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amorphinite and form interconnected organic compounds, where OM pores are highly connected (Fig. 4). 
These pores are much larger and longer than those in the bitumen. The shapes of the pores are circular, oval 
or irregular with a certain connectivity within the algae. The cross sections of most OM pores in the mul-
ticellular algae usually exhibit irregular, bubble-like, spherical and/or elliptical profiles, and the diameters 
vary between 300 and 800 nm. Some alginite presents a porous, sponge-like structure with a maximum 
pore size approaching 1–2 μm. The surface porosity of the multicellular algae is between 50% and 80% 
(Fig. 4b). Three-dimensional reconstruction of the kerogen and porosity distribution shows that the OM 
pores have great potential to form connected pore networks, where 26–67% of the pore volume can be 
connected25. Valenza et al.26 explained that these pores could be the result of early oil generation and ex-
pulsion from hydrogen-rich algal material26, and the aligned long and/or narrow OM pores may represent 
collapsed pores caused by compaction after hydrocarbon expulsion.

	(2)	 The unicellular algae can be divided into blue algae, green algae and other benthic algae in the 
Wufeng-Longmaxi Formations through careful observation under a microscope23,24. Unicellular algae 
usually gather in groups to form colonies (Fig. 5). In this study, rhabditiform blue algae (also known as 
cyanobacteria) and spherical algae have been identified. A colony of rhabditiform blue algae has a diameter 
or length at several microns to tens of microns, the length of a single rhabditiform blue algae is a few hun-
dred nanometres to more than one micron, and the width is a few hundred nanometres (Fig. 5a). The main 
chemical contents of the rhabditiform algae are carbon, oxygen, silicon, and aluminium, which account 
for 78.21%, 10.12%, 9.65%, and 1.49%, respectively, with a small amount of magnesium at 0.54% (Fig. 5d). 
Spherical algae are circular or oval, with the length and width of a single spherical blue alga reaching a 
few hundred nanometres. Characterizing the uneven surface and rough edge, spherical algae create pores 

Figure 5.  Unicellular algae of black shale. (a) Rhabditiform blue algae colonies and OM pores (white arrows) 
observed in the Longmaxi Formation in well Jiaoye 2 (2523.11 m). (b) Spherical bacteria colonies and OM pores 
(white arrows) of the Longmaxi Formation in well Jiaoye 1 (2380.45 m). (c) Spherical nano algae colonies, the 
small pores (white arrow) and the large pores (blue arrow) observed in the Longmaxi Formation in well Jiaoye 2 
(2565.85 m). The OM pores are developed by the arrangement gap (white arrow) and the algae were adrift (blue 
arrow). The smallest pores developed on the bacteria can also be seen (red arrow). (d) The energy spectrum of the 
rhabditiform blue algae is shown in (a). (e) The energy spectrum of the spherical bacteria colonies is shown in (b).
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with sizes of tens to hundreds of nanometres. Carbon, oxygen, and silicon in the spherical algae make up 
79.99%, 16.52% and 1.53%, respectively. In addition, there is also a small amount of iron at 1.03% and 
sulphur at 0.92%. This slight difference in the overall elemental content is mainly caused by the differences 
in unicellular algae types.

The OM pores among the unicellular algae are isolated pores, which are randomly separated by the arrange-
ment gap between the unicellular algae. Therefore, pore development in the organic matter is quite limited, and 
the surface porosity of the unicellular alga is less than 10% (Fig. 5). The shape of the OM pores is either irregu-
lar or oval, and the size is hundreds of nanometres. In particular, the smallest pores developed on bacteria can 
also be seen, and the pore size may be less than one hundred nanometres. The larger oval OM pores are likely 
products of spherical blue algae shedding during the sampling process (Fig. 5c). The OM pores in multicellular 
algae are developed in the algae and inherit the original biological structure. The size of the pores is usually hun-
dreds of nanometres, and sometimes the size can reach the micrometre level. The distribution pattern of pores is 
strongly affected by the arrangement gap between the unicellular algae and the pore sizes of tens to hundreds of 
nanometres.

Bitumen.  Solid bitumen, also known as “pyrobitumen,” “migrabitumen,” “dead oil,” and a variety of other 
terms5,27, represents a possible alternative interpretation for homogeneous, unstructured, amorphinite, and dis-
persed OM5. Bitumen that fills in intraparticle pores, interparticle pores and fractures is secondary organic matter 
(crude oil) that is generated from depositional OM during thermal evolution. Bitumen contains 80.40% carbon, 
15.76% oxygen, as well as small amounts of other elements like 2.35% silicon, 0.70% aluminium, 0.50% sulphur 
and 0.29% iron (Fig. 6d). The energy spectrum of bitumen indicates that carbon is the dominant content with 
a proportion of more than 80%, while in the algae, it is only 40–70% in addition to a certain percentage of sil-
icon (approximately 10–30%) (Figs 3 and 6). Bubble-like pore morphology is very common, which has been 

Figure 6.  Bitumen in the flocculent organic matter. (a,b) Bitumen fills the mineral interparticle pores of the 
Longmaxi Formation in well Jiaoye 2 (2543.84 m). A micro-layer developed in the bitumen and is arranged 
in various directions. (c) Porous bitumen fills the framboidal pyrite of the Wufeng Formation in well Jiaoye 1 
(2412.06 m). OM pores are developed in the bitumen. (d) The energy spectrum and elements of the bitumen.
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interpreted as an evidence confirming that these pores formed as gas bubbles within the quasi-solid bitumen after 
the secondary cracking of bitumen occurred in the gas window25,28.

In addition to the OM pores in biological residues and/or kerogen, a large number of pores are also found 
in the solid bitumen between or within mineral particles. SEM images show that in the bitumen, there are only 
a few structured pores, some of which have relatively large sizes with a random and sporadic distributions. The 
bitumen-hosted pores are honeycomb-like or have an alveolar pore structure with a diameter typically ranging 
from 500 to 600 nm; however, pores as large as several micrometres are also visible (Fig. 7). The surface porosity 
of bitumen is 20–50%. It is noted that the isolated pores are roughly equant and uniformly distributed within 
OM. The formation mechanism of the pores may be different from that of the OM pores in algae, which possibly 
resulted from homogeneous bubble nucleation. The smallest pores may be left behind after gas expulsion, and 
the frictional forces on the bubble walls were too great for the pores to move into the viscous bitumen5,29. There 
is a wide range of pore shapes, in which smaller pores are prone to be more circular and the larger ones are more 
irregular and elongate20. In addition, there may also be some cracks found in the solid bitumen, which is probably 
the result of devolatilization14 (Fig. 7b). The OM pores and those cracks knitted by the bitumen network might 
play a major role as a hydrocarbon storage space and migration pathways.

Graptolite and other fossil fragments.  Many OM grains in the Wufeng-Longmaxi shale are sharply 
defined straight or arcuate edges featuring a stratified distribution on the bedding surface. The appearance of 
these grains is consistent with the breakage fragments of graptolite, sponge spicule, radiolarian and other fossil 
fragments.

	(1)	 Graptolite is a key fossil type in the Wufeng-Longmaxi shale and usually occurs as a compacted carbo-
naceous lamination on the bedding surface6,30 (Fig. 8). In the graptolite, there is 91.35% carbon, 4.21% 
oxygen, and small amounts of silicon 2.61%, aluminium 0.40%, sulphur 0.83%, iron 0.26%, potassium 
0.21% and calcium 0.13% (Fig. 8d). The number of isolated pores is relatively small in the graptolite; thus, 
the surface porosity of the graptolite is less than 5%. The OM pores are generally 2–6 μm, but pores as large 
as tens of micrometres in diameter can also be observed (Fig. 8b). The pores may only develop with little 
extension on the surface of the graptolite, which shows the roughly equal size characteristics similar to that 
in the bitumen. Shrinkage joints are present between the graptolite and minerals (Fig. 8b and c), which is 
favourable to the horizontal permeability enhancement of the shale.

	(2)	 Other fossil fragments principally include sponge spicule, radiolarian and fossils that are quite challenging 
to identify based on the profile. The sponge spicule is composed of undissolved amorphous silicon. Pre-
served fossil fragments, such as spores with organic walls and inorganic sponge spicules characterize their 
hollow central chambers, which remain partially or completely open after burial and charging by bitumen 
(Fig. 9). OM pores are mainly developed in the bitumen filling in the biological cavity; the number of this 
type of OM pore is tiny, and thus, their contribution to the total OM porosity is limited.

Discussion
There are two major types of OM in the Wufeng-Longmaxi shale, including multiple hydrocarbon generating 
organisms and amorphous OM (bitumen), which have been identified and analysed attentively in this study; this 
aids in determining how OM type impacts the type, morphology, size and distribution of OM-hosted pores. Three 
distinct OM-hosted pore types were recognized in the Wufeng-Longmaxi shale, which include OM pores in algae, 
biodetritus and bitumen.

Figure 7.  Pores in the solid bitumen of the Wufeng Formation in well Jiaoye 2 (2570.89 m). (a) The honeycomb-
like bitumen-hosted pores. The diameters are typically 500–600 nm, while pores as large as several μm in diameter 
are also observed. Cracks are observed in the bitumen (white arrow). (b) The honeycomb-like bitumen-hosted 
pores. Cracks are observed in the bitumen (white arrow).
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Figure 8.  The graptolite and related pores. (a) Overview of the profile, the graptolite (white arrows) is 
developed on the bedding surface of the Longmaxi Formation in well Jiaoye 1 (2380.45 m). (b) Graptolite, 
amplification of panel (b) in Figure a. Pores in graptolite, small pores (white arrows), large pores (yellow arrows) 
and shrinkage joint between graptolite and minerals (blue arrows). (c) Graptolite of the Wufeng Formation 
in well Jiaoye 1 (2415.19 m). Shrinkage joint between graptolite and minerals (blue arrows). (d) The energy 
spectrum of graptolite is shown in (b).

Figure 9.  Sponge spicule and the related pores of the Longmaxi Formation in well Jiaoye 2 (2556.91 m). (a) 
Sponge spicule. (b) The bitumen with pores in the sponge spicule (cross section) and pores within walls (blue 
arrow).
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Understanding how porosity develops in organic matter and its effects on shale quality is crucial to better pre-
dicting the potential of shale to store and produce hydrocarbons7. The main influencing factors of OM pores lie in 
the TOC content, OM types and thermal maturity of organic matter2,7. The TOC content factor is determined by 
the number of hydrocarbon generating organisms, which play a considerable role6,21. The pore number data are 
interesting when comparing the character of the pore populations in different hydrocarbon generating organisms. 
The structure of OM pores is largely inherited from hydrocarbon generating organisms after the hydrocarbon is 
generated and expelled during the shale thermal evolution14,31. It is widely believed that the planktonic algae have 
a more complex molecular structure and higher potential to generate all kinds of OM pores than that of unicellu-
lar algae during thermal maturation6. According to systematic experimental simulation results, the oil yield from 
modern planktonic multicellular algae is almost double or triple that of unicellular algae24. Hence, planktonic algae 
are beneficial to the development of OM pores, due to the strong ability to generate and expel large amounts of 
hydrocarbon and form rich OM pores. Moreover, rich planktonic algae ensure a large number of OM pores and 
a three-dimensional interconnected OM pore network, which provides a large storage space, as well as migration 
channels for shale gas. The sizes of the OM pores are usually hundreds of nm, and the sizes may even reach μm scale. 
The pores in unicellular algae have been heavily influenced by the arrangement gap between unicellular algae, whose 
size can vary from tens of nanometres to more than one hundred nanometres. The high total amounts of planktonic 
algae ensure a large number of OM pores, which favours the formation of three-dimensional interconnected pore 
networks6. OM pores within interconnected OM (mainly multicellular algae) probably have better connectivity than 
that of the OM pores within spatially isolated particulate OM (mainly unicellular algae and/or bitumen).

Some previous studies have shown that OM pores in gas-mature samples may develop within bitumen rather 
than in primary kerogen1,5,32; if this is correct, this would signify that the development of OM pores is largely 
independent of the primary OM structure25, as bitumen is a quasi-solid derivative of kerogen that has no struc-
tural relation to the precursor kerogen33. The prediction of OM pores is mainly used to predict the content of 
retention crude oil and bitumen/migrated crude oil. Due to different mineral compositions of the different shale 
intervals, different degrees of compaction of mineral pores occur to the bitumen filling the mineral pores, as well 
as the OM pore development.

Organic matter transformation resulting from the hydrocarbon generation and migration of different hydro-
carbon generating organisms is a pivotal cause of the differences in OM pore types, size and contribution to the 
overall porosity. Therefore, the characteristics of OM pores preserve precious geological information on the dual 
mechanisms of gas generation and gas expulsion from shale. A deeper understanding of the chemical/mechanical 
processes recorded by OM pores calls for further statistical analysis of the pore types, pore size distributions and 

Sample Well Strata Lithology

Depth

TOC (%) Ro (%)
Kerogen 
type

Shale mineral composition (%)

OM Types
OM 
porosity(m) Quartz Feldspar Carbonate Anhydrite Pyrite Clay

ZYZ27

JY1 Well

S1l Silty shale 2380.45 2.9 2.54 II 34 6 11 2 4 43 dominated by unicellular 
algae 0.58

ZYZ28 S1l Black shale 2404.69 4.36 3.13 II 45 4 7 2 4 38 dominated by multicellular 
algae and unicellular algae 3.488

ZYZ29 S1l Black shale 2412.06 4.41 — II 65 2 6 1 3 23 dominated by multicellular 
algae 5.29

ZYZ30 O3w Siliceous shale 2414.15 — — II 70 2 6 1 1 20 dominated by bitumen and 
graptolite —

ZYZ31 O3w Siliceous shale 2415.19 4.23 2.52 II 60 3 3 1 2 31 dominated by multicellular 
algae and graptolite 5.07

ZYZ32

JY2 Well

S1l Black shale 2523.11 2.11 2.63 II 48 7 7 1 3 34 dominated by unicellular 
algae and graptolite 0.422

ZYZ33 S1l Black shale 2543.84 — — II 41 4 4 1 5 45
dominated by unicellular 
algae, bitumen and 
graptolite

—

ZYZ34 S1l Black shale 2556.91 3.9 2.46 II 43 7 6 1 10 33 dominated by unicellular 
algae and graptolite 0.78

ZYZ35 S1l Black shale 2561.43 4.26 2.59 II 55 6 7 1 5 26 dominated by unicellular 
algae and graptolite 0.852

ZYZ36 S1l Black shale 2565.85 4.43 2.67 II 57 5 4 1 3 30
dominated by multicellular 
algae, unicellular algae and 
graptolite

3.544

ZYZ37 S1l Black shale 2567.62 — — II 55 5 6 1 2 31 dominated by unicellular 
algae and graptolite —

ZYZ38 O3w Siliceous shale 2569.1 — — II 20 3 48 2 4 23 dominated by fossil 
fragments —

ZYZ39 O3w Siliceous shale 2570.89 3.66 2.65 II 69 2 9 1 3 16 dominated by multicellular 
algae 4.39

ZYZ40 O3w Siliceous shale 2572.3 5.32 2.7 II 59 4 4 1 2 30 dominated by multicellular 
algae and graptolite 6.38

Table 1.  Total organic carbon (TOC) content, mineral content and vitrinite reflectance (Ro) of samples. Note: 
The OM porosity equals to the volume percentage of TOC (twice the mass percentage of TOC) times the surface 
porosity.
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possibly a series of experiments on pore generation during maturation5. The OM types and OM pore types high-
lighted in this paper provide a solid foundation for future studies.

Methods
In this study, fourteen black shale samples collected from two wells (five samples from well Jiaoye 1 and nine 
samples from well Jiaoye 2) in the Jiaoshiba shale gas field were tested (Figs 1 and 2b). To ensure a similar diage-
netic and hydrocarbon generation process and eliminate the influence of external environmental factors on pore 
types and characteristics, samples were carefully collected within short depth intervals ranging from 2380.45 m to 
2415.19 m in well Jiaoye 1 and from 2523.11 m to 2572.3 m in well Jiaoye 2. Total organic carbon (TOC) content 
of the samples range from 2.11% to 5.32%, with an average of 3.96%. The vitrinite reflectance (Ro) values range 
from 2.46% to 3.13%, with 2.65% as the average; this suggests the organic matter is already in the over-mature 
stage (Table 1).

This study applies integrated two-dimensional (2D) field-emission scanning electron microscopy (FE-SEM) 
imaging and bulk analysis aiming to identify hydrocarbon generating organisms and further evaluate OM pores 
in siliciclastic-dominated and clay-dominated shale from the Wufeng-Longmaxi Formations of well Jiaoye 1 and 
well Jiaoye 2 in Jiaoshiba shale gas field of the Sichuan Basin.

Descriptions of OM type via light microscopy, particularly reflected light microscopy, has been a standard 
practice for decades; however, petrographic criteria for the identification of OM types using SEM imaging, espe-
cially for the identification of hydrocarbon generating organisms and OM pores, remains poorly defined5,34. The 
difficulty in recognizing organic matter types under microscope seriously hinders the recognition of porous types 
from nonporous types. Methods for assessment and identification of OM types or hydrocarbon generating organ-
isms at high spatial resolution offer possible solutions5,14,19,35,36. The combination of argon ion-polishing and scan-
ning electron microscopy (SEM) enables the identification of nanopores in shale, as many previous studies have 
reported. However, the polished surface eliminates the spatial structure of the organic matter (inherited from 
kerogen), which makes it indistinct to identify the OM type on the basis of SEM. As OM identification is a critical 
issue in this study, unpolished samples were used to retain the biological structure under SEM.

Geochemistry parameters, mineral composition and scanning electron microscopy (SEM) experiments were 
conducted at the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development. 
A Quanta 200 Environmental scanning electron microscope was used with image magnifications of between 10 
and 20000.
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