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Abstract

Background: Quantitative proteomics allows for the discovery and functional investigation of blood-based
pre-diagnostic biomarkers for early cancer detection. However, a major limitation of proteomic investigations
in biomarker studies remains the biological and technical variability in the analysis of complex clinical
samples. Moreover, unlike ‘omics analogues such as genomics and transcriptomics, proteomics has yet to achieve
reproducibility and long-term stability on a unified technological platform. Few studies have thoroughly investigated
protein variability in pre-diagnostic samples of cancer patients across multiple platforms.

Methods: We obtained ten blood plasma “case” samples collected up to 2 years prior to breast cancer diagnosis. Each
case sample was paired with a matched control plasma from a full biological sister without breast cancer. We measured
protein levels using both mass-spectrometry and antibody-based technologies to: (1) assess the technical considerations
in different protein assays when analyzing limited clinical samples, and (2) evaluate the statistical power of potential
diagnostic analytes.

Results: Although we found inherent technical variation in the three assays used, we detected protein dependent
biological signal from the limited samples. The three assay types yielded 32 proteins with statistically significantly
(p < 1E-01) altered expression levels between cases and controls, with no proteins retaining statistical significance
after false discovery correction.

Conclusions: Technical, practical, and study design considerations are essential to maximize information obtained in
limited pre-diagnostic samples of cancer patients. This study provides a framework that estimates biological effect sizes
critical for consideration in designing studies for pre-diagnostic blood-based biomarker detection.
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Background
Early detection of breast cancer greatly increases progno-
sis with a 5-year survival rate of >98% for localized disease
versus 29.6% survival for disease diagnosed at a metastatic
stage [1]. Systematic blood-based studies using a variety of

protein assay technologies have profiled hundreds of pro-
teins and identified candidate targets that differentiate be-
tween cancer patients and matched controls [2, 3]. Only a
small subset of these targets has been validated in add-
itional samples [4]. One major limitation is that most of
these discovery studies have relied on samples that were
collected at the time of cancer diagnosis. Using such sam-
ples makes the key assumption that proteins indicative of
disease pathology in cancer patients can be extrapolated
to pre-diagnostic samples. Due to the relative scarcity of
pre-diagnostic blood samples, few biomarker studies have
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used such samples, and they were primarily used in valid-
ation studies, often with negative results even with initially
high-confidence protein targets [5]. Molecular profiles of
blood in cancer progression have been shown to change
in longitudinal studies [6], indicating that particular pro-
tein analytes are only predictive of disease outcomes
within a limited lead time [4]. This henceforth reinforces
the need to conduct exploratory studies in pre-diagnostic
samples to identify early cancer diagnostic protein targets.
Despite valuable progress in the limited efforts to de-

tect biomarkers in pre-diagnostic breast cancer samples
[7–9], challenges of small samples sizes and technical/
biological noise persist. Meta-analyses of the proteomic
revolution and its application to cancer biomarker dis-
covery highlights the amount of inter-individual variabil-
ity that interferes with true analytical variability in
clinical samples [9]. Some of the variation may be due to
lifestyle factors [10], and twin studies measuring plasma
proteins have emphasized the need to account for gen-
etic, environmental, and temporal variability [11]. More-
over, variability in clinical samples may also arise from
therapies received by cancer patients. Studies based on
samples from patients using menopausal hormone ther-
apy [12–14] have highlighted the need for cancer bio-
marker studies to consider the confounding effect of
hormone therapy on protein levels.
Given the known variability in protein expression in

the blood, the implications of technical and practical
choices for biomarker discovery on often limited num-
bers of samples need to be considered. Immuno-based
methods once dominated the field, and are still com-
monly used in biomarker studies [15]. However, tech-
nical advancements in mass spectrometry now allow for
shotgun proteomics that provide unbiased relative pro-
tein measurements with higher coverage. Emerging reac-
tion monitoring [16], and sequential window acquisition
of all theoretical mass spectra [17] mass spectrometry-
based technologies have also started to build quantitative
assays for larger numbers of proteins. Each type of plat-
form comes with advantages, disadvantages, and varying
ability to detect true analytical signals beyond the bio-
logical noise. We thus present, to our knowledge, the
most extensive characterization of pre-diagnostic sam-
ples of ten breast cancer cases with side-by-side com-
parison of select proteomics platforms with the goals of
characterizing technical and biological variation.

Methods
Human plasma samples
The blood plasma samples used in this study were ob-
tained from the Northern California site of the Breast
Cancer Family Registry (BCFR) [18]. Women with newly
diagnosed breast cancer (probands) were enrolled in the
family registry from 1996 to 2011, as well as their sisters

and other relatives, and followed prospectively to 2017.
At enrollment, probands completed a cancer family his-
tory questionnaire and all participants completed a ques-
tionnaire on epidemiologic risk factors for breast cancer,
including personal history of cancer, and provided a
blood sample that was stored in -70C freezers for future
research. Other health conditions were not assessed at
enrollment. Probands were interviewed annually and
asked about new cancer diagnoses among family mem-
bers. More extensive follow-up questionnaires were ad-
ministered to probands and relatives in 2012–2014 and
2015–2017. For this pilot study, we selected stored
plasma samples from 10 sister pairs from women who
did not have a personal history of breast cancer when
they enrolled in the family registry. They included 10
women who were diagnosed with breast cancer within
24 months of providing the blood sample and 10 of their
biological full sisters who did not develop breast cancer
within 24 months of providing the blood sample.
Case samples. The ten women with breast cancer were

diagnosed between 1997 and 2007 and nine diagnoses
were confirmed by pathology reports, medical records,
or the cancer registry. One diagnosis was based on a
proband report only, as the affected individual did not
participate in follow-up. None of these 10 women had a
cancer diagnosis before enrollment in the family registry.
Control samples. Nine of the 10 control women com-

pleted follow-up questionnaires between 2012 and 2017
and did not report any cancer diagnosis. Three of the
control women were California residents and linkage
with the California Cancer Registry in 2013 did not re-
veal any cancer diagnoses. One control woman had a
cervical cancer diagnosis 10 years before enrollment and
a breast cancer diagnosis 18 years after enrollment in
the family registry; both diagnoses were confirmed by
the cancer registry. (Additional file 1: Table S1).

Sample preparation for shotgun proteomic analysis
The plasma mass spectrometry-based proteomics workflow
used in this study was adapted from a previously described
workflow [13] (Fig. 1a). Briefly 250 μL aliquots of each
plasma sample were subjected to immunodepletion. The
fourteen most abundant proteins (including albumin, immu-
noglobulins G (IgG) and A (IgA), transferrin, haptoglobin,
α-1-antitrypsin, fibrinogen, α-2-macroglobulin, apolipopro-
tein A1, and acid-1-glycoprotein) were removed from the
plasma samples using CaptureSelect™ HumanPlasma14 de-
pletion material [19]. The proteins in the depleted plasma
samples were then isotopically labeled with the control sam-
ples receiving “light” 12C3-acrylamide and the case samples
receiving “heavy” 13C3-acrylamide [20]. The case and con-
trol samples were mixed and fractionated by reversed phase
chromatography using a C8 column (POROS R2). Fractions
were then lyophilized and digested with trypsin in solution.
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LC-MS/MS protein quantification
The tryptic peptide samples were analyzed by liquid
chromatography-tandem mass spectrometry (LC-MS/
MS) on a LTQ-Orbitrap Velos mass spectrometer
coupled with an Eksigent nanoLC. The resulting LC-
MS/MS data were searched against the human Uni-
ProtKB database using the Computational Protein Ana-
lysis System from X!Tandem. Search results were
analyzed by PeptideProphet [21] and peptides with a
score > 0.75 were retained for protein identification and
quantitation. Quantitative information from peptide sig-
nal intensities was then extracted using Q3ProteinParser,

and ratios of heavy-to-light acrylamide-labeled peptides
were computed for each protein in each of the ten sam-
ple pairs (Additional file 2) [20]. The estimated absolute
protein abundance levels for the LC-MS/MS method
were based on a reference database of 1200 canonical
proteins [22].

Myriad-RBM analysis
We used the Human OncologyMAP® v.1.0 assay (Luminex
xMap technology, Myriad-RBM Inc., Austin TX) from
Myriad-RBM Inc. to measure a targeted panel of 101 po-
tential protein biomarkers such as cancer antigens,

Protein extraction from 10 pairs of plasma from biological sisters

LC-MS/MS Myriad-RBM Olink

Reverse-Phase Chromatography,
Shotgun LC-MS/MS

Immunodeplete 14 most
Abundant Proteins

Isotopically label control
and case samples 

“light” 
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“heavy”
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Mix

Fluorescent color-coded
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a

Fig. 1 Overview and Summary of Study. a Study design and workflow. b Number of distinct proteins measured across the three platforms; LC-MS/MS,
Myriad-RBM, and Olink
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interleukins, and proteases (Additional file 1: Table S2) in
the 20 samples. Two hundred microliters of each plasma
sample was submitted for analysis. This assay uses color-
coded microspheres with antibodies specific to each of the
target protein to capture and detect specific analytes in
each sample. Lasers then simultaneously excite the re-
porter dye that quantifies the analyte specific to each
microsphere, and the internal fluorescent dye that identi-
fies the microsphere (Fig. 1a). The Myriad-RBM analysis
provides the measured concentration of each target ana-
lyte in a sample, the least detectable concentration (LDD),
as well as the low to high normal range for all analytes
(Additional file 2).

Olink analysis
Protein levels of an additional 96 potential biomarkers
(Additional file 1: Table S2) were analyzed in the 20
samples using the Olink Proseek Multiplex Oncology I
96 × 96 kit (Additional file 2) [23]. Twenty microliters of
each plasma sample was submitted for analysis. For each
target analyte in this assay, a pair of oligonucleotide-
labelled antibodies probes bind to the protein in each
sample. When the two probes are near each other after
binding to the target protein, a PCR target sequence is
formed by a proximity-dependent DNA polymerization
event. The resulting sequence is subsequently detected
and quantified using standard real-time quantitative
polymerase chain reaction (qPCR) on the Fluidigm Bio-
Mark HD real-time PCR platform (Fig. 1a). All assay
characteristics including detection limits and measure-
ments of assay performance and validations are available
from the manufacturer’s webpage (http://www.olink.-
com/products/oncology/).

Data filtering
In the LC-MS/MS analysis, only proteins quantified in
all ten case-control mixed samples were used in down-
stream quantitative analysis. For Myriad-RBM and Olink
analyses, only analytes with at least 80% of valid mea-
surements (defined as measurements above LDD for
Myriad-RBM platform) across all samples were kept for
downstream quantitative analyses. These cutoffs were
made to retain statistical power in downstream quantita-
tive analyses.

Inter-assay comparisons
Inter-assay comparisons were visualized by standard
boxplots and linear regression scatter plots. The adjusted
R2 metric defined the strength of correlation between
measurements of the same proteins across different
platforms.

Intra-assay technical variation
Protein assays have inherent variability known as tech-
nical variation across technical replicates. The statistical
metric used to evaluate technical variation in the LC-
MS/MS and Olink platforms was relative error (defined
as the standard deviation divided by the mean across
multiple replicates). The intra-assay technical variation
of the LC-MS/MS method was evaluated by the density
of relative error for case-to-control ratios; the relative
error was calculated for all proteins using multiple pep-
tides for the same protein as replicates. Meanwhile, for
the Olink analysis we evaluated relative error for tripli-
cate measurements for each protein analyte.

Biological versus technical variance
For the Olink assay, technical variation was calculated as
the mean of standard deviation across each protein ana-
lyte and biological variation was calculated as the stand-
ard deviation of mean measurements across each
protein analyte. The variance was first analyzed by com-
paring biological variance with technical variance. Fur-
thermore, to assess variance decomposition, we then
averaged the type-II ANOVA sum of squares to evaluate
the proportions of variance.

Principal component analysis (PCA)
Principal Component Analysis, an unsupervised learning
method, was used to reduce the multi-dimensional
Myriad-RBM and Olink datasets into the first two or-
thogonal components that capture the major sources of
variation.

Student’s t-test and multiple hypothesis correction
Paired and unpaired t-tests with p-values corrected by
the Benjamini-Hochberg multiple hypothesis testing
were used to evaluate quantitative differences between
case and control samples.

Results
As shown in Fig. 1b, the LC-MS/MS method measured
relative levels of 119 proteins, while the Myriad-RBM
and Olink methods measured absolute levels of 73 and
76 proteins, respectively, for all samples. No proteins
were measured by all three methods. Seven proteins
were measured by both LC-MS/MS and Myriad-RBM,
and 27 proteins were measured by both the Olink Bio-
sciences and Rules Based Medicine assays. The three
methods provided ample information to evaluate the
variability of current protein assays in detecting protein
biomarkers for early breast cancer diagnosis.

Depth and frequency of protein measurements
The LC-MS/MS method provided relative quantitation
values for proteins over six orders of magnitude (Fig. 2a).
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Similarly, Fig. 2b shows that the Myriad-RBM method also
quantified proteins over six orders of magnitude, whereas
the Olink method quantified proteins over a relatively
smaller range of four orders of magnitude (Fig. 2c). Over-
all, the Olink platform captured lower abundance and
smaller range of protein levels compared to the other two
methods.
The frequency of unique protein measurements across

plasma samples is plotted in the histograms of Fig. 2a-c
for the three methods. Most proteins were measured in
all 20 samples by the Myriad-RBM and Olink methods.
Conversely, the LC-MS/MS method quantified the lar-
gest total number of proteins (1200), but also yielded
missing data: only 13.5% of the total number of quanti-
fied proteins was measured in all ten pairs of “heavy”
and “light” mixed samples. We chose to focus on only
the 119 proteins identified across all samples in the LC-
MS/MS method for downstream analysis.

Assay-to-assay comparison in antibody-based
technologies
The Myriad-RBM and Olink assays are both antibody-
based technologies that aim to capture absolute concen-
trations of protein analytes in biological samples. We
therefore compared the results from each of the two
panels. Fig. 3a shows boxplots of protein measurements
across all genes sorted by mean abundance for both
methods. In general, the Myriad-RBM assay provided
higher absolute level measurements than the Olink
assay, even for analytes that were measured by both as-
says. This is particularly noteworthy as each method
used absolute standards to determine values for protein
concentrations.

Despite the discrepancy of absolute measurements be-
tween these two antibody-based assays, we saw that at
least the measurements were mostly concordant for the
30 proteins measured by both methods (Fig. 3b), al-
though the strength of correlation varied from protein
analyte to analyte.

Technical variation in LC-MS/MS and Olink analysis
Each assay has inherent technical variation. We were
able to measure variation across technical replicates for
the LC-MS/MS and Olink Analyses. We concluded that
the LC-MS/MS method had a mean relative error for
each measured peptide at approximately 10% for this
dataset (Fig. 4a). The relative error across the triplicates
for each analyte in the Olink analysis was plotted as box-
plots in Fig. 4c. This figure highlights that the average
relative error was found to be approximately 20% across
all analytes, but the relative error was not consistent
across analytes. Moreover, as shown in Fig. 4b, there was
no evidence that relative error is correlated with mea-
sured protein abundance. Together, Fig. 4b-c suggest
that inherent technical variation is specific to analyte
and not necessarily specific to measurement platform or
measured protein abundance.

Biological versus technical variation
Figure 5a shows a scatterplot of technical variation ver-
sus biological variation in the Olink assay. Each point
represents a protein and points above the line indicate
that the biological variation in the measurements was
higher than the technical variation of the measured pro-
tein levels. A variance decomposition ternary plot,
shown in Fig. 5b, exhibits that variance is mostly cap-
tured by variability between individuals rather than

a b c

Fig. 2 Depth of analyses and measurement frequency across platforms. Histogram (top) of frequency that a protein is quantified in n number of
samples, and dynamic range plot (bottom) of mean concentrations measured for each unique protein quantified in platforms (a) LC-MS/MS, (b)
Myriad-RBM, (c) Olink
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technical variance or random error. Though there was
inherent technical variance in the Olink measurements
as shown in Fig. 3, we were still able to detect biological
signals across the individuals in the study.
Furthermore, it is noteworthy that both the biological

and technical variations were specific to the protein an-
alyte measured in the Olink Assay. The ratio of bio-
logical to technical variation for each protein was
plotted in Fig. 5c. Some proteins show more biological
variability than other proteins; it is expected that in
plasma from breast cancer cases some proteins will be-
have similarly, whilst others would vary depending on
personal variability. We observed that in the Olink

analysis, variability was mostly bounded by biological
variance, although a deeper look revealed that some in-
dividual protein analytes had inherently more individual
personalized biological variability.

Case to control comparison
An unsupervised principal component analysis of the
Myriad-RBM and Olink datasets showed that the two
principal components captured more than 90% of the
variation in both the antibody-based assay datasets.
However, there was no observable discrimination be-
tween the case and control samples in this reduced di-
mensional space (Additional file 3: Figure S1A).

a

b

Fig. 3 Assay-to-Assay Comparison for Antibody-Based Technologies. a Myriad-RBM estimates higher absolute protein concentration in comparison
to Olink platform. b Protein levels are concordant for most proteins measured in both antibody-based platforms
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Violin plots in Fig. 6a summarize the most significant
proteins from unpaired and paired t-tests on measure-
ments from the antibody-based assays. Only a few pro-
teins showed differences with p-value less than 1E-01
in the Myriad-RBM analysis; and within the group of
five significant analytes measured, we observed only
minimal differences between the means of the cases
and controls. We observed that the Olink platform
identified more significant proteins (p-value <1E-01),
with better separation of the case and control distribu-
tions. Fatty Acid Binding Protein 4 (FABP4), a protein
highly expressed in the liver, was found to be signifi-
cantly different between cases and controls from both
Olink and Myriad-RBM measurements. Some signifi-
cant analytes were mutually exclusive to the paired and

unpaired analyses in the Myriad-RBM platform, but not
in the Olink analysis.
Figure 6b shows ten proteins with both the largest ab-

solute fold differences and most significant Benjamini-
Hochberg corrected p-values from a parallel paired t-test
analysis of the LC-MS/MS data. Amongst these top ten
proteins, most are commonly observed in the blood but
not previously explicitly linked to cancer-related molecu-
lar mechanisms.

Discussion
We evaluated three different types of assays (Fig. 1a) cur-
rently used for protein biomarker studies for their respective
figures of merit and practical considerations. We found that
each platform delivered varying degrees of depth and range

a

c

b

Fig. 4 Technical Variation. a Relative error of case/control ratios across all peptides per proteins average at 10% (dashed line) in LC-MS/MS platform. b Relative
error independent to protein abundance in Olink analysis determined by adjusted R2 value from linear regression. c Relative error across all proteins measured
in the Olink analysis averages at 20% (dashed line)

Yeh et al. Biomarker Research  (2017) 5:30 Page 7 of 12



for each individual analyte measured (Fig. 2), even in the
cases where the two immuno-based assays claim to meas-
ure the absolute values of the same protein (Fig. 3). We
found that platforms had inherent technical variation evalu-
ated with technical replicates (Fig. 4); however, we were still
able to detect biological signal that generally surpassed tech-
nical variation (Fig. 5a, c). Despite that most variability was
captured by biological effects (Fig. 5c), paired and unpaired
comparisons of pre-diagnostic case and control samples
yielded 32 significant proteins (Fig. 6) with altered expres-
sion levels, with a limited subset previously reported to be
associated with cancer. No proteins, however, retained
statistical significance after false discovery correction. We
conclude that technical, practical, and study design consid-
erations are essential to maximize information obtained in
limited pre-diagnostic samples of cancer patients.
The motivation for this study was to perform an ex-

ploratory investigation of technical and study design

implications for identifying potential protein biomarkers
in a small sample (n = 10) of pre-diagnostic breast can-
cer biospecimens. The pre-diagnostic plasma samples
from the BCFR in this study – and human clinical can-
cer biospecimens in general – are often relatively limited
in number and amount and difficult to come by. Thus
one often arrives, as we did in this study, at a situation
wherein there are multiple available technologies to
analyze precious samples. It is therefore critical to
understand the implications of technical choices, and to
carefully design experiments to maximize information
obtained.
In this study, we selected three different types of assays

(Fig. 1a) currently used for protein biomarker studies. We
evaluated each type assay for their respective merit and
practical considerations. We leveraged specimens from
matched sisters who remained cancer-free as controls and
compared them to pre-diagnostic specimens of sisters

a

c

b

Fig. 5 Biological versus Technical Variation. a Biological variance is generally higher than Technical Variance in the Olink Assay. b Variance decomposition
shows that most variance can be explained by biological variability across the samples. c Each protein measured has its own ratio of biological variance
vs. technical variance
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who developed breast cancer within 2 years of providing
the blood sample. Therefore, in addition to comparatively
assessing the technical platforms, we also evaluated
whether a paired design would bring more statistical
power to account for confounding biological variability.
Though modest in sample size, this study serves as a
model pilot study and practical strategy to evaluate
important factors before designing a larger study.
Each of the three methods evaluated in this study

comes with their own advantages and disadvantages.
The unbiased shotgun LC-MS/MS method not only
avoids a constrained pre-selection of analytes of interest,

but at the same time can also quantify many more pro-
teins than targeted panels such as the Myriad-RBM and
Olink platforms (Fig. 2a). However, LC-MS/MS and
most other quantitative mass spectrometry-based
methods provide relative rather than absolute quantita-
tion. Absolute measurements require the use of internal
standards, which is not feasible in an untargeted study
of hundreds of proteins. In recent years, emerging mass
spectrometry-based technologies [16] have started to
build quantitative assays for larger numbers of proteins;
however, these technologies require either a priori know-
ledge of analytes of interest, or peptide spectral libraries

a

b

Fig. 6 Case and Control Differences. a Unpaired and paired t-tests reveal few case/control ratios that are significant in the targeted proteomics
assays. b Volcano plots reveal protein analytes that characterize difference between case and controls (blue points) from shotgun
LC-MS/MS measurements
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that still rely on data dependent acquisition methods as
exhibited in this study. The LC-MS/MS approach is also
more sensitive towards higher abundance proteins, thus
impacted by a relatively large amount of missing data
compared to the antibody-based approaches due to the
inherent under-sampling of the mass spectrometer.
In contrast to the LC-MS/MS method, the Myriad-

RBM and Olink approaches provide absolute measure-
ments of specific protein levels (Additional file 1: Table
S2) which are useful for targeted rather than exploratory
studies. These platforms provide respective datasets with
protein measurements for nearly every analyte in every
sample, with little missing data (Fig. 2b-c). However,
though the subset of proteins that were measured by
both platforms provided mostly concordant values
(Fig. 3b), there remained a clear discrepancy in abso-
lute measurements between the platforms (Fig. 3a)
which raises concerns about the reliability of these re-
ported absolute values. This discrepancy is possibly
due to differential calibrations used by the different
technologies. Moreover, for protein measurements
that were not concordant between the two antibody-
based methods, it is possible that corresponding anti-
bodies may not be measuring the same epitope of a
protein and are henceforth capturing different protein
forms. Another disadvantage of these antibody-based
technologies is that antibodies can either be inher-
ently biased due to their affinity to substrates, or un-
available for potential novel protein biomarkers.
In addition to the technical features of these assays,

there are several practical considerations for each
approach. The LC-MS/MS approach was the most time-
consuming approach due to time needed to perform
fractionation to overcome the large dynamic range of
proteins in the blood and the time required for LC-MS/
MS data acquisition. The Olink assays required the
smallest volume of plasma samples of all the platforms,
which is an important practical consideration when
working with the precious and limited pre-diagnostic
samples. Lastly, each assay comes at a different cost
which may determine the feasibility of performing assays
in duplicate, or even triplicate.
The three assay platforms provide both complemen-

tary and mutually exclusive information. Therefore,
practical considerations and priorities may determine
the choice of assay for evaluating clinical samples for
biomarker discovery. All assays used in this this study
had some inherent technical variation. We also chose to
evaluate technical variation of the antibody-based Olink
platform rather than the Myriad-RBM platform largely
because the Olink assay requires significantly smaller
volume of our limited biospecimens. We found some
technical variation in the Olink assay, but it was not cor-
related with the type of analyte or measured protein

abundance (Fig. 4b-c), thus establishing reliable scalabil-
ity of the assay across all protein targets.
Despite technical variation detected with our tripli-

cate analysis, we observed that the signal from bio-
logical variation of protein levels between samples was
larger than the technical variation (Fig. 5a-b). Interest-
ingly, each protein analyte in the same antibody-based
platform has its own technical and biological variation
(Fig. 5c), which cannot necessarily be predicted a priori,
probably owing to inherent biases in the antibodies, or
to confounding biological noise. For each analyte in a
protein measurement study, it is thus important to
evaluate the technical and biological variation to ac-
count for confounding in the analytical signal. Our
findings therefore support the utility of replicates in
studies to assess analyte variation.
Lastly, in addition to assessing the inherent variability

within and between the different protein assays, we also
evaluated whether a matched case and control sisters
study design would yield more statistical power in unco-
vering significant early diagnostic biomarkers. We ini-
tially hypothesized that sisters of the breast cancer cases
would serve as well-matched controls as they are natur-
ally controlled for race/ethnicity and a large proportion
of genetic background. Moreover, our choice to evaluate
pre-diagnostic samples eliminates bias associated with
sample collection as both case and control samples were
collected under the same conditions without knowledge
of cancer diagnosis at the time of collection.
However, the unbiased principal component analysis

exhibited that even with our careful study design choices
to minimize bias, samples showed relatively large indi-
vidual variance along their two principal component
axes in the antibody-based datasets. Samples from bio-
logical sisters did not generally appear to be more simi-
lar to each other than to other individual samples
(Additional file 3: Figure S1B). Hence it was not surpris-
ing to discover that the case and control samples were
not well separated in the two-dimensional space of com-
ponents that captured a substantive amount of the over-
all variance (>90%) (Additional file 3: Figure S1A).
Henceforth, we focused our analysis efforts on identi-

fying individual protein analytes with potential diagnos-
tic power. While a small number of proteins showed
statistically significant differences between cases and
controls; the changes were small (less than two-fold) and
the number of proteins showing differences was small
(Fig. 6). This finding is not necessarily unexpected.
Given that the samples were collected from women up
to 2 years before they were diagnosed with breast cancer,
it is highly likely that the analytical signal in the blood
plasma associated with breast cancer cannot be detected
above the biological noise that arises from inter-
individual variation.
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We observed in Fig. 6a that the paired statistical analysis
in the Olink platform provided more significant analytes
than the unpaired analysis, suggesting that for the Olink
platform, the paired design had greater statistical power
when evaluating each protein analyte independently. How-
ever, also shown in Fig. 6a, we observed that there were
some significant analytes that were mutually exclusive to
the paired and unpaired analysis in the Myriad-RBM plat-
form. If evaluating this platform in isolation, these results
echo our initial PCA (Additional file 3: Figure S1); it ap-
pears that on the Myriad-RBM platform, the sisters are not
more similar to each other than across all the samples both
when protein levels are analyzed independently, and in co-
variance. This result may be explained by factors including,
but not limited to, noise introduced by technical variation
that was not evaluated for this platform, coupled with
person-to-person variation from the samples. The Myriad-
RBM oncology panel was chosen specifically for this study,
and our results suggest that these protein measurements
show little utility in pre-diagnostic breast cancer samples.
This suggests that there is still a need for the unbiased ex-
ploratory LC-MS/MS methods that yield novel significant
biomarker candidates as seen in Fig. 6b. Although the pro-
tein analytes in Fig. 6b have not been validated, they serve
as a proof of concept that an untargeted approach can yield
candidates that would otherwise be missed by targeted
panels applied to noisy clinical samples.

Conclusions
This study has comprehensively evaluated technical,
practical and study design considerations for potential
protein biomarker detection using the currently available
technologies. Our findings provide a framework for lar-
ger studies and estimates of biological effect sizes for a
more informed early protein cancer biomarker detection
approach.
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