

A retrospective analysis of prognostic factors and treatment choices in small cell lung cancer with liver metastasis

Shuang Zhang^{1,2}[^], Yansu Wang², Shuang Li², Yang Liu¹, Ying Cheng¹[^]

¹Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun, China; ²Clinical Research Big Data Center, Jilin Cancer Hospital, Changchun, China

Contributions: (I) Conception and design: Y Cheng; (II) Administrative support: Y Cheng; (III) Provision of study materials or patients: Y Cheng; (IV) Collection and assembly of data: Y Wang, S Li, Y Liu; (V) Data analysis and interpretation: S Zhang, Y Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Ying Cheng, MD. Department of Thoracic Oncology, Jilin Cancer Hospital, 1066# Jinhu Road, High-tech Zone, Changchun 130000, China. Email: jl.cheng@163.com.

Background: Small cell lung cancer (SCLC) is characterized by high aggressiveness and early dissemination, with the liver being the most common site of metastasis. Although it has been established that the prognosis for SCLC with liver metastasis is exceedingly poor, comprehensive data on clinical features, prognostic factors, treatment options, and outcomes of this patient population remain limited. This retrospective study aims to examine the clinicopathological features and current treatment landscape and to identify prognostic factors associated with SCLC with liver metastasis in real-world settings.

Methods: We conducted a retrospective analysis of data on SCLC patients with liver metastasis at initial diagnosis between January 1, 2013, and January 1, 2022. Kaplan-Meier analysis and log-rank tests were employed to estimate the overall survival (OS) and progression-free survival (PFS). Cox regression models were utilized to identify independent prognostic factors.

Results: A total of 349 patients were included in the study, with 97.7% of patients exhibiting pure SCLC and 42.4% of patients presenting with concomitant bone metastasis. Approximately one-fourth of the patients had metastases in \geq 3 organs, and 18.9% of patients had an Eastern Cooperative Oncology Group performance status (ECOG PS) \geq 2. The median OS was 10.97 months (95% CI: 9.88–12.06) for those who received first-line therapy (n=286). Of these, 263 patients were treated with chemotherapy, showing a median OS of 11.37 months. Furthermore, 43.8% of patients received second-line treatment, and 81 patients proceeded to third-line treatment. ECOG PS \geq 2 and mixed-SCLC were identified as independent adverse prognostic factors in SCLC with liver metastasis, whereas treatments including systemic treatment alone or in combination with local radiotherapy were associated with better prognoses.

Conclusions: This retrospective study substantiated that ECOG PS ≥ 2 and mixed SCLC are independent predictors of poor prognosis for SCLC with liver metastasis. Additionally, different treatment strategies can improve the survival of this patient population, with chemotherapy currently being the main treatment option.

Keywords: Small cell lung cancer (SCLC); prognosis; metastasis; survival; clinical observations

Submitted Aug 18, 2023. Accepted for publication Nov 17, 2023. Published online Dec 26, 2023. doi: 10.21037/jtd-23-1294 View this article at: https://dx.doi.org/10.21037/jtd-23-1294

^ ORCID: Shuang Zhang, 0000-0002-4339-0761; Ying Cheng, 0000-0001-9908-597X.

Introduction

Small cell lung cancer (SCLC) is a high-grade pulmonary neuroendocrine tumor, accounting for approximately 15% of all lung cancers (1). This malignancy is characterized by its aggressive nature and early dissemination, accounting for its high mortality rate. At the time of diagnosis, nearly two-thirds of SCLC patients have already developed metastases (2). The prognosis for SCLC patients is dismal, with a 5-year survival rate of less than 5% (3).

The liver is the most common location for SCLC metastasis. Approximately 17% of SCLC patients present with liver metastases at diagnosis, a prevalence much higher than patients with non-SCLC (NSCLC) (around 4%) (4). Furthermore, the incidence of liver metastasis is highest in SCLC (5). In extensive-stage SCLC (ES-SCLC), the proportion of liver metastasis exceeds 30%, even soaring to 60% (6,7). Most of these patients (62%) present with liver metastases at the time of diagnosis or within 30 days of diagnosis (8). Unfortunately, SCLC patients with liver metastasis face the poorest prognoses. With the best supportive care, the median overall survival (OS) is a mere 3-4 months, and the 1-year OS rate falls below 20% (5,9). The 3-year OS rate plummets to as low as 1.7% (10). A retrospective study involving 200 SCLC patients demonstrated that those with liver metastasis had a 2.52-fold increased mortality risk compared to those

Highlight box

Key findings

- Eastern Cooperative Oncology Group performance status (ECOG PS) ≥2 and mixed small cell lung cancer (SCLC) as independent adverse prognostic factors for SCLC with liver metastatic.
- Chemotherapy is still the main treatment option for SCLC with liver metastasis.

What is known and what is new?

- The prognosis of SCLC with liver metastasis is extremely dismal. However, data on clinical features, prognostic factors, treatment options, and outcomes are scarce in SCLC with liver metastasis.
- Our study suggested that ECOG PS ≥2 and mixed SCLC increased risk of death, while treatment including systemic therapy or systemic therapy combined with local therapy reduced the risk of death.

What is the implication, and what should change now?

• This study provides important information of the current treatment and survival status of SCLC with liver metastasis in China.

without liver involvement (11). Additionally, numerous studies have shown that liver metastasis constitutes an independent adverse prognostic factor for SCLC (7,9,12-14). Nonetheless, the clinicopathological features influencing the prognosis of SCLC patients with liver metastasis have not been comprehensively elucidated.

Current clinical treatment options for SCLC, whether with or without liver metastasis, do not differ significantly. The management of SCLC with liver metastasis remains a formidable challenge, given that limited specific studies have focused on treatment strategies for this patient population. To bridge this knowledge gap, we undertook a retrospective analysis to assess the clinicopathological features, clinical treatment choices, outcomes, and prognostic factors of SCLC patients with liver metastasis. We present this article in accordance with the STROBE reporting checklist (available at https://jtd.amegroups.com/ article/view/10.21037/jtd-23-1294/rc).

Methods

Patient selection and data collection

We retrospectively analyzed data from patients diagnosed with SCLC and liver metastasis at Jilin Cancer Hospital between January 1, 2013, and January 1, 2022. The inclusion criteria were as follows: (I) confirmation of SCLC through cytological or pathological means; (II) verification of liver metastasis through magnetic resonance imaging (MRI) or computerized tomography (CT) at the time of diagnosis; (III) availability of survival data in the follow-up system. Exclusion criteria included: (I) coexistence of other malignancies; (II) missing survival data.

Demographic and clinicopathological characteristics at baseline, as well as the treatment information for patients, were retrieved from electronic medical records. Survival data were obtained from records in eSuizhen v2.7.1.

The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Institutional Review Board of Jilin Cancer Hospital (No. 202308-07-01) and individual consent for this retrospective analysis was waived.

Response and outcome evaluation

The Response Evaluation Criteria in Solid Tumors (RECIST) criteria version 1.1 (15) was employed to assess treatment efficacy. OS_1 was defined as the time from the

date of diagnosis to the date of death, while OS_2/OS_3 were defined as the time from the initiation of second-line or third-line treatment to death. Progression-free survival (PFS) was defined as the time from the start of treatment to disease progression or death. The last follow-up visit occurred on January 1, 2023.

Statistical analysis

Patient characteristics were summarized using descriptive statistics. Kaplan-Meier methodology and log-rank statistics were utilized to estimate OS and PFS. Independent prognostic factors for OS were assessed through univariate and multivariate regression analyses employing Cox proportional hazards regression models. A two-sided P value of less than 0.05 was considered statistically significant. All statistical analyses were performed using SPSS software, version 26, and bar charts were generated using GraphPad Prism 8. Missing data were excluded from the analysis.

Results

Patient characteristics and treatment

In this study, 349 eligible patients with liver metastasis of SCLC at the time of diagnosis were included. The median age was 64 years (range, 24-87 years), with 151 patients (43.3%) aged \geq 65 years. Most patients had pure SCLC (97.7%), and 66.8% of patients were male. A smoking history was present in 243 patients (69.6%). Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-1 was observed in 78.8% of patients, while 66 patients (18.9%) had an ECOG PS ≥ 2 . At baseline, the majority of patients (64.8%) had metastases to organs other than the liver, including bone (42.4%), intrapulmonary metastasis (14.9%), pleura (13.5%), and brain (10.3%). Notably, 85 patients (24.4%) had metastases in more than three organs. Lymph node metastasis (N1-N3) was detected in most patients (89.4%). Among the patients, 286 patients (81.9%) received first-line systemic therapy (Table S1), with 263, 14, and 9 patients treated with chemotherapy, chemotherapy combined with immunotherapy, and chemotherapy with angiogenesis inhibitors, respectively, 43.8% of patients received secondline treatment (Table S2), while 23.2% of patients (n=81) entered third-line treatment (Table S3). Radiotherapy was the local treatment for 69 patients. There were 60 patients without receiving first-line systemic treatment including 30

Zhang et al. A retrospective study of SCLC with liver metastasis

patients were provided with optimal supportive care due to inadequate organ function or poor performance status, based on the recommendation of oncologists, 17 patients refused anti-tumor treatment, and 13 patients opted for Chinese herbal medicine treatment alone. Additionally, there were three patients who received palliative radiotherapy alone due to poor performance status. The baseline characteristics of the patients are summarized in *Table 1*.

Objective response rate (ORR) and disease control rate (DCR)

Among patients receiving chemotherapy as first-line treatment, 217 patients were eligible for evaluation. Of these, 8, 110, 87, and 12 patients exhibited complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD), respectively. The ORR and DCR for first-line chemotherapy were 54.4% and 94.5%, respectively. For patients receiving chemotherapy combined with immunotherapy as first-line treatment (n=14), none achieved CR, while 11 patients showed PR, and 2 patients exhibited SD among the 13 patients eligible for evaluation. The ORR and DCR for first-line chemotherapy plus immunotherapy were 84.6% and 100%, respectively. Among patients treated with chemotherapy combined with angiogenesis inhibitors as first-line therapy, all 9 patients were evaluable, with 7 patients achieving PR and 2 patients showing SD. The ORR and DCR were 77.8% and 100%, respectively. Among the patients treated with secondline chemotherapy, 97 patients had efficacy evaluation data, with no patients achieving CR. Among them, 12, 52, and 33 patients exhibited PR, SD, and PD, respectively. The ORR and DCR for second-line chemotherapy were 12.4% and 66.0%, respectively. For patients who received chemotherapy alone as their third-line treatment (n=58), 41 patients were evaluable, and the ORR and DCR were 4.9% and 51.2%, respectively. Due to the limited number of cases, data on response were not collected for patients receiving second- or third-line treatment, including immunotherapy or angiogenesis inhibitors (Table 2).

0S

In this retrospective study, the median OS for all enrolled patients was 10.00 months [95% confidence interval (CI): 9.12–10.88]. The 12- and 24-month survival rates were 39.8% and 11.7%, respectively (*Figure 1A*). Untreated patients had a significantly shorter median OS of only 2.67 months (95% CI: 1.20–4.14). The median OS

Table 1 Baseline characteristics of all patients

Characteristic Statistic result Characteristic Statistic result Age, years Number of involved metastatic organs 264 (75,6%) ve65 198 (66,7%) 23 264 (75,6%) 265 198 (66,7%) 23 85 (24,4%) Gender Chemotherapy 268 (81,9%) Male 233 (66,3%) Chemotherapy 263 (20,5%) Smoking 116 (33,2%) Chemotherapy + angiogenesis 9 (3,1%) Never 106 (30,4%) Second-line systemic therapy 131 (85,3%) Current/former 243 (96,6%) Chemotherapy + angiogenesis 8 (3,2%) Current/former 243 (96,6%) Chemotherapy + angiogenesis 8 (5,2%) Current/former 243 (96,6%) Chemotherapy + angiogenesis 8 (5,2%) Current/former 243 (96,6%) Chemotherapy + angiogenesis 8 (5,2%) Gold (18,9%) Chemotherapy + angiogenesis 8 (5,2%) 10 (7,6%) Missing 8 (2,3%) Immunotherapy + angiogenesis 10 (7,6%) NS 15 (4,3%) Chemotherapy + angiogenesis <td< th=""><th>Table 1 Baseline characteristics of all 1</th><th>patients</th><th colspan="4">Table 1 (continued)</th></td<>	Table 1 Baseline characteristics of all 1	patients	Table 1 (continued)			
Age, years Number of involved metastatic organs Median [ranga] 64 [24-87] -3 264 (75.6%) c65 151 (43.3%) 23 85 (24.4%) 365 151 (43.3%) First-line systemic therapy 268 (81.9%) Gender Chemotherapy 263 (82.0%) Male 233 (66.8%) Chemotherapy + angiogenesis 9 (3.1%) Smoking Chemotherapy + angiogenesis 9 (3.1%) Smoking Chemotherapy + angiogenesis 9 (3.1%) COG PS Chemotherapy + angiogenesis 8 (2.3%) Masing 8 (2.3%) Chemotherapy + angiogenesis 2 (3.6%) SCLC 34 (97.7%) Inmunotherapy + angiogenesis 2 (1.3%) Mixed-SCLC 3 (2.3%) Chemotherapy + angiogenesis 2 (1.3%) N1 5 (6.4%) Chemotherapy + angiogenesis 2 (1.3%) N3 151 (43.3%) Chemotherapy + angiogenesis 2 (1.3%) Mixed-SCLC 3 (2.3%) Immunotherapy + angiogenesis 2 (1.3%) N1 5 (6.4%) Chemotherapy + angiogenesis 1 (1.6%) </th <th colspan="2">Characteristic Statistic result</th> <th>Characteristic</th> <th colspan="2">Statistic result</th>	Characteristic Statistic result		Characteristic	Statistic result		
Median [range] 64 [24-87] -3 264 (75.6%) -65 198 (66.7%) -3 85 (24.4%) s65 151 (43.3%) First-line systemic therapy 268 (24.4%) Male 233 (66.8%) Chemotherapy 268 (24.9%) Male 233 (66.8%) Chemotherapy 14 (4.9%) Fernale 116 (63.2%) Chemotherapy + angiogenesis 9 (3.1%) Smoking 106 (60.4%) Second-line systemic treatment 153 (43.8%) Current/former 243 (69.6%) Chemotherapy + angiogenesis 8 (3.2%) Current/former 243 (69.6%) Chemotherapy + angiogenesis 8 (3.2%) Current/former 243 (69.6%) Chemotherapy + angiogenesis 8 (3.2%) Scl C 341 (97.7%) Immunotherapy + angiogenesis 10 (7.3%) Mixed-SCLC 341 (97.7%) Immunotherapy + angiogenesis 11 (3.8%) NA 5 (1.4%) Chemotherapy + angiogenesis 11 (3.8%) NA 5 (1.4%) Chemotherapy + angiogenesis 11 (3.8%) NA 5 (1.4%) Chemotherapy + angi	Age, years		Number of involved metastatic organs			
<65 198 (66.7%) ${}_{83}$ 65 (24.4%) se5 151 (43.3%) First-line systemic therapy 266 (81.9%) Gender Chemotherapy + inmunotherapy 14 (4.9%) Female 116 (33.2%) Chemotherapy + inmunotherapy 14 (4.9%) Smoking inhibitors 93 (31%) 93 (31%) Current/former 243 (80.6%) Chemotherapy + angiogenesis inhibitors 93 (31%) Corrent/former 243 (80.9%) Chemotherapy + angiogenesis 8 (5.2%) Current/former 243 (80.9%) Chemotherapy + angiogenesis 8 (5.2%) Pathology Angiogenesis inhibitors 4 (2.6%) SCLC 341 (9.7%) Immunotherapy + angiogenesis inhibitors 2 (1.3%) Niked-SCLC 8 (2.3%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Niked-SCLC 8 (2.3%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) N3 15 (4.3%) Chemotherapy + angiogenesis inhibitors 3 (3 (2.5%) N4 5 (1.4%) Chemotherapy + angiogenesis inhibitors 3 (3 (2.5%) N2 15 (4.3%) Chemotherapy + angiogenesis inhibitors 3 (3 (2.5%) <t< td=""><td>Median [range]</td><td>64 [24–87]</td><td><3</td><td colspan="2" rowspan="2">264 (75.6%) 85 (24.4%)</td></t<>	Median [range]	64 [24–87]	<3	264 (75.6%) 85 (24.4%)		
265 151 (43.3%) First-line systemic therapy 286 (81.9%) Gender Chemotherapy - immunotherapy 283 (92.0%) Male 233 (66.8%) Chemotherapy - immunotherapy 14 (4.9%) Smoking inhibitors 233 (35.0%) 319.0 Smoking inhibitors 131 (85.6%) Chemotherapy + angiogenesis 53 (43.8%) CUrent/former 243 (80.6%) Chemotherapy + immunotherapy 131 (85.6%) ECOG PS Chemotherapy + angiogenesis 65.2%) 2 66 (18.9%) Immunotherapy + angiogenesis 45.2(5%) 2 66 (18.9%) Immunotherapy + angiogenesis 45.2(5%) SCLC 341 (9.7%) Immunotherapy + angiogenesis 45.2(5%) Niked-SCLC 341 (9.7%) Chemotherapy + angiogenesis 21.3%) Niked-SCLC 341 (9.7%) Chemotherapy + angiogenesis 10.7%) Niked-SCLC 341 (9.7%) Chemotherapy + angiogenesis 11.0%) No 15 (4.3%) Chemotherapy + angiogenesis 11.0%) Niked-SCLC 341 (9.7%) Chemotherapy +	<65	198 (56.7%)	≥3			
Gender Chemotherapy 263 (82.0%) Male 233 (66.9%) Chemotherapy + immunotherapy 14 (4.9%) Female 116 (33.2%) Chemotherapy + immunotherapy 14 (4.9%) Smoking imbitors 153 (43.8%) Chemotherapy + immunotherapy 131 (85.6%) Current/former 243 (96.9%) Chemotherapy + immunotherapy 53.3%) O-1 275 (78.8%) Chemotherapy + angiogenesis inhibitors 4 (5.9%) SCLC 36 (18.9%) Immunotherapy + angiogenesis inhibitors 4 (2.5%) Mixed-SCLC 341 (97.9%) Immunotherapy + angiogenesis inhibitors 4 (2.5%) Nixed-SCLC 341 (97.9%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 341 (97.9%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 341 (97.9%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 341 (97.9%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 341 (97.9%) Chemotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 342 (3.5%) C	≥65	151 (43.3%)	First-line systemic therapy	286 (81.9%)		
Male 233 (66.8%) Chemotherapy + immunotherapy 14 (4.9%) Female 116 (33.2%) Chemotherapy + angiogenesis 9 (3.1%) Smoking 106 (30.4%) Second-line systemic treatment 153 (43.8%) Never 106 (30.4%) Second-line systemic treatment 153 (43.8%) Current/former 243 (69.6%) Chemotherapy 131 (65.6%) ECOG PS Chemotherapy + angiogenesis 8 (5.2%) of -1 275 (78.8%) Chemotherapy + angiogenesis 8 (5.2%) sinsing 8 (2.3%) Immunotherapy + angiogenesis 2 (1.9%) SCLC 341 (97.7%) Immunotherapy + angiogenesis 2 (1.9%) Mixed-SCLC 8 (2.3%) Immunotherapy + angiogenesis 2 (1.9%) N1 5 (1.4%) Chemotherapy + immunotherapy + 2 (1.9%) 3 (13.2%) N2 15 (4.3.3%) Chemotherapy + immunotherapy + 2 (1.9%) 3 (13.2%) N1 5 (1.4%) Chemotherapy + angiogenesis 11 (13.6%) N2 15 (4.3.3%) Chemotherapy + angiogenesis 11 (13.6%) N3 15 (4.3.3%) <td>Gender</td> <td></td> <td>Chemotherapy</td> <td>263 (92.0%)</td>	Gender		Chemotherapy	263 (92.0%)		
Female 116 (33.2%) inhibitors Chemotherapy + angiogenesis inhibitors 9 (3.1%) inhibitors Never 106 (30.4%) Second-line systemic treatment 153 (43.6%) Current/former 243 (69.6%) Chemotherapy + inmunotherapy 131 (65.6%) ECOG PS Chemotherapy + inmunotherapy 5 (3.3%) 0-1 275 (78.6%) Chemotherapy + angiogenesis (hibitors 8 (5.2%) 22 66 (18.9%) Immunotherapy + angiogenesis (hibitors 4 (2.6%) Pathology Angiogenesis (hibitors 4 (2.6%) SCLC 341 (97.7%) Immunotherapy + angiogenesis (hibitors 4 (2.6%) Nixed-SCLO 8 (2.3%) Immunotherapy + angiogenesis (hibitors 2 (1.3%) N1 5 (1.4%) Chemotherapy + immunotherapy + angiogenesis (hibitors 7 (3.6%) N1 5 (1.4%) Chemotherapy + immunotherapy + angiogenesis (hibitors 8 (2.3%) N1 5 (1.4%) Chemotherapy + immunotherapy = (3.1%) 7 (3.6%) N2 15 (4.3%) Chemotherapy + angiogenesis (hibitors 5 (6.2%) N2 2 (6.3%) Chemotherapy + angiogenesis (hibitors	Male	233 (66.8%)	Chemotherapy + immunotherapy	14 (4.9%)		
Smoking inhibitors Never 106 (30.4%) Second-line systemic treatment 153 (43.8%) Current/former 203 (30.6%) Chemotherapy 131 (85.6%) ECOG PS Chemotherapy + angiogenesis 5 (3.3%) 2 66 (18.9%) Inmunotherapy + angiogenesis 5 (5.2%) 2 66 (18.9%) Inmunotherapy + angiogenesis 6 (2.6%) Missing 8 (2.3%) Inmunotherapy + angiogenesis 1 (0.7%) Pathology 341 (97.7%) Inmunotherapy + angiogenesis 2 (1.3%) Nikad-SCLC 34 (2.3%) Chemotherapy + angiogenesis 2 (1.3%) Nstage angiogenesis inhibitors 81 (23.2%) N1 5 (1.4%) Chemotherapy + inmunotherapy + angiogenesis 81 (23.2%) N2 156 (44.7%) Chemotherapy + inmunotherapy + angiogenesis 81 (23.2%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (13.6%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (13.6%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (13.6%)	Female	116 (33.2%)	Chemotherapy + angiogenesis	9 (3.1%)		
Never 106 (30.4%) Second-line systemic treatment 153 (43.8%) Current/former 243 (68.6%) Chemotherapy + inmunotherapy 5 (3.3%) D-1 275 (78.8%) Chemotherapy + angiogenesis 8 (5.2%) 22 66 (18.9%) Immunotherapy + angiogenesis inhibitors 4 (2.6%) Pathology Angiogenesis inhibitors 4 (2.6%) SCLC 341 (97.7%) Immunotherapy + angiogenesis inhibitors 2 (1.3%) Mixed-SCLC 8 (2.3%) Chemotherapy + inmunotherapy + angiogenesis inhibitors 2 (1.3%) Nted-SCLC 8 (2.3%) Chemotherapy + inmunotherapy + angiogenesis inhibitors 2 (1.3%) NV 15 (4.3%) Chemotherapy + inmunotherapy + angiogenesis inhibitors 8 (2.3%) NQ 15 (4.3%) Chemotherapy + angiogenesis inhibitors 8 (2.3%) NQ 15 (4.3%) Chemotherapy + angiogenesis inhibitors 8 (2.3%) NQ 15 (4.3%) Chemotherapy + angiogenesis inhibitors 8 (2.3%) NQ 15 (4.3%) Chemotherapy + angiogenesis inhibitors 5 (6.2%) NQ 15 (3.3%) Chemotherapy + angiogen	Smoking		inhibitors			
Current/former 243 (69.6%) Chemotherapy 131 (85.6%) ECOG PS Chemotherapy + immunotherapy 5 (3.3%) 0-1 275 (78.8%) Chemotherapy + angiogenesis 8 (5.2%) ≥2 66 (18.9%) imhibitors 1 (0.7%) Missing 8 (2.3%) Immunotherapy + angiogenesis inhibitors 4 (2.6%) Pathology 1 (0.7%) Angiogenesis inhibitors 4 (2.6%) Nixed-SCLC 8 (2.3%) Immunotherapy + angiogenesis 2 (1.3%) Nted-SCLC 8 (2.3%) Chemotherapy + immunotherapy + 2 (1.3%) 1 N1 5 (1.4%) Chemotherapy + immunotherapy + 2 (1.3%) 1 N1 5 (1.4%) Chemotherapy + immunotherapy + 3 (3.6%) 1 N2 156 (44.7%) Chemotherapy + angiogenesis inhibitors 1 (3.6%) N3 151 (43.3%) Chemotherapy + angiogenesis inhibitors 1 (3.6%) Missing 22 (6.3%) inhibitors 1 (3.6%) No 3330 (94.6%) Sole 330 (94.6%) Priver metastases Yes 19 (5.6.5%)	Never	106 (30.4%)	Second-line systemic treatment	153 (43.8%)		
ECOG PS Chemotherapy + immunotherapy 5 (3.3%) 0-1 275 (78.8%) Chemotherapy + angiogenesis inhibitors 8 (5.2%) 22 66 (18.9%) Immunotherapy + angiogenesis inhibitors 8 (5.2%) Pathology Angiogenesis inhibitors 4 (2.6%) SCLC 341 (97.7%) Immunotherapy + angiogenesis inhibitors 2 (1.3%) Nixed-SCLC 8 (2.3%) Immunotherapy + angiogenesis inhibitors 2 (1.3%) N-stage Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy + immunotherapy + angiogenesis inhibitors 81 (23.2%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (13.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) N4 51 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 16 (4.7%) Only liver 123 (35.2%) Thorax radiotherapy 330 (94.6%) Involved other organs 226 (64.8%) No 330 (94.6%) Parian metastases Yes 32	Current/former	243 (69.6%)	Chemotherapy	131 (85.6%)		
0-1 275 (78.8%) Chemotherapy + angiogenesis 8 (6.2%) ≥2 66 (18.9%) imbitiors 10.7%) Missing 8 (2.3%) Immunotherapy 1 (0.7%) Pathology 4 (2.6%) 4 (2.6%) SCLC 341 (97.7%) Immunotherapy + angiogenesis 2 (1.3%) Mixed-SCLC 34 (97.7%) Immunotherapy + immunotherapy + angiogenesis 2 (1.3%) No 15 (4.3%) Chemotherapy + immunotherapy + angiogenesis 2 (1.3%) No 15 (4.3%) Chemotherapy + immunotherapy + angiogenesis 2 (1.3%) N1 5 (1.4%) Chemotherapy + immunotherapy + 2 (1.3%) 2 (1.3%) N2 156 (44.7%) Chemotherapy + immunotherapy + 3 (2.5%) 2 (1.3%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (1.3.6%) Missing 22 (6.3%) Inhibitors 11 (13.6%) Missing 22 (6.3%) Inhibitors 11 (13.6%) Involved other organs 226 (6.4%) No 330 (94.6%) Pain metastases Yes 19 (5.4%) <td< td=""><td>ECOG PS</td><td></td><td>Chemotherapy + immunotherapy</td><td>5 (3.3%)</td></td<>	ECOG PS		Chemotherapy + immunotherapy	5 (3.3%)		
≥ 2 66 (18.9%)inhibitorsMissing8 (2.3%)Immunotherapy1 (0.7%)PathologyA (2.6%)SCLC341 (97.7%)Immunotherapy + angiogenesis4 (2.6%)Mixed-SCLC8 (2.3%)Immunotherapy + angiogenesis2 (1.3%)N-stageChemotherapy + immunotherapy + angiogenesis inhibitors2 (1.3%)N015 (4.3%)Third-line or beyond treatment81 (23.2%)N15 (1.4%)Chemotherapy + angiogenesis inhibitors87 (1.6%)N2156 (44.7%)Chemotherapy + angiogenesis inhibitors11 (13.6%)N3151 (43.3%)Chemotherapy + angiogenesis inhibitors11 (13.6%)Missing22 (6.3%)inhibitors11 (13.6%)Missing22 (6.3%)Thorax radiotherapy30 (94.6%)Involved other organs226 (64.8%)No330 (94.6%)Brain metastasesYes19 (5.4%)No313 (89.7%)Brain radiotherapy302 (86.5%)No201 (57.6%)Other radiotherapy26 (7.4%)No201 (57.6%)Ves26 (7.4%)No297 (85.1%)Treatment20 (63.0%)No297 (85.1%)Systemic treatment + local radiotherapy69 (19.8%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)No202 (65.5%)Systemic treat	0–1	275 (78.8%)	Chemotherapy + angiogenesis	8 (5.2%)		
Missing $8 (2.3\%)$ Immunotherapy $1 (0.7\%)$ PathologyAngiogenesis inhibitors $4 (2.6\%)$ SCLC $341 (97.7\%)$ Immunotherapy + angiogenesis $2 (1.3\%)$ Mixed-SCLC $8 (2.3\%)$ Immunotherapy + angiogenesis $2 (1.3\%)$ N-stageChernotherapy + immunotherapy + $2 (1.3\%)$ N0 $15 (4.3\%)$ Third-line or beyond treatment $81 (23.2\%)$ N1 $5 (1.4\%)$ Chernotherapy + immunotherapy + $7 (8.6\%)$ N2 $156 (44.7\%)$ Chernotherapy + angiogenesis $11 (13.6\%)$ N3 $151 (43.3\%)$ Chernotherapy + angiogenesis $11 (13.6\%)$ Missing $22 (6.3\%)$ Chernotherapy + angiogenesis $11 (13.6\%)$ No $21 (35.2\%)$ Thorax radiotherapy $5 (6.2\%)$ Only liver $123 (35.2\%)$ Thorax radiotherapy $300 (94.6\%)$ Involved other organs $226 (64.8\%)$ No $330 (94.6\%)$ No $313 (89.7\%)$ Brain radiotherapy $19 (5.4\%)$ No $313 (89.7\%)$ Yes $47 (13.5\%)$ No $201 (57.6\%)$ Other radiotherapy $23 (92.6\%)$ No $201 (57.6\%)$ Other radiotherapy $20 (65.5\%)$ No $297 (85.1\%)$ Treatment $220 (63.0\%)$ No $297 (85.1\%)$ No systemic treatment + local radiotherapy $69 (19.8\%)$ No $302 (86.5\%)$ Systemic treatment + local radiotherapy $69 (19.8\%)$ No $302 (86.5\%)$ Systemic treatment + local radiotherapy $69 (19.8\%)$ No $302 (86.5\%)$ S	≥2	66 (18.9%)	inhibitors			
Pathology Angiogenesis inhibitors 4 (2.6%) SCLC 341 (97.7%) Immunotherapy + angiogenesis 2 (1.3%) Mixed-SCLC 8 (2.3%) Chemotherapy + immunotherapy + 2 (1.3%) N-stage angiogenesis inhibitors 81 (23.2%) N0 15 (4.3%) Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy + immunotherapy + 7 (8.6%) N2 156 (44.7%) Chemotherapy + angiogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 19 (5.4%) No 330 (94.6%) No 330 (94.6%) No 313 (89.7%) Brain radiotherapy 19 (5.4%) No 313 (89.7%) Brain radiotherapy 42 (2.6%) No 201 (57.6%) No 302 (86.5%) No 201 (57.6%) Other radiotherapy 26 (7.4%) No 237 (85.1%) Treatment	Missing	8 (2.3%)	Immunotherapy	1 (0.7%)		
SCLC 341 (97.7%) Immuntherapy + anglogenesis 2 (1.3%) Mixed-SCLC 8 (2.3%) Chemotherapy + immunotherapy + aglogenesis 2 (1.3%) N-stage anglogenesis inhibitors 2 (1.3%) N0 15 (4.3%) Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy + immunotherapy - 58 (71.6%) N2 156 (44.7%) Chemotherapy + anglogenesis 11 (13.6%) N3 151 (43.3%) Chemotherapy + anglogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 11 (13.6%) Liver metastases Anglogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 19 (5.4%) No 313 (89.7%) Brain radiotherapy 19 (5.4%) No 313 (89.7%) Brain radiotherapy 47 (13.5%) No 313 (89.7%) Brain radiotherapy 47 (13.5%) No 323 (92.6%) Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy 26 (7.4%) No 297 (85.1%) <td>Pathology</td> <td></td> <td>Angiogenesis inhibitors</td> <td>4 (2.6%)</td>	Pathology		Angiogenesis inhibitors	4 (2.6%)		
Mixed-SCLC 8 (2.3%) Immunotion Chemotherapy + immunotherapy + angiogenesis inhibitors 2 (1.3%) N0 15 (4.3%) Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy + immunotherapy + angiogenesis inhibitors 58 (71.6%) N2 156 (44.7%) Chemotherapy + immunotherapy 7 (8.6%) 78.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 78.6%) Only liver 123 (35.2%) Thorax radiotherapy 78.6%) No 330 (94.6%) So (9.2%) 330 (94.6%) Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy 78 (3.6%) Bone metastases Yes 47 (13.5%) 302 (86.5%) No 201 (57.6%) Other radiotherapy 220 (67.4%) No 297 (85.1%) Treatment 201 (72.%) No 297 (85.1%) Treatment 60 (17.2%) </td <td>SCLC</td> <td>341 (97.7%)</td> <td>Immunotherapy + angiogenesis inhibitors</td> <td>2 (1.3%)</td>	SCLC	341 (97.7%)	Immunotherapy + angiogenesis inhibitors	2 (1.3%)		
N-stage angiogenesis inhibitors angiogenesis inhibitors N0 15 (4.3%) Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy 58 (71.6%) N2 156 (44.7%) Chemotherapy 7 (8.6%) N3 151 (43.3%) Chemotherapy + immunotherapy 7 (8.6%) Nissing 22 (6.3%) inhibitors 11 (13.6%) Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 19 (5.4%) Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) No No 313 (89.7%) Brain radiotherapy 7 (13.5%) No 313 (89.7%) Brain radiotherapy 7 (13.5%) No 201 (57.6%) Other radiotherapy 20 (66.5%) No 201 (57.6%) Other radiotherapy 20 (67.4%) No 297 (85.1%) Treatment 60 (17.2%) No 297 (85.1%) Systemic treatment + local	Mixed-SCLC	8 (2.3%)	Chemotherapy + immunotherapy +	2 (1.3%)		
N0 15 (4.3%) Third-line or beyond treatment 81 (23.2%) N1 5 (1.4%) Chemotherapy 58 (71.6%) N2 156 (44.7%) Chemotherapy + immunotherapy 7 (8.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 300 (94.6%) Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) Yes No 313 (89.7%) Brain radiotherapy 302 (86.5%) No 313 (89.7%) Moi 302 (86.5%) No 201 (57.6%) Other radiotherapy 47 (13.5%) No 201 (57.6%) Other radiotherapy 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) No 297 (85.1%) Treatment 60 (17.2%) Yes 52 (14.9%) Systemic treatment + lo	N-stage		angiogenesis inhibitors	(,		
N1 5 (1.4%) Chemotherapy 58 (71.6%) N2 156 (44.7%) Chemotherapy + immunotherapy 7 (8.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) Second 19 (5.4%) No 313 (89.7%) Brain radiotherapy 302 (86.5%) No 313 (89.7%) No 302 (86.5%) No 201 (57.6%) Other radiotherapy 302 (86.5%) No 201 (57.6%) Other radiotherapy 323 (92.6%) No 201 (57.6%) No 323 (92.6%) No 297 (85.1%) Yes 26 (7.4%) No 297 (85.1%) Systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 20 (63.0%) S	NO	15 (4.3%)	Third-line or beyond treatment	81 (23.2%)		
N2 156 (44.7%) Chemotherapy + immunotherapy 7 (8.6%) N3 151 (43.3%) Chemotherapy + angiogenesis 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy 330 (94.6%) Brain metastases Yes 19 (5.4%) 19 (5.4%) No 313 (89.7%) Brain radiotherapy 7 (85.6%) Bone metastases Yes 302 (86.5%) No 201 (57.6%) Other radiotherapy Yes 26 (7.4%) No No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) No 297 (85.1%) Treatment 26 (7.4%) No 297 (85.1%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment + local radiotherapy 69 (19.8%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47	N1	5 (1.4%)	Chemotherapy	58 (71.6%)		
N3 151 (43.3%) Chemotherapy + angiogenesis inhibitors 11 (13.6%) Missing 22 (6.3%) inhibitors 5 (6.2%) Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (54.%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Maignant pleural effusion Systemic treatment + local radiotherapy 69 (19.8%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%)	N2	156 (44.7%)	Chemotherapy + immunotherapy	7 (8.6%)		
Missing 22 (6.3%) inhibitors Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 202 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology orup performance	N3	151 (43.3%)	Chemotherapy + angiogenesis	11 (13.6%)		
Liver metastases Angiogenesis inhibitors 5 (6.2%) Only liver 123 (35.2%) Thorax radiotherapy Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Yes 52 (14.9%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment + local radiotherapy 69 (19.8%) Yes 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECCOR PS, Eastern Cooperative Oncology Group performance	Missing	22 (6.3%)	inhibitors			
Only liver 123 (35.2%) Thorax radiotherapy Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 220 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Up performance	Liver metastases		Angiogenesis inhibitors 5 (6.2			
Involved other organs 226 (64.8%) No 330 (94.6%) Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Malignant pleural effusion Systemic treatment + local radiotherapy 69 (19.8%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Up performance	Only liver	123 (35.2%)	Thorax radiotherapy			
Brain metastases Yes 19 (5.4%) No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 20 (17.2%) Malignant pleural effusion Systemic treatment 60 (17.2%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology trup performance	Involved other organs	226 (64.8%)	No	330 (94.6%)		
No 313 (89.7%) Brain radiotherapy Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) 47 (13.5%) No 201 (57.6%) Other radiotherapy 47 (13.5%) Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 60 (17.2%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Up performance	Brain metastases		Yes	19 (5.4%)		
Yes 36 (10.3%) No 302 (86.5%) Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment Yes 52 (14.9%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 220 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Up performance	No	313 (89.7%)	Brain radiotherapy			
Bone metastases Yes 47 (13.5%) No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment 26 (7.4%) Yes 52 (14.9%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 200 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Group performance	Yes	36 (10.3%)	No	302 (86.5%)		
No 201 (57.6%) Other radiotherapy Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment Yes 52 (14.9%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 220 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Up performance	Bone metastases		Yes	47 (13.5%)		
Yes 148 (42.4%) No 323 (92.6%) Intrapulmonary metastasis Yes 26 (7.4%) No 297 (85.1%) Treatment Yes 52 (14.9%) No systemic treatment 60 (17.2%) Malignant pleural effusion Systemic treatment 220 (63.0%) No 302 (86.5%) Systemic treatment + local radiotherapy 69 (19.8%) Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Furp performance	No	201 (57.6%)	Other radiotherapy			
Intrapulmonary metastasisYes26 (7.4%)No297 (85.1%)TreatmentYes52 (14.9%)No systemic treatment60 (17.2%)Malignant pleural effusionSystemic treatment220 (63.0%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)Yes47 (13.5%)ECOG PS, Eastern Cooperative Oncology Up performance	Yes	148 (42.4%)	No	323 (92.6%)		
No297 (85.1%)TreatmentYes52 (14.9%)No systemic treatment60 (17.2%)Malignant pleural effusionSystemic treatment220 (63.0%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)Yes47 (13.5%)ECOG PS, Eastern Cooperative Oncology performance	Intrapulmonary metastasis		Yes	26 (7.4%)		
Yes52 (14.9%)No systemic treatment60 (17.2%)Malignant pleural effusionSystemic treatment220 (63.0%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)Yes47 (13.5%)ECOG PS, Eastern Cooperative Oncology Up performance	No	297 (85.1%)	Treatment			
Malignant pleural effusionSystemic treatment220 (63.0%)No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)Yes47 (13.5%)ECOG PS, Eastern Cooperative Oncology Group performance	Yes	52 (14.9%)	No systemic treatment	60 (17.2%)		
No302 (86.5%)Systemic treatment + local radiotherapy69 (19.8%)Yes47 (13.5%)ECOG PS, Eastern Cooperative Oncology Group performant	Malignant pleural effusion		Systemic treatment	220 (63.0%)		
Yes 47 (13.5%) ECOG PS, Eastern Cooperative Oncology Group performan	No	302 (86.5%)	Systemic treatment + local radiotherapy 69 (19.8%			
	Yes	47 (13.5%)	ECOG PS, Eastern Cooperative Oncology	Group performan		

Table 1 (continued)

rmance status; SCLC, small cell lung cancer.

Tabl	e	2	Summary	of	tumor	response
------	---	---	---------	----	-------	----------

rable 2 building of tunior response							
Treatment	CR, N (%)	PR, N (%)	SD, N (%)	PD, N (%)	NA, N	ORR, %	DCR, %
First-line systemic treatment							
Chemotherapy	8 (3.7)	110 (50.7)	87 (40.1)	12 (5.5)	46	54.4	94.5
Chemotherapy + immunotherapy	0	11 (84.6)	2 (15.4)	0	1	84.6	100.0
Chemotherapy + angiogenesis inhibitors	0	7 (77.8)	2 (22.2)	0	0	77.8	100.0
Second-line systemic treatment							
Chemotherapy	0	12 (12.4)	52 (53.6)	33 (34.0)	34	12.4	66.0
Third-line treatment							
Chemotherapy	0	2 (4.9)	19 (46.3)	20 (48.8)	17	4.9	51.2

CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; NA, not assessed; ORR, objective response rate; DCR, disease control rate.

Figure 1 Survival curves of patients with liver metastasis. (A) Survival curves of all patients with liver metastasis. (B) Survival curves of patients with systemic treatment alone, systemic treatment plus local radiotherapy, or without systemic treatment. OS, overall survival; CI, confidence interval; un-T, no systemic treatment; ST, systemic treatment alone; ST + R, systemic treatment plus local radiotherapy.

significantly improved for patients who received systemic treatment (10.33 months, 95% CI: 9.08–11.59, P<0.001) or systemic treatment combined with local radiotherapy (13.40 months, 95% CI: 10.45–16.35, P<0.001) (*Figure 1B*). Although systemic treatment plus local radiotherapy was associated with superior OS compared to systemic treatment alone, the difference did not reach statistical significance (P=0.082) (*Figure 1B*). The median OS₁ for patients who received first-line treatment was 10.97 months (95% CI: 9.88–12.06). The 12- and 24-month survival rates were 45.7% and 13.8%, respectively (*Figure 2A*). There was no significant difference in the median OS₁ for patients who received chemotherapy alone

(11.37 months, 95% CI: 10.27–12.47), chemotherapy plus immunotherapy (7.7 months, 95% CI: 5.43–9.97), and chemotherapy plus angiogenesis inhibitors (11.97 months, 95% CI: 8.93–15.01) as their first-line chemotherapy (P=0.489) (*Figure 2B*). The median OS₂ for patients who received second-line systemic treatment was 8.5 months (95% CI: 7.79–9.21), with 12- and 24-month survival rates of 30.1% and 9.2%, respectively (*Figure 3A*). For patients receiving third-line treatment, the median OS₃ was 6.00 months (95% CI: 5.26–6.74), with 12- and 24-month survival rates of 23.2% and 9.8%, respectively (*Figure 3B*). A comparison was made among patients (n=133) who exclusively received first-line treatment, those who

Figure 2 Survival curves of patients who received first-line treatment. (A) Survival curves of all patients who received first-line treatment. (B) Survival curves of patients who received different first-line treatments. OS, overall survival; CI, confidence interval; C, chemotherapy; C + ICI, chemotherapy + immunotherapy; C + A, chemotherapy + angiogenesis inhibitors.

Figure 3 Survival curves of patients received second-line treatment or third-line treatment. (A) Survival curves of patients who received second-line treatment. (B) Survival curves of patients who received third-line treatment. OS, overall survival; CI, confidence interval.

underwent second-line treatment (n=72), and those who received third-line therapy (n=81). The median OS from diagnosis to death was 7.57, 10.83, and 16.17 months for these groups, respectively (Figure S1). A better OS was observed for patients who received second-line treatment than those receiving first-line therapy alone, and the OS was significantly improved for those who received third-line therapy, suggesting that subsequent second and third-line therapies were associated with improved outcomes for patients with liver metastases.

PFS

The median PFS for patients who underwent firstline treatment was 5.27 months (95% CI: 4.75–5.79). The 6- and 12-month PFS rates were 35.6% and 2.5%, respectively (*Figure 4A*). Among patients who received chemotherapy, chemotherapy plus immunotherapy, or chemotherapy plus angiogenesis inhibitors, the median PFS was 5.07, 6.00, and 9.70 months, respectively. Significantly longer PFS was observed for patients who received

Figure 4 PFS of patients with liver metastasis. (A) PFS of patients who received first-line treatment. (B) PFS of patients who received different first-line treatments. (C) PFS of patients who received second-line treatment. (D) PFS of patients who received third-line treatment. PFS, progression-free survival: no systemic treatment; CI, confidence interval; C, chemotherapy; C + ICI, chemotherapy + immunotherapy; C + A, chemotherapy+ angiogenesis inhibitors.

chemotherapy plus angiogenesis inhibitors than those who received chemotherapy alone (P=0.027) (*Figure 4B*). PFS for chemotherapy and chemotherapy combined with immunotherapy was similar (P=0.152). The median PFS for second- and third-line treatments was 2.80 and 2.17 months, respectively (*Figure 4C*,4D).

Prognosis factors

During univariate analysis, 14 clinical parameters were included. Age ≥ 65 years, ECOG PS ≥ 2 , mixed-SCLC, metastasis to other organs, malignant pleural effusion, receipt of systemic treatment, and receipt of systemic treatment plus local radiotherapy were significantly associated with prognosis. Furthermore, multivariate analysis identified ECOG PS ≥ 2 [hazard ratio (HR): 1.373, 95% CI: 1.036–1.820, P=0.028] and mixed-SCLC (HR: 2.724, 95% CI: 1.337–5.578, P=0.006) as independent predictors of poor prognosis factors in SCLC with liver metastasis. Conversely, systemic treatment (HR: 0.365, 95% CI: 0.267–0.498, P<0.001) or systemic treatment plus local radiotherapy (HR: 0.308, 95% CI: 0.211–0.450, P<0.001) was associated with a reduced risk of mortality (*Table 3*).

Discussion

In this retrospective study, we comprehensively investigated the clinical features of SCLC with liver metastasis. We found that most SCLC cases with liver metastasis were pure SCLC and often coexisted with bone metastasis. Approximately one-fourth of patients had metastases in more than three organs, and the proportion of patients with poor physical status was higher. Our study demonstrated that patients with an ECOG PS of ≥ 2 experienced a 1.4-fold

Table 3 Univariate and multivariate analysis of the prognostic factors for OS in the entire cohort

	Univariate ana	lysis	Multivariate analysis		
Characteristics	HR (95% CI)	P value	HR (95% CI)	P value	
Age, years					
<65	1		1		
≥65	1.429 (1.155–1.769)	0.001*	1.124 (0.892–1.416)	0.322	
Gender					
Male	1				
Female	1.041 (0.832–1.302)	0.727			
Smoking					
Never	1				
Yes or ever	0.910 (0.723–1.144)	0.417			
ECOG PS score					
0–1	1		1		
≥2	1.612 (1.229–2.113)	0.001*	1.373 (1.036–1.820)	0.028*	
Pathology					
SCLC	1		1		
Mixed-SCLC	2.243 (1.107–4.546)	0.025*	2.724 (1.337–5.578)	0.006*	
First-line response					
PR + CR	1				
SD + PD	1.246 (0.964–1.611)	0.093			
Liver metastases					
Only liver	1		1		
Involved other organs	1.351 (1.083–1.687)	0.008*	1.206 (0.953–1.525)	0.119	
Brain metastases					
No	1				
Yes	1.274 (0.900–1.804)	0.171			
Bone metastases					
No	1				
Yes	1.051 (0.849–1.302)				
Intrapulmonary metastasis					
No	1				
Yes	1.301 (0.967–1.752)	0.082			
Malignant pleural effusion					
No	1		1		
Yes	1.412 (1.035–1.926)	0.029*	1.261 (0.892–1.781)	0.189	

Table 3 (continued)

Characteristics	Univariate ana	lysis	Multivariate a	Multivariate analysis		
	HR (95% CI)	P value	HR (95% CI)	P value		
Number of involved metastatic organs						
<3	1					
≥3	1.241 (0.970–1.586)	0.085				
N-stage						
NO	1					
N1	0.894 (0.325–2.463)	0.829				
N2	0.926 (0.544–1.576)	0.777				
N3	1.097 (0.641–1.859)	0.747				
Treatment						
No treatment	1		1			
Systemic treatment	0.339 (0.252–0.455)	<0.001*	0.365 (0.267–0.498)	<0.001*		
Systemic treatment + local radiotherapy	0.269 (0.189–0.383)	<0.001*	0.308 (0.211–0.450)	<0.001*		

Table 3 (continued)

*, P<0.05. OS, overall survival; HR, hazard ratio; CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; SCLC, small cell lung cancer; PR, partial response; CR, complete response; SD, stable disease; PD, progressive disease.

increased risk of death, and patients with mixed SCLC had a 2.7-fold increased risk of death, while treatment including systemic therapy or systemic therapy combined with local therapy reduced the risk of death by approximately 60%. In our study, chemotherapy remained the primary choice for first-, second-, and third-line treatment. The OS of SCLC with liver metastasis was similar to historical data on ES-SCLC (16-18). This study provides important information about the current treatment and survival status of SCLC with liver metastasis in China. To our knowledge, this is the first real-world study to focus on SCLC with liver metastasis at the time of diagnosis.

At present, there is a paucity of research on the optimal treatment of SCLC with liver metastasis, accounting for a similar treatment approach for cases with or without liver metastasis. Before the advent of immunotherapy improving the survival of ES-SCLC, platinum plus etoposide was the treatment paradigm for SCLC with liver metastases. A retrospective study analyzed the treatment and survival of 28 patients with liver metastasis in SCLC, 27 of whom received chemotherapy, with a median OS of only 6 months (4). Another retrospective study included 507 patients with ES-SCLC, of whom 141 had liver metastases. The median OS was 9.0 months for patients with liver metastases and 12 months for patients without

liver metastases (P=0.016) (19). Therefore, the efficacy of chemotherapy for SCLC with liver metastasis is very limited. In our study, more than 80% of patients also chose chemotherapy as their first-line treatment, and the OS was approximately 11 months, consistent with historical data on OS in patients undergoing chemotherapy ES-SCLC.

SCLC has strongly been associated with tobacco exposure. While the proportion of non-smokers among Caucasians with SCLC generally does not exceed 10% (20-22), the proportion of non-smokers was higher, usually in the range of 20–37%, in clinical trials and observational studies from China (23-25). There were 30.4% of nonsmoker patients in our study, consistent with other studies conducted in China. We also analyzed the outcomes of SCLC cases with liver metastases who were smokers and non-smokers and found no significant difference in OS between the two groups (10.23 vs. 9.73, P=0.416) (Figure S2). For Chinese patients with ES-SCLC liver metastasis, smoking did not significantly affect prognosis, although relevant studies are warranted for other races.

Recently, the addition of programmed cell death (ligand) 1 [PD-(L)1] inhibitors to first-line chemotherapy increased the median OS by 2–4.7 months in ES-SCLC (20,21,23,24), becoming the new standard-of-care therapy. Several phase 3 studies of first-line immunotherapy for ES-SCLC have enrolled approximately 25-41% of patients with liver metastases (20,21,23,24). In the subgroup analysis of the ASTRUM-005 study, serplulimab plus chemotherapy improved OS in patients with liver metastases compared to chemotherapy (HR: 0.58, 95% CI: 0.40-0.84) (24). In the IMpower133 study, the median OS of the atezolizumab and placebo groups were 9.3 and 7.8 months for patients with liver metastases, respectively. Although the median OS was numerically longer, the difference was not significant (HR: 0.81, 95% CI: 0.55-1.20) (20). The OS of immunotherapy combined with chemotherapy was similar to that of chemotherapy alone in the CAPSTONE-1 study (HR: 0.92, 95% CI: 0.65-1.31) and the KEYNOTE-604 study (HR: 0.90, 95% CI: 0.67-1.21) in the liver metastasis subgroup (22,23). In patients without liver metastasis, the results of four phase 3 studies were consistent, showing that immunotherapy combined with chemotherapy significantly improved OS. In a meta-analysis (26), immunotherapy achieved only marginal efficacy in SCLC with liver metastases (HR: 0.94, 95% CI: 0.73-1.23). SCLC with liver metastasis had very limited benefit from immunotherapy compared with patients without liver metastasis (ratio of OS-HRs: 1.22, 95% CI: 1.01-1.46; P=0.036). In our study, only 14 patients with liver metastases received immunotherapy combined with chemotherapy as firstline treatment, and the median OS was 7.7 months, with no advantage over chemotherapy. Given that the sample size of immunotherapy in our study is very limited, a larger sample of specific studies is needed to clarify the value of immunotherapy in SCLC with liver metastasis.

Angiogenesis inhibitors, especially small molecule multitarget tyrosine kinase inhibitors, have been explored in relapsed SCLC. The ALTER 1202 study, a Phase 2 study evaluating the efficacy and safety of anlotinib versus placebo for SCLC as third-line and post-line therapy, confirmed that anlotinib could improve PFS and OS (25). In the liver metastasis subgroup of the ALTER 1202 study, the median PFS of the anlotinib group and placebo groups were 1.51 and 0.71 months, respectively (HR: 0.365, 95% CI: 0.17-0.78; P=0.0064) (10). Therefore, anlotinib improved PFS in treating SCLC with liver metastasis, but OS did not differ significantly. A real-world study assessed the efficacy and safety of anlotinib combined with the EP regimen (etoposide plus cisplatin) as the first-line treatment of ES-SCLC. The study included 58 patients, 16 (27.6%) with liver metastases. The PFS and OS were 4.7 and 5.4 months in patients with liver metastases, respectively, while the PFS and OS of those without liver metastases were 8.0 and

15.0 months (27). Anlotinib combined with chemotherapy did not result in a significant improvement in survival for SCLC with liver metastasis. Only nine patients in our study received chemotherapy combined with anlotinib as firstline treatment, and the median OS was not different from that of other regimens. Although multi-target angiogenesis inhibitors have achieved good efficacy in primary liver cancer, the value still needs further exploration in liver metastases, especially for SCLC.

There is an ongoing phase 2 study evaluating the efficacy and safety of bevacizumab in combination with chemoimmunotherapy in patients with liver metastases in ES-SCLC (BELIEVE study, NCT05588388). In addition, a phase 3 study of anlotinib combined with chemoimmunotherapy as the first-line treatment in ES-SCLC, in which liver metastases are used as one of the stratification factors, is also ongoing. These studies will provide answers to whether angiogenesis inhibitors combined with chemoimmunotherapy can provide a survival benefit in SCLC with liver metastasis.

Our study had several limitations. Firstly, it was a retrospective analysis conducted at a single center, and it only encompassed patients whose survival data were available in our follow-up system. Potential bias might have influenced treatment selection. To assess whether distinct chemotherapy regimens yield varying efficacy in patients with ES-SCLC and liver metastasis, future research will involve the utilization of multicenter data. Second, although immunotherapy combined with chemotherapy has become the new standard of first-line treatment for ES-SCLC, chemotherapy alone is still the main option for the first-line treatment choice for most patients in this study, and only a very limited number of patients chose immunotherapy combined with chemotherapy or angiogenesis inhibitors combined with chemotherapy as the first-line treatment. Therefore, the results of these two regimens in SCLC with liver metastasis should be interpreted with caution. Finally, we only analyzed the prognostic factors of SCLC with liver metastasis from the clinical features, and the analysis of molecular markers related to the prognosis was lacking.

Conclusions

In this real-world analysis, we validated poor physical status and mixed SCLC as independent adverse prognostic factors for SCLC with liver metastasis. Chemotherapy remains the primary therapeutic approach for individuals with SCLC and liver metastasis. The combination of chemotherapy and radiotherapy has demonstrated a potential for extending OS, though further validation is required through extensive sample studies. The potential benefits of integrating immunotherapy or angiogenesis inhibitors with chemotherapy in managing SCLC with liver metastasis warrant investigation in prospective studies. Indeed, understanding the molecular mechanisms and comprehensively exploring microenvironment characteristics may be key to addressing the treatment complexities associated with SCLC and liver metastasis.

Acknowledgments

The authors would like to thank Yidu Cloud (Beijing) Technology Co., Ltd for their assistance in data searching, extraction, and processing. We would like to thank Freescience Editorial Team for their help in polishing our paper.

Funding: This study was supported by grants from the Science and Technology Development Plan Project in Jilin Province (YD ZJ202301ZYTS515).

Footnote

Reporting Checklist: The authors have completed the STROBE reporting checklist. Available at https://jtd. amegroups.com/article/view/10.21037/jtd-23-1294/rc

Data Sharing Statement: Available at https://jtd.amegroups. com/article/view/10.21037/jtd-23-1294/dss

Peer Review File: Available at https://jtd.amegroups.com/ article/view/10.21037/jtd-23-1294/prf

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://jtd.amegroups. com/article/view/10.21037/jtd-23-1294/coif). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Institutional Review Board of Jilin Cancer Hospital (No. 202308-07-01) and individual consent for this retrospective analysis was waived.

Zhang et al. A retrospective study of SCLC with liver metastasis

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- 1. Rudin CM, Brambilla E, Faivre-Finn C, et al. Small-cell lung cancer. Nat Rev Dis Primers 2021;7:3.
- 2. Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer 2015;121:664-72.
- Jeon DS, Kim HC, Kim SH, et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res Treat 2023;55:103-11.
- 4. Kagohashi K, Satoh H, Ishikawa H, et al. Liver metastasis at the time of initial diagnosis of lung cancer. Med Oncol 2003;20:25-8.
- Wang X, Wang Z, Pan J, et al. Patterns of Extrathoracic Metastases in Different Histological Types of Lung Cancer. Front Oncol 2020;10:715.
- Riihimäki M, Hemminki A, Fallah M, et al. Metastatic sites and survival in lung cancer. Lung Cancer 2014;86:78-84.
- Arriola E, Trigo JM, Sánchez-Gastaldo A, et al. Prognostic Value of Clinical Staging According to TNM in Patients With SCLC: A Real-World Surveillance Epidemiology and End-Results Database Analysis. JTO Clin Res Rep 2022;3:100266.
- 8. Megyesfalvi Z, Tallosy B, Pipek O, et al. The landscape of small cell lung cancer metastases: Organ specificity and timing. Thorac Cancer 2021;12:914-23.
- Nakazawa K, Kurishima K, Tamura T, et al. Specific organ metastases and survival in small cell lung cancer. Oncol Lett 2012;4:617-20.
- Cheng Y, Wang Q, Li K, et al. Anlotinib for patients with small cell lung cancer and baseline liver metastases: A post hoc analysis of the ALTER 1202 trial. Cancer Med 2022;11:1081-7.
- 11. Wu C, Li F, Jiao SC. Prognostic factors for survival of patients with extensive stage small cell lung cancer--a retrospective single institution analysis. Asian Pac J Cancer

Prev 2012;13:4959-62.

- Yuan J, Cheng F, Xiao G, et al. Efficacy and Safety of Anlotinib in the Treatment of Small Cell Lung Cancer: A Real-World Observation Study. Front Oncol 2022;12:917089.
- Reck M, Mok TSK, Mansfield A, et al. Brief Report: Exploratory Analysis of Maintenance Therapy in Patients With Extensive-Stage SCLC Treated First Line With Atezolizumab Plus Carboplatin and Etoposide. J Thorac Oncol 2022;17:1122-9.
- 14. Li Y, Jing W, Jing X, et al. Role of consolidative thoracic radiation in extensive-stage small-cell lung cancer with first-line chemoimmunotherapy: a retrospective study from a single cancer center. Discov Oncol 2023;14:55.
- 15. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009;45:228-47.
- Evans WK, Shepherd FA, Feld R, et al. VP-16 and cisplatin as first-line therapy for small-cell lung cancer. J Clin Oncol 1985;3:1471-7.
- 17. Evans WK, Shepherd FA, Feld R, et al. First-line therapy with VP-16 and cisplatin for small-cell lung cancer. Semin Oncol 1986;13:17-23.
- 18. Niell HB, Herndon JE 2nd, Miller AA, et al. Randomized phase III intergroup trial of etoposide and cisplatin with or without paclitaxel and granulocyte colony-stimulating factor in patients with extensive-stage small-cell lung cancer: Cancer and Leukemia Group B Trial 9732. J Clin Oncol 2005;23:3752-9.
- 19. Ma X, Zhang Z, Chen X, et al. Prognostic factor analysis of patients with small cell lung cancer: Real-world data from 988 patients. Thorac Cancer 2021;12:1841-50.
- 20. Horn L, Mansfield AS, Szczęsna A, et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage

Cite this article as: Zhang S, Wang Y, Li S, Liu Y, Cheng Y. A retrospective analysis of prognostic factors and treatment choices in small cell lung cancer with liver metastasis. J Thorac Dis 2023;15(12):6776-6787. doi: 10.21037/jtd-23-1294

Small-Cell Lung Cancer. N Engl J Med 2018;379:2220-9.

- Paz-Ares L, Dvorkin M, Chen Y, et al. Durvalumab plus platinum-etoposide versus platinum-etoposide in firstline treatment of extensive-stage small-cell lung cancer (CASPIAN): a randomised, controlled, open-label, phase 3 trial. Lancet 2019;394:1929-39.
- 22. Rudin CM, Awad MM, Navarro A, et al. Pembrolizumab or Placebo Plus Etoposide and Platinum as First-Line Therapy for Extensive-Stage Small-Cell Lung Cancer: Randomized, Double-Blind, Phase III KEYNOTE-604 Study. J Clin Oncol 2020;38:2369-79.
- 23. Wang J, Zhou C, Yao W, et al. Adebrelimab or placebo plus carboplatin and etoposide as first-line treatment for extensive-stage small-cell lung cancer (CAPSTONE-1): a multicentre, randomised, double-blind, placebocontrolled, phase 3 trial. Lancet Oncol 2022;23:739-47.
- Cheng Y, Han L, Wu L, et al. Effect of First-Line Serplulimab vs Placebo Added to Chemotherapy on Survival in Patients With Extensive-Stage Small Cell Lung Cancer: The ASTRUM-005 Randomized Clinical Trial. JAMA 2022;328:1223-32.
- 25. Cheng Y, Wang Q, Li K, et al. Anlotinib vs placebo as third- or further-line treatment for patients with small cell lung cancer: a randomised, double-blind, placebocontrolled Phase 2 study. Br J Cancer 2021;125:366-71.
- 26. Xia H, Zhang W, Zhang Y, et al. Liver metastases and the efficacy of immune checkpoint inhibitors in advanced lung cancer: A systematic review and meta-analysis. Front Oncol 2022;12:978069.
- Zheng HR, Jiang AM, Gao H, et al. The efficacy and safety of anlotinib combined with platinum-etoposide chemotherapy as first-line treatment for extensive-stage small cell lung cancer: A Chinese multicenter real-world study. Front Oncol 2022;12:894835.