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Abstract

β-Galactosidase from Streptococcus thermophilus was overexpressed in a food-grade organism, 

Lactobacillus plantarum WCFS1. Laboratory cultivations yielded 11,000 U of β-galactosidase 

activity per liter of culture corresponding to approximately 170 mg of enzyme. Crude cell-free 

enzyme extracts obtained by cell disruption and subsequent removal of cell debris showed high 

stability and were used for conversion of lactose in whey permeate. The enzyme showed high 

transgalactosylation activity. When using an initial concentration of whey permeate corresponding 

to 205 g L−1 lactose, the maximum yield of galacto-oligosaccharides (GOS) obtained at 50°C 

reached approximately 50% of total sugar at 90% lactose conversion, meaning that efficient 

valorization of the whey lactose was obtained. GOS are of great interest for both human and 

animal nutrition; thus, efficient conversion of lactose in whey into GOS using an enzymatic 

approach will not only decrease the environmental impact of whey disposal, but also create 

additional value.
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1 Introduction

Cheese whey is the most significant waste from the dairy industry and can cause significant 

environmental pollution problems [1]. This by-product is generated upon coagulation of 

caseins in cheese making, and corresponds to 85–95% of the milk volume. The liquid whey 

retains about 55% of milk nutrients [2], of which lactose (4.5 5% w/v) is the most abundant. 

Removal of valuable whey proteins leaves whey permeate, which can contain up to 85% 

lactose based on dry matter. Several studies have shown that lactose is largely responsible 

for the high biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of 

whey [1]. Annual world-wide cheese whey production amounts to over 160 million tons per 

year, corresponding to approximately 6 million tons of lactose [3,4]. Whey poses significant 

challenges to the dairy industry’s environmental protection strategies. High production of 

cheese whey and whey permeate as well as their high environmental impact and nutritional 

content make them an important subject for careful valorization studies. Different ways of 

whey valorization have been investigated, both decreasing environmental impact and 

exploring the possibilities of reusing nutrients [5].

Due to the abundant amount of lactose in whey, one approach for whey valorization that has 

attracted increasing attention is the bioconversion of lactose (β-D-Galactose-(1→4)-D-

Glucose) to valuable products using β-galactosidases. β-Galactosidases (β-Gal; EC 3.2.1.23) 

catalyze both the hydrolysis and transgalactosylation of β-D-galactopyranosides, including 

lactose [6–8] and are found widespread in nature. They catalyze the hydrolysis of lactose 

and related compounds, and are thus used in dairy industry to remove lactose from various 

products. These enzymes often also show transgalactosylation activity [6,9], which is of 

interest because the resulting galacto-oligosaccharides (GOS) are non-digestible 

carbohydrates with known prebiotic activity. GOS generally comprise one or more galactose 

units that are typically linked to a terminal glucose. The degree of polymerization of GOS 

can vary quite markedly, ranging from 2 to 8 monomeric units. GOS are thus complex 

mixtures of different oligosaccharides, and the spectrum of the oligosaccharides making up 

these mixtures strongly depends on the source of the β-galactosidase used for the 

biocatalytic reaction as well as on the conversion conditions used in their production. GOS 

can serve as fermentable substrates for certain members of the gut microbiota, and have been 

found to modulate the colonic flora by stimulation of beneficial bacteria, such as 

bifidobacteria and lactobacilli, and inhibition of less desirable bacteria [10–12]. Potential 

health benefits of GOS include reduction of intestinal disturbances (constipation and 

diarrhea), cardiovascular disease and intestinal cancer, increased absorption and retention of 

several minerals, particularly magnesium, calcium, and iron, modulation of immune 

responses, as well as reduction of serum cholesterol levels [13–18]. Because of these 

benefits, GOS are of great interest for both human and animal nutrition. Furthermore, GOS 

are of special interest because of the presence of structurally related oligosaccharides in 

human breast milk [14,19,20].

In this paper, we describe the use of β-galactosidase from Streptococcus thermophilus, 

which is recombinantly produced in food-grade Lactobacillus plantarum, for the efficient 

conversion of lactose in whey to obtain GOS. Conversion of an important food waste into 
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more valuable products is advantageous not only for the environment but also for sustainable 

economics.

2 Materials and methods

2.1 Chemicals and enzymes

All chemicals and enzymes were purchased from Sigma (St. Louis, MO, USA) unless stated 

otherwise and were of the highest quality available. All restriction enzymes, T4 DNA ligase, 

and corresponding buffers were from Fermentas (Vilnius, Lithunia).

2.2 Bacterial strains and culture conditions

Streptococcus salivarius subsp. thermophilus DSM 20259 (synonym S. thermophilus) was 

obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ; 

Braunschweig, Germany). L. plantarum WCFS1, isolated from human saliva as described by 

Kleerebezem et al. [21], was originally obtained from NIZO Food Research (Ede, The 

Netherlands) and maintained in the culture collection of the Norwegian University of Life 

Sciences, Ås, Norway. Escherichia coli DH5α (New England Biolabs, Frankfurt am Main, 

Germany) was used in the transformation experiments involving the subcloning of DNA 

fragments. S. thermophilus and L. plantarum were cultivated in M-17 broth and in MRS 

media, respectively, at 37°C without agitation. E. coli NEB5α (New England Biolabs, 

Frankfurt am Main, Germany) was grown at 37°C in Luria–Bertani (LB) medium with 

shaking at 120 rpm. When needed, erythromycin was supplemented to media in 

concentrations of 5 μg/mL for Lactobacillus or 200 μg/mL for E. coli, whereas ampicillin 

was used at 100 μg/mL for E. coli.

2.3 Construction of β-galactosidase expression vectors

The lacZ gene, which encodes for a β-galactosidase from S. thermophilus DSM2 0259 

(NCBI Reference No. CP000419), was amplified using proof-reading Phusion polymerase 

with the primer pair FwdStNcoI (5′-

GCGGCCATGGACATGACTGAAAAAATTCAAAC-3′) and RevStXhoI (5′-

GGCGCTCGAGCTAATTTAGTGGTTCAATCATG-3′). The forward primer, FwdStNcoI, 

contains an NcoI restriction site and the reverse primer, RevStXhoI, includes an XhoI 

recognition site (underlined). Genomic DNA of S. thermophilus isolated according to a 

previously described procedure [22] was used as template for the PCR reaction. The initial 

denaturation step at 98°C for 3 min was follow by 30 cycles of denaturation at 95°C for 10 s, 

annealing at 60°C for 20 s and extension at 72°C for 40 s, followed by a final extension step 

at 72°C for 5 min. The amplified gene was digested with NcoI and XhoI after which the 

PCR product was purified using the Wizard SV Gel and PCR Clean-up system kit (Promega, 

Madison, WI). The PCR fragment was subcloned into the pJET1.2 plasmid (CloneJET PCR 

cloning kit, Fermentas), and E. coli NEB5α was used as a host for obtaining the plasmids in 

sufficient amounts. The sequence of the insert was confirmed by DNA sequencing 

performed by a commercial provider (Microsynth, Vienna, Austria). The gene fragment of 

lacZ was then cloned into the expression vector pSIP409, which employs regulatory 

elements of the sakacin P operon of Lactobacillus sakei [23,24], using NcoI and XhoI 

cloning sites, resulting in the plasmid p409lacZSt. The constructed plasmid was transformed 
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into electrocompetent cells of L. plantarum WCFS1 according to the protocol of Aukrust 

and Blom [25].

2.4 Expression of recombinant β-galactosidase

For the heterologous overexpression of the lacZ gene from S. thermophilus, an overnight 

culture (~16 h) of L. plantarum WCFS1 harboring the expression plasmid p409lacZSt was 

used to inoculate 50 mL of fresh MRS medium containing erythromycin, with a starting 

OD600 of ~0.1. The culture was incubated at 30°C without agitation and the cells were 

induced at an OD600 of 0.3 by adding 25 ng/mL of the inducing peptide pheromone IP-673 

[26]. Cells were harvested at an OD600 of 1.8–2.0, washed twice using 50 mM sodium 

phosphate buffer, pH 6.5 and resuspended in 1 mL (2% of the original culture volume) of the 

same buffer. Cells were disrupted in a bead beating homogenizer using 1 g of glass bead 

(Precellys 24; PEQLAB, Germany). Cell-free extracts were obtained after a centrifugation 

step at 9000g for 15 min at 4°C.

2.5 Fermentation of recombinant L. plantarum

L. plantarum WCFS1 harboring p409lacZSt was cultivated in 1-L fermentations to obtain 

sufficient amounts of LacZ. The cultivation conditions and the induction protocol were 

identical to those described above for small-scale cultivations. Expression of lacZ was 

induced at OD600 of 0.3, the cells were harvested at OD600 ~6 and washed twice with 50 

mM sodium phosphate buffer, pH 6.5 and the cells were then disrupted by passing the 20 

mL suspension 3 times through a French press (AMINCO, Silver Spring, MD) with an 

applied pressure of 1000 psi. Cell debris was removed by centrifugation (25,000g, 20 min, 

4°C). The lysate (crude extract) was then stored at −20°C.

2.6 Gel electrophoresis analysis

The cell-free extracts were analyzed by SDS-PAGE using the Phast System with precast gels 

(Pharmacia Biotech, Uppsala, Sweden). The enzyme preparation was diluted to 1 mg protein 

mL−1 and mixed with an equal volume of 2×Laemmli buffer, followed by incubation at 90°C 

for 5 min. Protein bands were visualized by staining with Bio-safe Coomassie (Bio-Rad). 

Unstained Precision plus Protein Standard (Bio-Rad) was used as mass marker.

2.7 β-Galactosidase assays

The measurement of β-galactosidase activity using o-nitrophenyl-β-D-galactopyranoside 

(oNPG) or lactose as the substrates was carried out as previously described [27]. When 

chromogenic oNPG was used as the substrate, the reaction was initiated by adding 20 μL of 

enzyme solution to 480 μL of 22 mM oNPG in 50 mM sodium phosphate buffer (pH 6.5) 

and stopped after 10 min of incubation at 30°C by adding 750 μL of 0.4 M Na2CO3. The 

release of o-nitrophenol (oNP) was measured by determining the absorbance at 420 nm. One 

unit of oNPG activity was defined as the amount of enzyme releasing 1 μmol of oNP per 

minute under the described conditions.

When lactose was used as the substrate, 20 μL of enzyme solution was added to 480 μL of a 

600 mM lactose solution in 50 mM sodium phosphate buffer, pH 6.5. After 10 min of 

incubation at 30°C, the reaction was stopped by heating the reaction mixture at 99°C for 5 
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min. The reaction mixture was cooled to room temperature, and the release of D-glucose 

was determined using the test kit from Megazyme. One unit of lactase activity was defined 

as the amount of enzyme releasing 1 μmol of D-glucose per minute under the given 

conditions.

2.8 Temperature dependence of stability

The catalytic stability of crude recombinant β-galactosidase from S. thermophilus 
overexpressed in L. plantarum was determined by incubating the enzyme in 50 mM 

phosphate buffer or in whey permeate solution, pH 6.5 at 37°C and 50°C and by subsequent 

measurements of the remaining enzyme activity (A) at various time points (t) using the 

standard oNPG assay. Residual activities (At/A0, where At is the activity measured at time t 
and A0 is the initial activity) were plotted versus the incubation time. The inactivation 

constants kin were obtained by linear regression of ln(activity) versus time. The half-life 

values of thermal inactivation t1/2 were calculated using t1/2 = ln 2/kin [28].

2.9 Steady-state kinetic measurements

A small portion of the crude extract was used to purify the β-galactosidase to homogeneity 

by affinity chromatography using p-aminobenzyl 1-thio-β-D-galactopyranoside immobilized 

onto cross-linked 4% beaded agarose (Sigma), as previously described [27]. Steady-state 

kinetic data for the substrates lactose or oNPG were obtained at 30°C in 50 mM sodium 

phosphate buffer, pH 6.5, with concentrations ranging from 0 to 600 mM for lactose and 

from 0 to 22 mM for oNPG. The kinetic parameters were calculated using nonlinear 

regression, fitting the observed data to the Michaelis-Menten equation using SigmaPlot 

(SPSS, Chicago, IL).

2.10 Determination of protein concentration

Protein concentrations were determined by the method of Bradford [29] using bovine serum 

albumin as the standard.

2.11 Lactose hydrolysis and galacto-oligosaccharides synthesis

Batch conversion reactions were carried out with crude recombinant β-galactosidase from S. 
thermophilus using whey permeate powder (with approximately 65% of the dry matter being 

lactose) as the source of lactose. The influence of process parameters such as temperature 

(37°C, 50°C) and substrate concentration (50 and 200 g L−1 lactose) on the reaction was also 

studied. The substrate solution was prepared in 50 mM sodium phosphate buffer pH 6.5, 

containing 10 mM MgCl2. Agitation during these conversions was applied at 300 rpm using 

a thermomixer (Eppendorf, Hamburg, Germany).

2.12 Analysis of mono- and oligosaccharides

The carbohydrate composition in reaction mixtures was analysed by high performance anion 

exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which was 

carried out on a Dionex DX-500 system consisting of a GP50 gradient pump, an ED 40 

electrochemical detector with a gold working electrode and an Ag/AgCl reference electrode, 

and Chromeleon version 6.5 (Dionex Corp., Sunnyvale, CA). All eluents were degassed by 
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flushing with helium for 30 min. Separations were performed at room temperature on a 

CarboPac PA-1 column (4 mm × 250 mm) connected to a CarboPac PA-1 guard column 

(Dionex) [30]. Separation of D-glucose, D-galactose, lactose and allolactose (β-D-Galp-

(1→6)-D-Glc) was carried out with an isocratic run (45 min) with 15 mM NaOH at 1.0 mL 

min−1, followed by 25 min elution with 100 mM NaOH. For separation of GOS, eluents A 

(100 mM NaOH) and B (100 mM NaOH and 150 mM NaOAc) were mixed to form the 

following gradient: 98% A from 0 to 10 min, 98% A to 52% A from 10 to 40 min, and then 

52% A for another 5 min. The column was washed with 20% B for 10 min and re-

equilibrated for 15 min with the starting conditions of the employed gradient. Galacto-

oligosaccharide standards of β-D-Galp-(1 → 3)-D-Glc, β-D-Galp-(1 → 6)-D-Glc, β-D-Galp-
(1 → 3)-D-Gal, β-D-Galp-(1 → 4)-D-Gal, β-D-Galp-(1 → 6)-D-Gal, β-D-Galp-(1 → 3)-D-

Lac, β-D-Galp-(1 → 4)-D-Lac, β-D-Galp-(1 → 6)-D-Lac were purchased from Carbosynth 

(Berkshire, UK).

3 Results

3.1 Expression of recombinant β-galactosidase from S. thermophilus

The yields of β-galactosidase activity when using the wild-type strain of S. thermophilus as 

a producer were rather low. For example, after cultivation of S. salivarius subsp. 

thermophilus DSM 20259 at 37°C for 24 h, the β-galactosidase yield, as measured in a cell-

free extract, was only ~90 UoNPG per L of culture (M17 containing 2% lactose) with a 

specific activity of 2.1 U/mg (data not shown), which is activity of enzyme per mg protein. 

Hence, we set out to establish heterologous overexpression in a food-grade organism. To do 

so, we cloned the S. thermophilus lacZ gene into the pSIP409 vector for subsequent 

overexpression in L. plantarum. Induced and non-induced cells carrying the expression 

plasmid were harvested at OD600 of 1.8–2.0. SDS-PAGE analysis of cell-free protein 

extracts showed a unique band at ~100 kDa in induced L. plantarum cells (Fig. 1), which is 

in agreement with the calculated molecular mass of β-galactosidase from S. thermophilus.

L. plantarum harboring p409lacZSt was then cultivated on a larger scale (1-L cultivation 

volume). Analysis of cell-free extracts of such 1-L laboratory cultivations showed enzyme 

yield of approximately 11 ± 0.5 kUoNPG of β-galactosidase activity. The specific activity of 

the extracts was ~12 U/mg. A small portion of the crude extract was used to purify the β-

galactosidase to homogeneity by affinity chromatography using p-aminobenzyl 1-thio-β-D-

galactopyranoside immobilized onto cross-linked 4% beaded agarose (Sigma) and the 

specific activity of the purified enzyme was determined to be 65 U/mg (data not shown), 

therefore the enzyme yield of 11 ± 0.5 kUoNPG of β-galactosidase activity per liter of culture 

corresponds to approximately 170 mg of enzyme. The β-galactosidase activity in L. 
plantarum cells without plasmid was negligible (0.07 U/mg), and hence the enzyme 

activities obtained can be attributed solely to plasmid-encoded LacZ from S. thermophilus.

The steady-state kinetic constants were determined for the hydrolysis of lactose and o-

nitrophenyl-β-D-galactopyranoside (oNPG). Kinetic analysis with lactose as the substrate 

showed Michaelis-Menten kinetics with the following parameters obtained by nonlinear 

regression: vmax = 17.67 ± 0.36 (μmol D-glucose released min−1 (mg protein)−1) and Km = 

5.12 ± 0.53 (mM). The experiments with oNPG showed substrate inhibition and the 
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following kinetic parameters were obtained: vmax = 151 ± 10 (μmol oNP released min−1 (mg 

protein)−1), Km = 0.55 ± 0.10 (mM), and Ki,s = 14.1 ± 2.3 (mM). The kcat values were 34.4 

± 0.70 (s−1) and 294.7 ± 20.3 (s−1) and the catalytic efficiencies (kcat/Km) were 6.7 and 539 

(mM−1 s−1) for lactose and oNPG, respectively.

3.2 Stability of the crude enzyme

Temperature stability of this crude enzyme preparation in sodium phosphate buffer (pH 6.5) 

and in whey permeate solution (dissolved in sodium phosphate buffer, pH 6.5) was measured 

at 37°C and 50°C (Table 1). The half-life time (t1/2) of the crude enzyme in whey permeate 

solution was increased compared to sodium phosphate buffer. A possible explanation could 

be the presence of the substrate and various mono- and divalent ions, such as sodium or 

magnesium, in the whey, which can affect the stability of β-galactosidases. The effect of 

ions such as Na+ on activity and Mg2+ on thermal stability seems common among GH2 β-

galactosidases and is observed for E. coli β-galactosidase LacZ [31] as well as for some 

purified β-galactosidases from Lactobacillus spp. [27,32–34]. The effect of additional Mg2+ 

on stability of the crude enzyme in sodium phosphate buffer and in whey permeate was also 

tested and the results show that the addition of Mg2+ tends to have further stabilizing effect. 

Importantly, the data show that the recombinantly expressed enzyme is quite stable at 50°C.

3.3 Lactose hydrolysis and formation of GOS

Based on the observations of the stability of the crude enzyme preparation, the conversion of 

lactose in whey using the crude recombinant β-galactosidase from S. thermophilus was 

performed at both 37°C and 50°C to investigate the influence of process temperature. Whey 

permeate powder containing 65% (w/w) lactose was dissolved in 50 mM sodium phosphate 

buffer, pH 6.5 with 10 mM MgCl2 to a concentration of 50 g L−1 lactose, which is about the 

concentration of lactose in liquid whey and in milk. Crude enzyme was added to a final 

concentration of 5 UoNPG (corresponding to 1.35 ULac) per mL of reaction mixture. Lactose 

hydrolysis was significantly faster at 50°C and was completed within 2 h of reaction, while 

at 37°C lactose was completely hydrolyzed only after 5 h (Table 2). A maximum GOS yield 

of 34.2% of total sugar mass was achieved at ~80% lactose conversion at 37°C. At ~94–95% 

lactose conversion, the GOS yield decreased to ~30%, and when lactose was completely 

hydrolyzed, the GOS yield was ~20%. The reduction in GOS content can be explained by 

the fact that GOS are also subject to hydrolysis. When continuing the reaction after complete 

lactose conversion had been achieved, GOS concentrations decreased even further to ~11% 

after 7 h at 37°C or after 3 h at 50°C.

3.4 GOS production

The formation of GOS described above happened even at low initial lactose concentration 

(50 g L−1). To increase the GOS yields further, we also tested a higher initial lactose 

concentration for this reaction. Whey permeate powder containing 65% (w/w) lactose was 

dissolved in 50 mM sodium phosphate buffer, pH 6.5 with 10 mM MgCl2 to an equivalent 

concentration of 205 g L−1 lactose. The reaction was again performed at 37°C and 50°C 

using 10 UoNPG/mL (corresponding to 2.7 ULac/mL) of enzyme. At 50°C, it took 5 h and 6 h 

to achieve ~90% and ~95% lactose conversion, respectively. The conversion was slower at 

37°C, with ~95% lactose conversion being obtained after 9 h of reaction (Fig. 2A). The 
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maximum GOS yield was ~50% of total sugar mass at ~90% lactose conversion, which was 

reached after 5 h of reaction at 50°C and 8.5 h of reaction at 37°C (Fig. 2B). Using authentic 

standards, we could identify the main GOS products of transgalactosylation, which are β-D-

Galp-(1 → 6)-D-Glc, β-D-Galp-(1 → 3)-D-Lac, β-D-Galp-(1 → 3)-D-Glc, β-D-Galp-(1 → 
3)-D-Gal, β-D-Galp-(1→ 6)-D-Gal, β-D-Galp-(1 → 6)-D-Lac (Fig. 3).

4 Discussion

Lactic acid bacteria (LAB) are important microorganisms in the food and beverage industry. 

Over the past few decades, LAB have been used not only as starter cultures but also as 

producers of flavoring enzymes, antimicrobial peptides or metabolites that contribute to the 

flavor, texture and safety of food products [35–37]. LAB have for a long time been used in 

the production of a wide range of foods without adverse effects on humans. Due to their 

food-grade status and probiotic characteristics, several LAB are considered as safe and 

effective cell-factories for food-application purposes [36,37]. Due to this potential, several 

constitutive or inducible gene expression and protein targeting systems have been developed 

for LAB [23,35,36,38]. One such expression system comprises the so-called pSIP vectors 

[24] and is based on promoters and regulatory genes involved in the production of the class-

II bacteriocins sakacin A [39] and sakacin P [40,41] in Lactobacillus spp. One of the 

advantages of this system is that it is strictly regulated and leads to high production of the 

target protein.

Recently, we reported the overproduction of β-galactosidases from Lactobacillus reuteri and 

Lactobacillus bulgaricus in the food-grade expression host L. plantarum WCSF1 [34,42]. 

The heterodimeric β-galactosidase of L. reuteri is encoded by two overlapping genes, lacL 
and lacM, while the homodimeric β-galactosidase of L. bulgaricus is encoded by lacZ. 
These enzymes both belong to glycoside hydrolase family GH2. The predominant GH2 β-

galactosidases found in lactobacilli are of the LacLM type, encoded by the overlapping 

lacLM genes [22,32,33,43], while GH2 β-galactosidases of the LacZ type, encoded by a 

single lacZ gene, are less frequently found in lactobacilli. These LacZ β-galactosidases are 

more frequent in other LAB including S. salivarius and S. thermophilus [44] or 

bifidobacteria including Bifidobacterium bifidum [45], Bifidobacterium longum subsp. 

infantis [46], or Bifidobacterium breve [47]. When overexpressing β-galactosidases from L. 
reuteri and L. bulgaricus in the host L. plantarum WCFS1, the highest yields obtained under 

optimized fermentation conditions were ~35–40 kU and ~53 kU of β-galactosidase activity 

per liter of culture, respectively [34,48]. The yield obtained for β-galactosidase from S. 
thermophilus overexpressed in L. plantarum WCFS1 was somewhat lower, namely ~11 kU 

per liter of fermentation medium. Notably, this yield was obtained using relatively simple 

fermentation conditions without optimization and is expected to improve significantly if the 

fermentation process is optimized, as previously shown for the overexpression of β-

galactosidase from L. reuteri in L. plantarum WCFS1 [48].

The present study was performed with crude recombinant β-galactosidase obtained after cell 

disruption and separation of cell debris by centrifugation. Because of the GRAS status of L. 
plantarum, it is safe to use a crude extract in food and feed applications. The direct use of a 

crude extract can reduce the enzyme costs of the process by avoiding laborious and 
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expensive purification steps. An advantage of this recombinant β-galactosidase from S. 
thermophilus is that it is stable at high temperatures (up to 50°C) for an extended period of 

time. The enzyme is stable at 50°C with a t1/2 of more than a day, whereas the process for 

GOS production reported in this study can be completed within 5 h to obtain the maximal 

GOS yield. One major drawback of using mesophilic biocatalysts in industrial processes is 

the threat of microbial contamination. Most GH2 β-galactosidases from LAB are mesophilic 

biocatalysts, with some exceptions, for example β-galactosidase from L. bulgaricus [34] and 

the enzyme reported here in this study. Performing these conversion experiments at 

increased temperature will obviously decrease the chance of microbial contamination.

We first looked at lactose hydrolysis at a low initial lactose concentration of 50 g L−1, which 

is the concentration of lactose in liquid whey and in milk. This approach could reveal 

whether the enzyme has potential for removal of lactose in whey liquid waste or for 

applications in the dairy industry, such as production of low-lactose or lactose-free products 

or prevention of crystallization of lactose in dairy products. The recombinantly produced S. 
thermophilus β-galactosidase was found to be a promising candidate for these applications 

as complete lactose hydrolysis was obtained within less than 2 h at reasonable enzyme 

dosage. We did not detect lactose in our samples after 5 h at 37°C and 2 h at 50°C (Table 2) 

by using HPAEC-PAD for analysis, which confirms complete lactose hydrolysis. The 

detection limit of our HPAEC-PAD system for lactose is 0.1 g L−1. The level of lactose was 

also analyzed with the enzyme-based lactose biosensor Lactosens (DirectSens GmbH, 

Vienna, Austria; http://www.directsens.com), which confirmed the concentration to be below 

0.1 g L−1, which is the limit recommended for dairy products to be labelled as ‘lactose-free’

[49].

A more attractive biocatalytic application of the β-galactosidase is based on its 

transgalactosylation potential. Indeed, recombinant β-galactosidase from S. thermophilus 
was found to be suitable for the production of GOS, with the highest total GOS yields 

reaching ~50% when the enzyme was used in batch conversion mode with an initial lactose 

concentration of 205 g L−1. This yield can be considered as relatively high compared to the 

reported yields obtained with other β-galactosidases from LAB and some commercial β-

galactosidases, for example L. reuteri (38%) [30], L. sakei (41%) [32], L. plantarum (41%) 

[33], Lactobacillus pentosus (31%) [43], L. bulgaricus (49.5%) [34], Kluyveromyces lactis 
(Lactozym 3000 L HP G from Novozymes, Bagsvaerd, Denmark) (30%) [50], Bacillus 
circulans (Biolacta FN5 from Daiwa Kasei K.K., Japan) (39%) [51]. GOS yields of over 

50% are not often exceeded, and more typical optimized yields are between 30% and 40% 

(w/w) [52]. The increase in GOS yield is often observed with increased initial lactose 

concentration [52], therefore higher GOS yield than the yield reported here might be even 

achieved with higher initial lactose concentration. When looking at the individual 

components of the GOS mixture, it becomes evident that the recombinant enzyme from S. 
thermophilus has a propensity to synthesize β-(1 → 6) and β-(1 → 3)-linked GOS. Such a 

preference towards β-(1 → 3)- and β-(1 → 6)-bond formation has also been found for other 

β-galactosidases from LAB [30,32–34,43]. The predominant transgalactosylation products 

were identified as β-D-Galp-(1 → 6)-D-Glc (allolactose) and β-D-Galp-(1 → 3)-D-Lac (Fig. 

3). It was reported that the administration of a GOS mixture containing β-(1 → 3) as well as 
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β-(1 → 4) and β-(1 → 6) linkages proved to have a better bifidogenic effect than a mixture 

containing GOS with β-(1 → 4) and β-(1 → 6) linkages [53].

The use of whey permeate powder as a cheap lactose source could lower the costs for 

production of GOS. We have previously reported a process for GOS production using crude 

enzyme extract from Lactobacillus sp. [54]. In this previously reported process, we used the 

native enzyme, whose production yield was in the order of 2.5 kU of β-galactosidase activity 

per liter of culture [27]. The reaction temperature was as low as 17°C to limit possible 

microbial contamination, and therefore the obtained GOS yield from whey permeate was 

only ~25% after 15 h [54]. The process described in the present study has significant 

improvements, which are: (1) higher production of recombinant β-galactosidase in a food-

grade organism, which lowers the enzyme costs, (2) the use of a thermostable crude 

recombinant enzyme, which enables the process to be carried out at 50°C, reducing the risks 

of microbial contamination, and (3) high GOS yield amounting up to ~50% of total sugar, 

which can be obtained in a much shorter process time, that is within 5 h at 50°C.

5 Conclusion

We describe the valorization of whey using an enzymatic approach for the production of 

GOS. Overexpression of β-galactosidase from S. thermophilus in another food-grade 

organism as well as the direct use of a crude cell extract reduce the enzyme costs. The 

process is very efficient with 50% of GOS yield being obtained within 5 h at 50°C. Our 

results imply that 1 kg of GOS can be produced from 2 kg of lactose or 3 kg or whey 

permeate powder using ~100 kU of enzyme. The conversion of lactose in whey into valuable 

products such as GOS would substantially decrease the environmental impact of whey, while 

significant profits could be obtained.
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Fig. 1. 
SDS-PAGE of crude protein extracts obtained from noninduced (lane 1) and induced (lane 

2) L. plantarum cells carrying the plasmid pSIP409lacZSt. The precision plus protein™ dual 

color standard (lane 3) was from Bio-Rad.
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Fig. 2. 
Time course of lactose conversion (A) and GOS yields (B) of reactions run at 37°C and 

50°C using whey permeate dissolved in 50 mM sodium phosphate buffer, pH 6.5 with 10 

mM MgCl2 to a final concentration corresponding to 205 g L−1 lactose. Reactions were 

performed using 10 UoNPG/mL of crude recombinant β-galactosidase from S. thermophilus 
overexpressed in L. plantarum.
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Fig. 3. 
Formation and degradation of individual GOS, in mM (A) and as mass percentage of total 

GOS (B) during lactose conversion at 37°C. Reactions were performed as described for Fig. 

2.
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Table 1

Half-life times (t1/2) of activity (in) for crude recombinant β-galactosidase from S. thermophilus overexpressed 

in L. plantarum.

Temperature (°C) Sodium phosphate 
buffer (pH 6.5)

Sodium phosphate buffer 
(pH 6.5) + 10 mM MgCl2

Whey permeate 
(dissolved in sodium 
phosphate buffer, pH 6.5)

Whey permeate (dissolved in 
sodium phosphate buffer, pH 
6.5 + 10 mM MgCl2)

37 25.4 nd 33.6 39.6

50 21.0 27.5 25.1 28.1

nd: not determined.

Experiments were performed in duplicates, and the standard deviation was always <5%.
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Table 2

Lactose conversion and GOS formation during hydrolysis of lactose (50 g L−1) in whey permeate solution 

dissolved in 50 mM sodium phosphate buffer (pH 6.5) and 10 mM MgCl2, at 37 °C and 50 °C using 5 

UoNPG/mL of crude recombinant β-galactosidase from S. thermophilus overexpressed in L. plantarum.

Time (h) 37 °C 50 °C

GOS (% mass of total sugars) Lactose conversion (%) GOS (% mass of total sugars) Lactose conversion (%)

0   0.0 0.0 0.0 0.0

1 32.2 70.3 29.1 95.3

2 34.2 79.7 16.8 >99.8

3 31.2 93.7 11.1 ––

4 25.0 96.6

5 22.1 >99.8

7 10.7 ––
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