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ABSTRACT

We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast
HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels
internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER)
useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider
chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this
study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II
chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling
and Bayesian approaches generated by the U.S. Environmental Protection Agency (EPA) ExpoCast program. This approach
incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure
predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study
whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this
study, 3 or 13 chemicals possessed AERs < 1 or < 100, respectively. Diverse bioactivities across a range of assays and
concentrations were also noted across the wider chemical space surveyed. The availability of HT exposure estimation and
bioactivity screening tools provides an opportunity to incorporate a risk-based strategy for use in testing prioritization.
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Since the release of the NRC’s (2007) “Toxicity Testing in the
21st Century,” governmental, academic, and industry re-
searchers have dedicated significant research resources to gen-
erate data, make it publically accessible, and determine the
utility of high-throughput (HT) and in vitro tools in chemical tox-
icity testing. The U.S. Tox21 and ToxCast research programs
have leveraged HT assays developed for the pharmaceutical in-
dustry to characterize biological activities and forecast effects
that may be elicited following chemical exposure (Attene-
Ramos et al., 2013; Dix et al., 2007; Judson et al., 2010; Kavlock
et al.,, 2012). Additional efforts are underway to assess in vitro
strategies that identify toxicity pathways most relevant for in-
dustrial chemicals and to determine the concentrations at
which perturbations and adverse effects are likely to arise
(Adeleye et al., 2015; Landesmann et al., 2013; Mennecozzi, 2012).
These in vitro testing efforts are complemented by bioinformatic
and data visualization tools that have emerged from high-
throughput screening (HTS) and genomics research efforts
(McMullen et al., 2014; Pastrello et al., 2014; Pleil et al., 2011; Reif
et al.,, 2013). Although the maturation and refinement of these
in vitro and HT testing tools are promising for EPA decision-
making, these tools are limited to providing hazard-based as-
sessments. The lack of exposure information makes use in risk-
based assessments difficult.

To be useful in the emerging next generation of risk science
(Krewski et al., 2014), dosimetry-adjusted in vitro bioactivity data
(Rotroff et al., 2010b; Wetmore et al., 2012) will need to be framed
in the context of human exposure. This context will inform
whether concentrations eliciting activity in the bioassays will
be encountered in relevant in vivo chemical exposure scenarios.
Development of a HT exposure estimation strategy will comple-
ment data obtained from HT testing programs such as ToxCast.
Published HT exposure modeling tools have been largely limited
to assessing chemical fate and transport from far field sources
(Arnot et al., 2006; Rosenbaum, 2008). Although an important
first step, HT modeling tools that capture both far- and near-
field sources of chemical exposure are necessary to provide a
more realistic estimate of daily human exposures.

In this report, we describe the first attempt to incorporate
HT chemical toxicity testing data with HT predictions of expo-
sure to provide a rapid, risk-based prioritization approach.
In vitro assays measuring hepatic clearance and plasma protein
binding conducted on ToxCast Phase II chemicals parameterize
a pharmacokinetic (PK) model based upon in vitro-in vivo extrap-
olation (IVIVE). This model was used to predict the chemical
steady-state concentrations (Css) in plasma resulting from re-
peated daily exposure (Rotroff et al., 2010b; Wetmore et al., 2012).
Reverse dosimetry (Tan et al., 2007) tools were then used to esti-
mate the oral equivalent dose (OED), in mg/kg/day, required to
achieve blood Cg levels identical to the activity concentrations
(eg, ACsp) in the ToxCast assays. These OEDs were then com-
pared against exposures from a probabilistic prediction tool de-
veloped by the USEPA ExpoCast program. This tool utilizes
chemical-specific use and production data that have been found
to correlate with chemical exposures inferred from urinary ana-
lyte (exposure biomonitoring) data from the Center for Disease
Control’s (CDC’s) National Health and Nutrition Examination
Survey (NHANES). The NHANES characterizes central tenden-
cies (ie, geometric means) of chemical exposures for popula-
tions in the United States (Calafat, 2012). Bayesian modeling is
used to both account for unknown information that is needed
to predict exposures while also quantifying the uncertainty of
the predicted geometric means (Wambaugh et al, 2014).
Comparison of the OEDs to these exposure predictions, both

expressed in mg/kg/day, provides a useful first-order approxi-
mation of activity-to-exposure ratios (AERs)—in essence a mar-
gin of exposure (MOE)—that can help shift from a hazard-
centric approach toward a more risk-based strategy that can in-
form prioritization strategies (Thomas et al., 2013).

MATERIALS AND METHODS

Chemical selection and stock preparation. The 178 ToxCast Phase II
chemicals  (http://www.epa.gov/ncct/toxcast/chemicals.html)
[last accessed August 20, 2015] analyzed in this study were
selected based on the existence of an analytical chemistry
detection method and the availability of human exposure data.
Compounds for the plasma protein binding and metabolic
stability assays were obtained from Compound Focus, Inc
(Evotec, South San Francisco, California) in neat form. Dimethyl
sulfoxide (DMSO) stock solutions were prepared from the neat
chemicals to generate the analytical calibration curves and for
use in the assays. All stock solutions were stored at < —70°C.
Specific vendor and vendor-supplied purity information for
each chemical is provided as Supplementary material
(Supplementary Table S1).

Plasma protein binding assay. Plasma protein binding was meas-
ured for each chemical using either the rapid equilibrium dialy-
sis (RED) method as described previously (Rotroff et al., 2010b;
Waters et al., 2008; Wetmore et al.,, 2012) or ultrafiltration as
described later. The human plasma used in the assay was
obtained from healthy, consented, paid donors at a U.S. Food
and Drug Administration-licensed and inspected donor center
(#HMPLEDTAZ2; Bioreclamation, Inc, Westbury, New York). The
plasma was pooled from 5 male (37, 22, 27, 36, and 21 years old)
and 5 female (30, 40, 47, 55, and 54 years old) adults and stored
at < —70°C until use.

Determination of plasma protein binding by ultrafiltration
was conducted on a subset of chemicals for which equilibrium
dialysis resulted in unbound values >100%. This phenomenon
has been observed with a subset of ToxCast industrial chemi-
cals (eg, plasticizers, phthalates) and is believed to occur due to
binding and/or interactions with dialysis plate components
(data not shown). Briefly, plasma was thawed to room tempera-
ture and, if necessary, pH adjusted to 7.4. DMSO stocks of chem-
icals (200X) were added to plasma to achieve a final
concentration of 10 M. Samples were vortexed and incubated
at 37°C in a water bath in polypropylene tubes prior to centrifu-
gation in a Centrifree ultrafiltration device (Millipore Cat No.
4104, Billerica, Massachusetts) at 2000 x g for 20min at 37°C.
Ultrafiltrates were collected for analysis. This procedure
ensured that the ultrafiltrate did not exceed 40% of the initial
volume and minimized dissociation of bound compound due to
removal of free compound (Whitlam and Brown, 1981).
Nonspecific binding (NSB) was measured in a similar manner,
with chemical stocks added to phosphate-buffered saline, pH
7.4 to achieve a final concentration of 10 uM, incubated at 37°C,
and aliquots collected from both the preCentrifree device incu-
bation and the post-centrifugation ultrafiltrate. All samples
were run in triplicate and stored at < —70°C prior to analysis.

Metabolic clearance assay. Hepatic clearance was measured using
the substrate depletion method (Wetmore et al, 2012).
Chemicals at 2 concentrations (1 and 10uM) were incubated
over a 240min period with pooled cryopreserved primary
human hepatocytes (Life Technologies; Durham, North
Carolina). The pool of cryopreserved hepatocytes was
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comprised of 14 individual adult donors of mixed gender and
ethnicity (6 male Caucasians and 1 male African American; 6
female Caucasians and 1 female African American.) The hepa-
tocytes were characterized for metabolism (CYPs 1A2, 2B6, 2C8,
2C9, 2C19, 2D6, 2E1, 3A4/5, and flavin-containing monooxyge-
nases (FMOs)) and viability (Trypan Blue exclusion). Lot values
fell within acceptable ranges compared with historical quality
control limits. See Supplementary Table S1B for the metabolic
characterization data. The human hepatocytes were obtained
under a protocol that was reviewed and approved by an
Institutional Review Board and operated in accordance with
Federal Regulation for the protection of human research
subjects.

Three of the chemicals for which in vivo PK data were avail-
able showed no loss from the hepatocyte suspensions. These
were also assessed for clearance using plated hepatocytes over
a 48-h time course (0, 4, 8, 24, and 48h) at the 1uM chemical
concentration (Smith et al, 2012). Plateable cryopreserved
human hepatocytes (Triangle Research Laboratories, Research
Triangle Park, North Carolina) were obtained from 2 adult
donors under an approved Institutional Review Board (IRB) pro-
tocol and were characterized for metabolism and viability. The
donor-derived hepatocytes were run individually (ie, not
pooled). Hepatocyte maintenance medium (LifeTechnologies
Corporation, Durham, North Carolina) supplemented with an
insulin-transferrin-selenium (ITS+) supplement, dexametha-
sone, and penicillin/streptomycin (no serum) was utilized, with
a final density of 48 000 cells per well in 96-well, collagen coated
plates with no shaking. No overlay was used. Treatments were
initiated 6 to 8h after plating. Samples were run in triplicate
and quenched with acetonitrile analogous to suspension hepa-
tocyte incubations (1:1 volume, plates centrifuged to pellet pro-
tein). Negative controls, both cell-free assays and metabolically
inactivated hepatocytes that had undergone 2 freeze-thaws,
were run throughout the time course.

Bidirectional permeability (Caco-2) assay. To assess the impact of
absorption on the IVIVE modeling, a subset of the chemicals for
which in vivo PK data were available were tested in the bidirec-
tional permeability assay (Wetmore et al., 2012). These perme-
ability assays were performed at Absorption Systems (Exton,
Pennsylvania).

Chemical analysis by liquid chromatography with mass spectrometric
detection. Samples from the metabolic stability assay (quenched
1:1 with acetonitrile) were thawed at room temperature, vor-
texed briefly, and centrifuged at 4500 x g for 5min. Samples
were then diluted with either 0.1% formic acid (FA) in hepato-
cyte media, for positive mode ionization, or 10mM ammonium
acetate in hepatocyte media, for negative ionization mode.
Samples from the 10puM metabolic stability incubations were
diluted 1:10, whereas the 1uM incubations were diluted 1:4.
Prior to analysis, samples were spiked with internal standard
(Isoxaben [CAS 82558-50-7], Pirimicarb [CAS 23103-98-2] or
Propoxur [CAS 114-26-1] for positive ion mode, 2,4-dichlorophe-
noxyacetic acid [CAS 94-75-7] or 2-methyl-4-chlorophenoxyace-
tic acid (MCPA) [CAS 94-74-6] for negative ion mode) and
adjusted to contain approximately 25% total organic content
using methanol. Samples were analyzed using either an
API-3000 triple quadrupole mass spectrometer (Danaher,
Washington, D.C.) with a PE-200 Perkin Elmer High Pressure
Liquid Chromatography (HPLC) system (Perkin Elmer, Waltham,
MA) or an Agilent 6460 triple quadrupole mass spectrometer
(MS) with an Agilent 1290 Infinity ultra-HPLC (uHPLC) system
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(Agilent, Santa Clara, California). Calibration standards were
prepared on the same day as sample analysis and in a matrix
identical to the samples. Samples from the plasma protein
binding assay (quenched 1:1:6, Plasma:PBS:Acetonitrile) were
thawed at room temperature, vortexed briefly, and centrifuged
at 12 000 x g for 4min. All plasma samples were prepared as
outlined earlier for the 1M metabolic stability assay samples
(ie, 1:4 dilution). Detailed chromatographic separation protocols
along with mass spectrometric (MS) information for all com-
pounds analyzed by liquid chromatography (LC)/MS are pro-
vided in Supplementary Tables S2A-C.

Chemical analysis by selective ion-monitoring gas chromatography
(GC) with mass spectrometric detection. Both metabolic stability
assay samples and protein binding samples were obtained in
the same dilutions described in the HPLC/MS methods earlier.
All samples were thawed at room temperature, vortexed briefly,
and centrifuged at 4500 x g for 5min. Prior to liquid extraction,
samples were spiked with a solution containing a known
amount of internal standard and diluted 3:2 with a saturated
NaCl solution for the metabolic stability assay samples and 2:3
for the protein binding samples. Samples underwent 1 hexane
extraction (150 pl, nanograde quality), were vortexed briefly,
allowed to equilibrate for 30 min, and centrifuged at 1300 x g for
2min. The hexane layers were collected and transferred to sili-
nated glass inserts prior to analysis using an Agilent 6890 gas
chromatograph with a model 5973 MS (Agilent Technologies) in
either electron impact mode or negative chemical ionization
mode. Calibration standards were prepared on the same day as
sample analysis and in a matrix identical to the samples.
Sample data were collected in selective ion-monitoring (SIM)
mode. Specific chromatographic separation details and instru-
mental parameters for each analyte are provided as
Supplementary material (Supplementary Table S2D).

Chemical analysis by GC with electron capture detection. Both meta-
bolic stability assay samples and protein binding samples were
obtained using the same dilutions described in the HPLC/MS
methods earlier. Samples were prepared following the same
extraction method mentioned earlier. Sample data was col-
lected with detector settings at 300°C with nitrogen makeup
gas. Chromatographic separation details and analyte elution
times are provided in the Supplementary materials section
(Supplementary Table S2E).

Chemical analysis by HPLC with fluorescence detection (HPLC/FLD).
Samples from both the metabolic stability assay and the protein
binding assay were thawed at room temperature and briefly
vortexed prior to centrifugation at 12 000 x g for 5min. Samples
were placed in silinated glass inserts and injected onto an
Agilent 1100 HPLC with ultraviolet/fluorescent detectors
(Agilent Technologies) without any additional sample work-up.
Chromatographic separation details, fluorescence settings, and
analyte elution times are described in the Supplementary mate-
rials section (Supplementary Table S2F-H).

Plasma protein binding data analysis. To calculate the fraction of
unbound chemical in the plasma (F,) from equilibrium dialysis
data, the concentration of the test compound in the phosphate
buffered saline (PBS) chamber was divided by the mean concen-
tration in the matched plasma sample. Values derived for the 3
replicates were then averaged to determine a mean F,,. A mini-
mum measurable F, was set to 0.005. This value was estimated
based on 2 SD over the minimum amount of binding detected in


http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1

124 | TOXICOLOGICAL SCIENCES, 2015, Vol. 148, No. 1

a previous study (Waters et al., 2008) and previous experience
with the RED method (Rotroff et al., 2010b; Wetmore et al., 2012).
If the concentration of the chemical in the free fraction was
below, this value or below the analytical limits of detection, a
default F, of 0.005 was assumed.

To calculate F, from the ultrafiltration data, the concentra-
tion of the test compound in the plasma ultrafiltrate was div-
ided by the concentration in the precentrifugation sample for
each replicate. The average mean percent unbound was calcu-
lated for the 3 replicates run. Mean percent unbound values
were calculated in the same way for the NSB samples.
Chemicals with NSB values exceeding 5% were excluded from
further analyses. The plasma protein binding data are provided
in Supplementary Table S3A.

Metabolic clearance data analysis. Hepatic metabolic clearance
(Clin vitro) Wwas determined following linear regression analysis of
data measuring the loss of chemical over time (Rotroff et al.,
2010b; Wetmore et al., 2012). Clearance was normalized to cell
number [pl/(min x 10° cells)]. The concentration data at each
time point for each chemical and the linear regression results
are provided as Supplementary Table S3B.

A NSB of a chemical that occurs may limit the amount of
chemical available for clearance in an in vitro system (Hallifax
et al., 2010). Estimating clearance through loss of parent com-
pound as done with the substrate depletion approach may lead
to an underestimation of clearance for highly bound com-
pounds. Although a nonspecifically bound chemical cannot be
metabolized, it is still present in the incubation mixture and
will be measured as part of the parent compound remaining. To
account for the impact of this binding, Cl;, yitr, rates were con-
verted to Cluj, virro using the following equation:

Clu,, o = in_vitro

n vitro fuhep

The fupep was calculated following (Kilford et al., 2008) with
log P/D values obtained from SciFinder (CAS). For those chemi-
cals for which the fuyep, was calculated to be negative or>1, a
default value of 1 was used.

Estimation of Css using IVIVE and Monte Carlo simulation. The
chemical steady-state blood concentrations (Css) were esti-
mated as previously described (Wetmore et al., 2012) with modi-
fication. The basic equation used to calculate static Cg; is based
on constant uptake of a daily oral dose and factors in hepatic
clearance and nonmetabolic renal clearance:

ko

(QuxFupxClir)
((Qﬁinziamiﬁ)) + (GFR x Fup)

Css =

where ko=chemical exposure rate; mean Qy=hepatic
blood flow (90 I/h; Davies and Morris, 1993), Fy, — unbound frac-
tion of parent compound in the blood; Cli,y=hepatic
intrinsic  metabolic  clearance; and  GFR=glomerular
filtration rate. The mean F,;, was calculated based on the experi-
mentally measured F, in plasma divided by the
blood:plasma ratio (B:P). The right side of the denominator con-
siders nonmetabolic renal clearance (GFR x F3), with mean GFR
(6.7 1/h) back-calculated based on the serum creatinine
Cockceroft-Gault equation (Cockcroft and Gault, 1976). The Clin,
values were derived using the following equation, which
scales Cluin o (pl/(minxmillion cells)) experimentally

measured in hepatocytes to represent whole organ clearance
with units of I/h:

1 " 60 min
10°ul 1h

Clint = Clum vitro X HPGL x Vl X

Where HPGL =hepatocytes per gram liver (110 million cells/g
liver; (Barter et al., 2007)) and V;=liver volume (1596 g; Johnson
et al, 2005). The physiologic values employed in the Simcyp
software are similar and in some cases identical to those uti-
lized by other physiologically-based PK modelers; comparison
of the outputs obtained from Simcyp to those obtained using
values employed by other modelers resulted in similar outputs
(data not shown).

Because the model for Cg is linear in dose rate, C was pre-
dicted for a dose rate of 1 mg/kg BW/day (ie, ko = 0.042 mg/kg/h).
A correlated Monte Carlo approach was employed (Jamei et al.,
2009) using Simcyp (Simcyp V. 13; Certara, Sheffield, UK) to sim-
ulate variability across a population of 10 000 individuals
equally comprised of both genders, 20-50 years of age. A coeffi-
cient of variation of 30% was used for intrinsic and renal clear-
ance (Jamei et al., 2009). The median, upper, and lower fifth
percentiles for the Css were obtained as output. Additional back-
ground on this approach and related assessments of the Cg out-
puts can be found in Wetmore et al., 2012 and Wetmore, 2015.

Calculation and statistical presentation of OED data. As previously
described, the in vitro ACso (concentration at 50% of maximum
activity) or lowest effective concentration (LEC) values were
assumed to be functionally equivalent to the Cg values in terms
of biological activity (Rotroff et al., 2010b; Wetmore et al., 2012).
Using reverse dosimetry (Tan et al., 2007), the median, 5th, and
95th percentiles for the Cgs were used as conversion factors to
generate OEDs according to the following formula:

mg/kg\ (1 mg/kg)/day
OED (—d ) = ToxCast ACsp or LEC (uM) BRI

In the equation, the OED is linearly related to the in vitro
ACso or LEC and inversely related to Cke. This equation is valid
only for (first-order metabolism that is expected at
ambient exposure levels. An OED was generated for each chem-
ical and each ACs, or LEC value across all of the in vitro assay
endpoints.

Box and whisker plots were used to visualize the OEDs for
each chemical. In each figure, the 95th percentile of the Css was
used in the figures to provide a conservative estimate of the
OEDs. The median OED for each chemical was displayed as a
horizontal line and the ends of the boxes represent the 25th and
75th percentiles. The whiskers denote those values that fall
either less than or greater than 1.5 times the interquartile range
from the 25th or 75th percentiles, respectively (Tukey, 1977). In
those instances where the minimum or maximum value for
that chemical does not exceed the whisker, the whisker is set to
that value. Any value beyond the range of the whiskers is desig-
nated as an outlier and is displayed as a black circle.

Evaluation of PK modeling. Published human in vivo PK data from
which Cg values could be derived were available for 16 of the
178 chemicals analyzed. These data characterized the observed
total clearance from the body including hepatic metabolism
and glomerular filtration as well as any other PK pathways
present in vivo. To assess the predictivity of our IVIVE model, Csg
values were calculated using the measured in vivo values,
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assuming a daily oral dose of 1mg/kg/day. These values were
then compared against the IVIVE-derived values obtained using
the in vitro clearance rate derived using 1 uM chemical concen-
tration. In addition, Caco-2 data was incorporated into the IVIVE
to assess the impact of the assumption of 100% absorption on
the prediction of Cgs. Further, for those chemicals that displayed
no measurable clearance in the hepatocyte suspensions, plated
hepatocytes were employed to measure clearance via substrate
depletion over 48 h.

In vitro bioactivity data. To date, ToxCast bioactivity data includes
measured bioactivity screening data across over 1000 com-
pounds against a set of approximately 700 in vitro assay end-
points. Data from the December, 2014 release were downloaded
from the ToxCast website (http://epa.gov/ncct/toxcast/data.
html) [last accessed August 20, 2015]. Nine separate technolo-
gies were used, including receptor-binding and enzyme activity
assays, cell-based protein and RNA expression assays, real time
growth measured by electronic impedance, and fluorescent cel-
lular imaging. Each chemical-assay combination was run in
concentration response and an ACsy or LEC value was calcu-
lated, if applicable, depending on the range of the concentration
response data. The data utilized include outputs from a new
data processing pipeline http:/epa.gov/ncct/toxcast/files/
MySQL=20Database/Pipeline_Overview.pdf. In addition to
revised ACso outputs, data quality flags have been incorporated
to alert users to experimental issues that may confound data
interpretation. The chemical-assay hits of relevance for this
study were reviewed for presence of a potential data quality
issue, indicated by 1 of 17 flags that encompass issues across all
of the ToxCast assay platforms (for more information, visit
http://epa.gov/ncct/toxcast/data.html). Given that many of the
flags are platform-specific and this assessment was compre-
hensive, spanning all chemical-assay hits across all of the tech-
nologies but with a focus on the most potent ACso, for AER
derivation, any of these hits tagged with any flag was removed
from the assessment. Although not the most conservative
approach, this method using the higher confidence in vitro bio-
activity results was selected for an illustrative example. The
original list of 8963 chemical-assay hits across the 178 chemi-
cals was thus filtered down to a list of 4582 hits across 163 of
the chemicals.

Several peer reviewed publications utilizing the bioassay
data from Phase I (Houck et al., 2009; Huang et al., 2011; Judson
et al., 2010; Kleinstreuer et al., 2014; Knight et al., 2009; Knudsen
et al.,, 2011; Martin et al., 2010; Rotroff et al., 2010a, 2013) and 2
from Phase II (Kleinstreuer et al., 2014; Sipes et al., 2013) are
available and provide additional information. A detailed
description of the chemicals screened, assays used and details
related to the new pipeline outputs can be found at the USEPA
download site (http://epa.gov/ncct/toxcast/data.html).

Exposure prediction methods. A probabilistic exposure modeling
approach was employed, as detailed in (Wambaugh et al., 2014).
Briefly, subject-specific NHANES urinary analyte data were col-
lected and analyzed in a reverse PK approach that used a parent-
to-analyte mapping to infer parent compound exposure for 106
chemicals. Because there were multiple combinations of parent
chemical exposures that were consistent with the analyte data, a
range of possible combinations of inferred parent chemical expo-
sures was analyzed. Chemicals were assigned indicator variables
(with value 1 or 0 corresponding to yes or no) indicating evidence
for use of that chemical within broad use categories (eg, con-
sumer use, pesticide active) based on listings in U.S. EPA’s ACToR
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(Aggregated Computational Toxicology Resource) database
(Dionisio et al., 2015). Chemicals were further characterized using
physico-chemical properties and national production volume
data. These simple chemical descriptors were chosen because
they were available for thousands of chemicals.

To identify those factors that most correlated with the
range of inferred chemical exposures, Wambaugh et al. (2014)
assumed a linear model in which the logarithm of inferred
parent exposure depended on an average value and, poten-
tially, some factors among production volume, chemical use
indicator variables, and physico-chemical properties. Each of
the factors in the linear model were scaled and centered and
multiplied by a weight that indicated the relative importance
to the model. The selection of the most predictive factors was
performed using the method of best subsets to estimate
regression weights best subset selection was performed using
complete enumeration of factor combinations (Morgan and
Tatar, 1972). This process was repeated across the range of
possible chemical exposure scenarios to identify the mini-
mum number of factors required to build a parsimonious
model, using the average Akaike information criterion (AIC)
(Akaike, 1974) across the scenarios. A 5-factor model was sug-
gested by AIC. The frequency of occurrence of the factors
among the best subset size was used to determine the opti-
mal model.

Using the factors identified by the best subsets analysis a
second Bayesian regression was performed to jointly infer the
regression coefficients, stoichiometric relationships among
metabolites, and parent exposures from the NHANES urinary
data. This joint Bayesian analysis was performed separately for
the entire NHANES samples (roughly 2000 individuals per
chemical) and subsets of that sample corresponding to 9 demo-
graphic groups and life stages, including: children 6-11 years of
age, children 12-19 years of age, adults 20-65 years of age,
females adults (6-85), males (6-85), adults older than 65 years,
females of child-bearing age (16-49), and adults older than 65
years of age (65-85). Also assessed were adults (mixed gender,
age range) with a body mass index (BMI) <30 and a BMI > 30. A
calibrated model based on the same 5 factors was found to be
predictive across all groups.

The Wambaugh et al. (2014) calibrated model explained
roughly 50% of the chemical-to-chemical variance within the
biomonitoring data. The remaining unexplained variance
served as an empirical estimate of the uncertainty in the pre-
dictions, due to assumptions of the modeling, measurement
limitations of the data, quality issues in the chemical descrip-
tors, and any other factor not taken into account by the mod-
eling analysis of the 106 chemicals that could be inferred
from NHANES urine analytes. Both the calibrated model and
empirical estimate of the uncertainty were extrapolated to
predict exposure for chemicals without biomonitoring data.
The Bayesian analysis was used to predict geometric mean
population exposures with 95% credible intervals around the
mean estimates. The model weights and chemical-specific
predictions and descriptors are given in Wambaugh et al.
(2014).

RESULTS

Evaluation of PK Modeling

Of the 16 chemicals for which Cgs values were derived from pub-
lished human in vivo PK data, 11 were within 10-fold of the
IVIVE-derived Cgs predictions (Table 1). When the IVIVE was


http://epa.gov/ncct/toxcast/data.html
http://epa.gov/ncct/toxcast/data.html
http://epa.gov/ncct/toxcast/files/MySQL%20Database/Pipeline_Overview.pdf
http://epa.gov/ncct/toxcast/files/MySQL%20Database/Pipeline_Overview.pdf
http://epa.gov/ncct/toxcast/files/MySQL%20Database/Pipeline_Overview.pdf
http://epa.gov/ncct/toxcast/data.html
http://epa.gov/ncct/toxcast/data.html

126 | TOXICOLOGICAL SCIENCES, 2015, Vol. 148, No. 1

TABLE 1. Comparison of IVIVE C Predictions with Published In Vivo-Derived Values

Chemical Cgs Values (uM)
Fold Difference
In Vivo IVIVE IVIVE IVIVE HT Refined Key to References
Suspended  Caco-2  Caco-2 Prediction for In Vivo
Suspended Plated Improvement Calculations
Acetaminophen 1.17 0.52 0.57 0.5 0.5 Within 2-fold (Critchley et al., 2005;
Gelotte et al., 2007;
Rostami-Hodjegan et al.,
2002)
2-chloro-2'deoxyadenosine 0.28 1.36 0.58 0.31 4.9 1.1  Within 5-fold (Lindemalm et al., 2005)
5,5'-diphenylhydantoin 4.92 1.59 1.59 0.3 0.4 Within 4-fold (Brien et al., 1975)
6-propyl-2-thiouracil 1.17 1.58 1.80 1.3 1.5 Within 2-fold (Giles et al., 1981; Kabanda
et al., 1996)
Candoxatril 0.023 0.18 0.14 7.8 6.1 Within 6-fold (Kaye et al., 1997)
Chlorpyrifos 0.022 0.24 0.27 10.9 12.3  Unknown (Nolan, 1984, 371)
Coumarin 0.01-0.02 13.63 15.40 1.73  681-1363 87-173 Plated hepato- (Lamiable et al., 1993; Mielke
cytes Other; etal., 2011)
unknown
Diphenhydramine HCl 0.11-0.16 3.18 3.57 0.66 20-29 4-6  Plated (Albert et al., 1975; Blyden
hepatocytes et al., 1986; Luna et al.,
1989; Toothaker et al.,
2000)
Flutamide 0.004-0.005 0.57 0.64 142 160 Inclusion of (Anjum et al., 1999; Doser
intestinal et al., 1997; Radwanski
metabolism et al., 1989)
Haloperidol 0.126 0.07 0.08 1.8 1.6 Within 2-fold (Yasui-Furukori et al., 2002)
Lovastatin 0.004-0.009 0.16 0.18 18-40 20-45 Unknown (Bramer et al., 1999; Kothare
et al., 2007; Mignini et al.,
2008)
PK 11195 0.14 0.58 0.66 4.1 4.7 Within 5-fold (Ferry et al., 1989)
Sulfasalazine 0.2-1.8 11.6 2.5 7-48 1-10  Caco-2 (Adkison et al., 2010; Gu
et al., 2011; Ma et al., 2009)
Triamcinolone 0.05-0.29 0.22 0.11 0.8-4.4 0.4-2.2 Within 5-fold (Argenti et al., 2000;
Derendorf et al., 1995;
Hochhaus et al., 1990)
Volinanserin 0.04 0.03 0.03 3.8 4.3 Within 4-fold (Andree et al., 1998)
Zamifenacin 2.86 0.57 0.64 0.2 0.2 Within 5-fold (Beaumont et al., 1996)

*Values from 2 studies were 1.05 and 1.12; for purposes of this work, 1.1 M was used as comparator.

refined through the incorporation of Caco-2 data (to replace our
assumption of 100% absorption with experimental data) and of
revised clearance data using plated hepatocytes, predictions for
12 of the 16 compounds came within 6-fold of the IVIVE values.
The 4 chemicals that performed poorly were all overpredicted:
chlorpyrifos (12-fold), coumarin (87- to 173-fold) flutamide
((160-fold), and lovastatin (20- to 45-fold). Although better Cg
agreement is preferred, an overprediction provides a conserva-
tive or protective value. Thirteen of the 16 chemicals were over-
predicted using the HT-IVIVE. The 3 that were underpredicted,
however, were within 3- to 5-fold of the in vivo values.
Incorporation of Caco-2 and revised clearance data increased
the model predictivity for 2 and 3 of the 16 chemicals,
respectively.

Distribution Analysis of ACso and Css Values

Distribution analysis of the minimum ACs, values derived for
each chemical across all assay technologies revealed that the
minimum value was 7.4E-05pM for diethylstilbesterol. The
median was 1.6puM, with the lower 5th, 10th, and 25th

percentiles at 0.004, 0.012, and 0.259 uM, respectively (Fig. 1A).
The highest minimum ACs, value was 91.4uM for 1,3-diisopro-
pylbenzene. Assessment of the Css values derived via IVIVE
modeling, assuming an oral administration of 1mg/kg/day
across the 178 Phase II chemicals, revealed a median Cgs value
of 0.94 uM, with approximately 80% of the chemicals possessing
values < 10 uM (Fig. 1B). Moreover, the upper 95th percentile was
230 M, with approximately 7% of the chemicals possessing a
Css > 200 pM.

Influence of Cgs on In Vitro Bioactivities

To demonstrate the impact of incorporating chemical steady-
state behavior on in vitro bioactivity values, Table 2 displays the
range of OEDs that result across 14 chemicals (with hits listed
across 18 assay endpoints) that exhibited bioactivity at an ACsg
value of 1uM. The minimum and maximum OEDs ranged from
0.002 (dinoseb) to 51 mg/kg/day (butylparaben), spanning over 4
orders of magnitude (25 000-fold). OEDs for 9 of the 18 chemicals
were within 5-fold of each other, with values ranging from 0.31
to 1.47 mg/kg/day.
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FIG. 1. Distribution and summary statistics of activity concentration (ACsg) and Css values. A, The minimum ACs, values derived across all technologies for each chemi-
cal underwent distribution analysis and were binned across 7 concentration ranges to display the number of values (bar graph) and cumulative frequency (line graph)
across the relevant range, with the summary statistics provided. B, The 95th percentile Cys values (uM) was predicted using the hepatic chemical clearance rate meas-
ured at 1uM across a population of 10 000 individuals (using Monte Carlo simulation, assuming a unit dose rate of 1 mg/kg/day; see Materials and Methods) were binned
and displayed in a manner similar to A. Values are provided from highest to lowest as a higher predicted Css may indicate a higher chemical exposure. Summary statis-

tics are also provided.

TABLE 2. Oral Equivalent Dose Ranges for Chemicals with Identical In Vitro Potencies but Varied Steady-State Behavior

Chemical Ces® (uM) Assay Endpoint AGso OEDP
(M) (mg/kg/day)

Dinoseb 485.94 Agonist for p53 signaling pathway in HCT-116 cells 1 0.002

Gentian violet 10.01 Decreased expression of tissue matrix metallopro- 1 0.095
tease inhibitor-2 in human keratinocytes

Gentian violet 10.01 Binding to muscarinic acetylcholine receptor M2 1 0.096

Gentian violet 10.01 Decreased expression of urokinase receptor in 1 0.098
human endothelial cells

Didecyl dimethyl ammonium 3.37 Decreased expression of collagen type III in human 1 0.306

chloride primary fibroblasts

Dieldrin 2.32 Activation of estrogen receptor response element in 1 0.431
transfected HepG2 cells

2-Chloro-2'-deoxyadenosine 2.07 Decreased expression of membrane protein CD40 in 1 0.464
human endothelial cells

9-Phenanthrol 2.14 Decreased proliferation of human primary 1 0.481
fibroblasts

Ethion 1.40 Activation of the phenobarbital-responsive 1 0.711
enhancer module in transfected HepG2 cells

Pentachlorophenol 0.87 Inhibition of the peroxisome proliferator-activated 1 1.143
receptor gamma signaling pathway in HEK293
cells

0,p-DDT 0.80 Activation of estrogen receptor response element in 1 1.232
transfected HepG2 cells

Zamifenacin 0.69 Binding to guinea pig dopamine transporter 1 1.457

Zamifenacin 0.69 Binding to human 5-hydroxytryptamine-7 (SHT7) 1 1.471
receptor

Benz[a]anthracene 0.47 Increased expression of matrix metalloprotease-1 1 2.053
in human primary bronchial epithelial cells

Diethylstilbesterol (DES) 0.46 Inhibition of rat CYP2C13 enzymatic activity 1 2.151

N-Phenyl-1,4-benzenediamine 0.33 Decreased expression of tissue factor in human 1 2.927
endothelial cells

Butylparaben 0.02 Activation of estrogen receptor alpha signaling 1 51.140

pathway in transfected HepG2 cells

#Cqs, Concentration at steady state.
POED, oral equivalent dose.



128 | TOXICOLOGICAL SCIENCES, 2015, Vol. 148, No. 1

108+
Triphenyl phosphate

Heptadecafluorooctanesulfonic
acid, potassium salt

1044

1024

1094

102

Estimated Oral Equivalent or Predicted Exposure (mg/kg/day)

10 =10

Tannic acid

- ? H .

T
pof

FIG. 2. Comparison of human oral equivalent doses (OEDs) and exposure predictions for 163 ToxCast Phase II chemicals. Distributions of the OEDs across approxi-
mately 700 in vitro assays for each chemical are depicted as box-and-whisker plots, presented with exposure predictions derived from (Wambaugh et al., 2014). Data are
ordered from lowest to highest median OEDs. A full list of chemicals and supporting data are provided in Supplementary Table S4. Predicted exposures are represented
by floating bars, with the lower bar value representing the geometric mean and the upper bar the upper 95% confidence limit around the mean. The red filled circle
denotes the upper 95% confidence limit derived for the most highly exposed (MHE) population for that chemical. Arrows indicate chemicals with AERs < 1.

Assessment of Exposure Predictions

The HT exposure method makes chemical-specific predictions
for the geometric mean for U.S. populations. Uncertainty in the
estimates is characterized by a 95% confidence. The upper 95%
confidence limit of the geometric mean ranged from 9.26E-07 mg/
kg/day (methyl eugenol) to a maximum of 846E-03 mg/kg/day
(di(2-ethylhexyl)adipate). The range of the 95% confidence limits
were on average 4 orders of magnitude. Comparison of the pre-
dictions for the total population against the most highly exposed
(MHE) population for each chemical revealed that the MHE values
were on average 2- to 3-fold higher (Supplementary Table S4).
However, for the HT exposure model that was used, there were
no statistically significant differences in the mean prediction by
the model for the various populations. For instance, of the 163
chemicals assessed, the 2 BMI groups (BMI>30 and BMI < 30)
emerged as being the predominant MHE population for 32 and 31
chemicals, respectively (Supplementary Table S4). This finding is
likely artifactual due to the relatively sensitive nature of the 95th
percentile to the relative sizes of the sample populations ana-
lyzed. The third most prevalent MHE population was the 12- to
19-year-old group, for 26 chemicals.

Assessment of Dosimetry-Adjusted ToxCast Assay Activity With
HT Exposure Predictions

Figure 2 displays the range of OEDs derived for each chemical
across all relevant assays in a box and whisker format, superim-
posed with floating bars that provide HT exposure predictions
(Wambaugh et al., 2013, 2014). In Figure 2, the floating bars rep-
resent the predictions across the total population, with the
median assigned the lower bound value and upper 95% of the
credible interval around the median assigned the upper-bound
value. The red circle represents the upper 95% confidence inter-
val for the MHE population.

Of the 178 chemicals for which hepatic clearance and
plasma protein binding were successfully measured, 163 pos-
sessed at least 1 ToxCast assay in which bioactivity was
observed/measurable (ie, an ACsy or LEC was estimated). HT
exposure predictions were available for all 163 chemicals. AERs

were calculated for each chemical by dividing the minimum
OED (ie, the most potent assay for that chemical) by the upper
bound of the 95% confidence interval of the geometric mean for
the exposure predictions. When AERs were calculated using the
upper-bound exposure predictions for the total population, 3, 6,
and 13 chemicals possessed AERs < 1, 10, and 100, respectively.
When AERs were calculated using the upper-bound predictions
for the MHE populations, 5, 9, and 19 chemicals possessed
AERs <1, 10, and 100, respectively (Supplementary Table S4).
Distribution of the AERs across the Phase II chemicals assessed
in this study revealed median values of 2.04E+04 and 9.58E-+03
for the total and MHE populations, respectively (Fig. 3).

Closer inspection of the twenty chemicals with the lowest
AERs revealed that organofluorines and insecticides previously
withdrawn from the market comprised 5 of the 12 chemicals
(Table 3). Tannic acid, a plant polyphenol with food and drug
uses yielded the lowest AER (MHE AER 0.017 mg/kg/day). This was
derived based on an OED of 5.83E-04 mg/kg/d for a cell-free assay
measuring glycogen synthase kinase 3 beta (GSK3b) activation,
an enzyme involved in energy metabolism and neuronal develop-
ment (Plyte et al., 1992). Of the 12 chemicals with AERs <1, only
2—naphthalene (6 hits) and organofluorine heptadecafluoroocta-
nesulfonic acid, potassium salt (2 hits)—had bioactivities meas-
ured in more than 1 assay. A complete listing of chemicals,
associated uses and specific information for all assays that
yielded an AER < 10 is provided in Supplementary Table S4.

Assessment of the OED Findings

The potency of a chemical’s OED could be due to either a low
ToxCast assay ACso value (ie, potent activity), a high Cgs value
resulting from the IVIVE, or a combination of the 2. A subset of
chemicals possessing low OEDs was more closely examined to
assess the relative contribution of these 2 factors on the final
values across this chemical space. Of the 11 chemicals that pos-
sessed OEDs < 1 pg/kg/day, 3 were perfluorinated compounds, 3
were insecticides which had been withdrawn from the market,
2 were pharmaceutical compounds, and 1 a plant polyphenol
(Table 3). All but 2 of the chemical-assay hits possessed an
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FIG. 3. AER distribution across the ToxCast Phase Il chemicals assessed. Histograms and cumulative percent data (line graph) are displayed to capture the AER distribu-
tion across the chemicals analyzed for the total population (A) and the MHE population (B). AERs are calculated by dividing the minimum chemical OED by the upper
95% confidence limit around the mean exposure prediction (see Materials and Methods). The bar representing chemicals with AERs < 1 are colored black. Summary sta-

tistics are also provided.

AC50<0.5uM. Six of the eleven chemicals possessed a
Cgs > 200 pM—a criterion representative for the upper 10th per-
cent of all chemicals. Three of the 6 chemicals with high C val-
ues were organofluorines, most of which had former uses as
flame retardants.

DISCUSSION

To assess the utility of in vitro HTS data to predict chemical haz-
ard to human health, the USEPA ToxCast program has eval-
uated libraries of chemicals in multiple phases. Phase I
assessments screened and analyzed data-rich compounds, in
particular food-use pesticides, for which measured physico-
chemical properties, in vivo hazard data, and exposure esti-
mates were available. Knowledge of animal study-based apical
responses enabled the assessment of the HTS data for their abil-
ity to identify biological pathway alterations (Houck et al., 2009;
Judson et al., 2011; Knudsen et al., 2011; Rotroff et al., 2010a) and
prediction of in vivo effects (Kleinstreuer et al., 2011; Martin et al.,
2011, Sipes et al., 2011; Thomas et al., 2012; Wetmore et al., 2013).
Efforts to incorporate chemical dosimetry with HTS data pro-
vided an in vivo context to the in vitro data, allowing an estima-
tion of external dose required to achieve internal bioactivity-
inducing concentrations (Rotroff et al,, 2010b; Wetmore et al.,
2013, 2012). These studies have both indicated the potential of
ToxCast data as a risk-based prioritization tool (Judson et al.,
2011; Kavlock et al., 2009; Krewski et al., 2014) as well as identify-
ing its limitations (Cox et al., 2014; Thomas et al., 2012; Wetmore
et al., 2013). The data and subsequent analyses have provided
useful guidance as successive phases have been undertaken.
Chemicals in the Phase II library were selected to expand the
chemical space addressed in Phase I and include banned and
withdrawn pharmaceutical and industrial compounds along
with compounds currently in commerce (Judson et al., 2009).
Inclusion of pharmaceuticals for which therapeutic activities
are already established—and banned chemicals with well rec-
ognized in vivo apical responses—allows an informed assess-
ment of the bioactivities and potencies observed within the
ToxCast dataset. However, only a limited number of these
chemicals possess exposure information. In previous work
combining HTS data with exposure (Wetmore et al., 2012),

review of USEPA reregistration eligibility documents and data
collected by the CDC NHANES effort provided exposure data for
over 80% of the ToxCast Phase I chemicals. When applied to the
Phase II chemicals assessed in the current study, data were
available for many fewer compounds, only 7%.

We addressed this in this study by employing a probabilistic
modeling approach to approximate exposures in a HT manner
(Wambaugh et al., 2014). Even with the 4 order of magnitude
span of the 95% credible interval around the geometric mean
exposure predictions (Fig. 2), the ability to compare the upper-
bound predictions against dosimetry-adjusted bioactivities
provides a needed, risk-based strategy that can be applied in
prioritization strategies. Further, as refined exposure modeling
strategies emerge, their values could be readily incorporated
with in vitro data to either refine lower tier assessments or lay
the groundwork for strategies to be applied in higher tiers that
require more data.

Review of the Phase II chemical AER findings provides
insight into future priorities in exposure modeling efforts. The
frequency of AERs <1 derived in this assessment were signifi-
cantly less than if predictions from an earlier version of this
modeling approach (Wambaugh et al, 2013) were employed
(data not shown). This decrease is due in large part to the ability
of the second model to explain 50% of the variability after
assessment across multiple chemical product and use descrip-
tors as opposed to 20% for a model based on far-field fate and
transport models (Wambaugh et al., 2013). Recent—and future—
efforts that increase availability of chemical use and product
formulation information should help significantly in refining
near-field modeling tools and reducing uncertainty around the
estimates to provide more accurate exposure predictions
(Dionisio et al., 2015; Goldsmith et al., 2014). It should be noted
that an AER cutoff of 1 is used primarily for illustrative pur-
poses. Given that the upper-bound exposure predictions reflect
the upper 95th percent confidence limit around the geometric
mean, these values do not reflect an approximation of expo-
sures to a sensitive population. Given this, a higher AER cutoff
(eg, 100) may be more appropriate to consider in such strategies.

Phase II AER assessment also outlined important considera-
tions related to HTS data interpretation. For instance, for all but 1
of the 7 chemicals flagged using the 2014 exposure model, only 1
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TABLE 3. Use and Assay Information for Chemicals with the 20 Lowest Activity:Exposure Ratios

Chemical Description/Use No.Assay  ACso (uM)© Oral Exposure AER
Hits Where Equivalent® Total (MHE AER)
MHE? AER® (mg/kg/day) (MHE)
<100 (mg/kg/day)
Tannic acid Plant polyphenol; food, drug uses; 5 0.0002 5.83E-04 1.35E-02 0.043
mordant during dyeing process (3.36E-02) (0.02)
Triphenyl phosphate Plasticizer; fire retardant 3 0.0006 7.66E-04 6.57E-03 0.117
(1.41E-02)  (0.054)
Heptadecafluorooctanesulf-  Organofluorine 12 0.013 5.99E-05 3.21E-04 0.187
onic acid potassium salt (8.72E-04) (0.069)
Mirex Banned organochlorine insecticide 3 0.01144 1.61E-04 1.55E-04 1.040
(3.13E-04) (0.516)
Ammonium Organofluorine 9 0.20182 7.48E-04 3.24E-04 2.310
perfluorooctanoate (1.09E-03) (0.684)
Tributyl phosphate Solvent; plasticizer 3 1.28 2.04E-02 4.03E-03 5.05
(6.60E-03)  (3.09)
Potassium perfluorohex Organofluorine 2 0.0825 3.09E-04 3.09E-05 10.02
anesulfonate (7.27E-05) (4.26)
Dioctyl phthalate plasticizer 6 4.88 7.62E-02 7.49E-03 10.18
(1.34E-02)  (5.68)
DES Nonsteroidal estrogen 6 0.000074 1.61E-04 1.49E-05 10.82
(2.84E-05)  (5.68)
Diphenhydramine Antihistamine drug 2 0.0238 4.91E-03 1.95E-04 25.21
hydrochloride (4.27E-04) (11.512)
Dinoseb Herbicide 6 0.35 7.20E-04 1.76E-05 40.81
(2.87E-05)  (25.12)
Oxytetracycline antibiotic 1 0.004 3.17E-03 7.11E-05 44.64
hydrochloride (1.06E-04) (29.92)
1,2-Benzisothiazolin-3-one Microbicide; fungicide 4 0.424 5.89E-02 7.78E-04 75.69
(2.00E-03) (29.48)
Didecyl dimethyl ammo- Biocide; disinfectant 2 0.0139 4.13E-03 3.81E-05 108.34
nium chloride (9.34E-05) (44.18)
Perfluorononanoic acid Organofluorine 1 0.601 2.39E-03 2.20E-05 108.39
(5.17E-05)  (46.18)
Perfluorodecanoic acid Organofluorine 1 0.877 3.87E-03 3.46E-05 111.80
(4.66 E-05)  (82.95)
4-(2-methylbutan-yl)phenol  phenol 1 0.634 2.31E-01 1.85E-03 125.23
(4.58E-03)  (50.43)
Benzophenone UV blocker; packaging 1 0.306 4.85E-01 2.81E-03 172.37
(5.14E-03)  (94.21)
Endrin Organochlorine d 0.272 1.14E-03 6.55E-06 174.43
(9.97E-06)  (114.51)
Gentian violet Dye; topical antifungal drug 1 0.01 9.99E-04 5.27E-06 189.56
(1.17E-05)  (85.05)

*MHE, most highly exposed.
AER, activity-to-exposure ratio.

“Values listed are associated with the most potent assay for each chemical. Values associated with other chemical-assay hits (where relevant) are listed in

Supplementary Table S4.
9dAll AERSs returned for this chemical exceeded 100.

or 2 assay hits per chemical resulted in an AER < 1. The ToxCast
assays were originally selected from those that were commer-
cially available and in use by the pharmaceutical industry and, as
such, the bioactivities interrogated in ToxCast focus primarily on
therapeutic or receptor-mediated events. Consequently, closer
examination of specific hits is warranted to differentiate biologic
perturbations from measures of adversity. Importantly, HTS hits
for certain pharmaceuticals in this list were consistent with their
therapeutic target (Supplementary Table S4).

Comparison of the IVIVE-based predictions against in vivo
data revealed that this simplified IVIVE strategy did reasonably
well in predicting in vivo PK behavior: 12 of the 16 chemicals
assessed coming within 10-fold of the predictions (Table 1). For

the 4 that exceeded 10-fold, the Cgs values were all overpre-
dicted. Three chemicals were underpredicted, but these were
within 2- to 5-fold of the in vivo values. Flutamide, an antiandro-
gen drug used in the treatment of prostate cancer, was
overpredicted by over 100-fold. Flutamide undergoes extensive
first-pass metabolism, hydrolyzed primarily by carboxylester-
ase 2 and arylacetamide deacetylase, 2 major serine esterases
expressed in both the liver and the intestine (Imai and Ohura,
2010; Kobayashi et al., 2012). The Cgs overprediction is likely due
to the lack of consideration of extrahepatic metabolism in the
IVIVE model. In addition, the chemicals for which the IVIVE
model yielded the poorest agreement, including flutamide,
all possessed relatively low in vivo Css values of <0.03uM


http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1
http://toxsci.oxfordjournals.org/lookup/suppl/doi:10.1093/toxsci/kfv171/-/DC1

131

WETMORE ET AL.

s[19° zodoH
— S9L €0-38%'T 10-I%/'8 ut [enjusjod SUBIUISW [ELIPUOYDO}IUL SSEIIDA( S1'68S Tousydonuip-94-[AYI9N-¢
ST[®2 BTy
-1da [erypuoiq Arewnid uewNy Ul B}9G-1030€]
— SO X €0-162°T 10-382°9 3013 SUTWLIOJSURIT) JO UOISSa1dXS PaseaIds ¥6°S8Y gasoulq
s[192 zHdaH paldojsuen} ul
SOA SOA €O0-IHT'T 10-92/°C Juswa[e asuodsai 103deda1 Us80IISS JO UOIIRATIDY 0Z°8ET uupug
S[[22 Iea[dnuUouoW pooiq [ersydusd uewny
SOA — $0-966'6 20-300°T ur eyd[e T UR{NSI9IUL JO UOISSaIdXa 9SBAIDAJ 10°0T 19[0TA UBLIUD
S[[9 [BI[IOPUS UBWINY UL U1}
SOA — $0-966'6 20-300'T -o01d uorsaype unda[as-J Jo uorssaidxa paseaidad 10°0T 19[01A UBLIUD
S[[22 Iea[dnuouow pooiq rerayduad
SOA — $0-166'6 Z0-300°T UBWINY Ul 8-UL{NS[IS}UL JO UOISSaIdXd pPasea1daq 10°0T 19[01A UBL}USD
S92 €6¢3AH paidjsuen ur Aem
SOX — $0-3€/°8 $0-120°% -iped Surreusts 101deda1 US3013S3 JO UOTIBATIDY 9%'0 [onsaqusAyILIq
ewiwed-103dada1 pajea
S9A — $0-999°£ ¥0-960°9 -noe-103e19)101d Swosixorad uewny o) urpulg 6470 a1eydsoyd [AuaydiL],
1[ES WNIUOUIUIR
SOA SOA $0-98%'/ 10-920°C f1anoe onewfzus gDZJAD UBWINY JO UOTIQIYU] 96'69C PpIDE DIOUBIDO0ION[JEIIPRIUD]
s[[e2 zodeH
SOA SOA $0-902°L 10-30S°€ ur [enualod SUBIqUISW [BLIPUOYDONW PISEIINDJ ¥6°S8Y gasoulq
S9L — $0-3€8'S $0-300'C A1AM10R dDNRWAZUS ESD UeWNY JO UONIqIYU] $€°0 pIde dluUB]
s[[92 zHdaH pajodjsuen; ut Kemyred
SOA — $0-926°S $0-908°T Surreusis eydfe 103daoa1 us8o13ss Jo UOHBATDY 9%°0 ronsaqusiAyiaig
ajeuUOj[NSauexayoIonfIad
S9L S9L $0-3€T°€ 20-109'8 £1A1108 DNBWAZUS ZTIYdAD UBWINY JO UOTIQIYU] 95'99¢ wnissejoq
Sjeuojnsauexayoronfrad
S9L S9L %0-360°E 20-152'8 A1AMDE DNRWAZUS 6DZJAD UBWNY JO UOTIQIYU] 95'99¢ wnissejoq
S92 £6¢3AH paiddjsuen ut Aem
SOA — $0-99/°C $0-9/2°T -yped Surjeudts 103dada1 us3013S3 JO UOTIBATIDY 9%°0 ronsaqusiAyiaig
S92 zodaH paldajsues) ut
SOA — $0-961°C $0-910°T JuUsWAe asuodsai 103dada1 Us30131S9 JO UOTIBATIDY 9%°0 [onsaqUISIAYILIq
SOA — $0-419°T S0-95h°/ 103dada1 usadornyss uewny o} Surpuig 9%'0 [onsaqusAyYILIq
S[[92 Iea[dNUOUOW pooiq [ersyduad uewny
SOA — $0-919°'T 20-3%T°T ut ¢g urpuedelsoid jo uoissaidxa paseadu] 80/ XOITN
[es wnissejod poe
SOA SOA 50-366°S Z0-30€'T f1anoe dnewAzus 6DZJAD UBWINY JO UOTIQIYU] 10°/12 Jruojnsaueldooionjjedsperdsy
() (Kep/3s1/Bu)
50> %DV () 00T <D juseambs [e10 () °sDv jutodpug Aessy () =5 [BoTW9YD

Kep/33/31 T > sg0 Y3 S[edTWLAYD 10] UOTIBULIOJU] ABSSY pue Anawrsoq Surpuodsaiio) & I1dV.L



132 | TOXICOLOGICAL SCIENCES, 2015, Vol. 148, No. 1

compared to the other chemicals. This suggests that the conser-
vative assumptions employed in the IVIVE model limit our abil-
ity to adequately predict blood Css values for those chemicals
that are highly cleared in vivo. Indeed, coumarin, flutamide, and
lovastatin all possess in vivo blood Cgs values of 0.01 uM or lower,
down to 0.004 uM for flutamide. Of these 3 chemicals, the lowest
predicted value was obtained for lovastatin, at 0.18 uM.

Additional work was performed to ascertain the impact of
certain model assumptions and experimental design considera-
tions on the predictive performance of the IVIVE. First, intesti-
nal permeability data were obtained using the Caco-2 model
and incorporated into the IVIVE to assess the impact of our
assumption of 100% intestinal absorption. Caco-2 data
improved the predictive performance of 3 of the 16 chemicals
assessed, although 2 of these 3 chemicals were already pre-
dicted to be within 5-fold of the in vivo values using the conser-
vative assumption. When these data are combined with
equivalent data for Phase I chemicals (Wetmore et al., 2012), the
assumption of 100% intestinal absorption appears to be
adequate for over 85% of the chemicals, because incorporation
of Caco-2 data significantly improved the predictions for only 4
of the 29 chemicals assessed.

Use of pooled donor hepatocyte suspensions to measure
hepatic clearance as performed here is considered to be the
method of choice, as this system more accurately captures
in vivo clearance than other available in vitro systems (Hallifax
et al., 2010; Li et al., 1999; Pelkonen et al., 2013) while minimizing
the impact of donor variability. However, hepatocyte suspen-
sions are not suitable for quantitating clearance of low turnover
compounds with Cli, yiro<2 pl/(min x 10° cells), likely due to
depletion of cofactor reserves over the 240 min time course
(Houston et al., 2012). Three of the 16 chemicals for which no
measurable clearance was detected were also assessed using
plated hepatocytes over a 48-h time course. Clearance was
detected in this more sensitive system and improved the IVIVE
predictions, particularly for coumarin and diphenhydramine
HCI (Table 1). However, use of plated systems requires consider-
ation of additional factors. First, culture conditions are known
to alter activity of cytochrome P450 enzymes, so attention to
plating methods and characterization of enzyme activity should
be monitored. Second, donor pools cannot be successfully used
in these plated systems currently (Smith et al., 2012), so assess-
ments across multiple donors need to be conducted to accu-
rately determine variability in Cli, vitro-

Inclusion of a range of pharmaceuticals and other chemical
families (eg, organoflurorines, persistent organic pollutants, etc.)
in the Phase II list provided an opportunity to assess the contribu-
tion of potent bioactivities or chemical pharmacokinetics to rela-
tively low OEDs relative with these compounds. Eleven chemicals
(approximately 7% of total assessed) were identified as having an
OED < 1 pg/kg/day, across 19 assay endpoints (Table 4). The main
driver for a potent OED was ACs, potency rather than a high Cgs.
Interestingly, only 2 of these 11 chemicals were drugs: the syn-
thetic nonsteroidal estrogen diethylstilbesterol and Gentian
violet, an antiseptic dye with antibacterial and antifungal proper-
ties. Regardless, most of the assay hits were related to anti-
inflammatory and other drug target activity (eg, IL-8, ILl-a
downregulation; CYP2C9, CYP4F12). The work described here
uses presence and potency of a ToxCast hit—without regard for
chemical mode of action or adverse outcome—as a conservative
strategy that is appropriate in prioritization efforts. However, the
context and nature of these activities will need to be more care-
fully considered as related efforts—particularly those that go
beyond prioritization—move forward.

The ToxCast and ExpoCast programs were designed to
address the chemical safety needs of the USEPA through devel-
opment and implementation of HT toxicity testing and expo-
sure modeling strategies. By incorporating recent outputs of
these 2 programs, this study provides an up to date assessment
of the status of these efforts. It has also identified areas that
warrant further attention. Refinement of HT hazard estimates
to identify relevant modes of action and downstream adverse
effects would arguably provide a more appropriate basis for a
point of departure calculation than an approximation based on
the most potent assay hit. Moreover, emergence of multiple HT
probabilistic and traditional exposure modeling tools with a
needed emphasis on near-field exposures (Isaacs et al., 2014;
Wambaugh et al., 2013, 2014; Zhang et al., 2014) have under-
scored the need for expansion and refinement of existing data
sources that adequately capture chemical usage, product com-
position, and functional information. With efforts already
underway to address these limitations, this strategy is poised to
undergo key refinements that will enable its utilization as part
of a Tier 1 prioritization strategy (Thomas et al., 2013).
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