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Objective: Visual impairment is a common non-motor symptom (NMS) in

patients with Parkinson’s disease (PD) and its implications for cognitive

impairment remain controversial. We wished to survey the prevalence of visual

impairment in Chinese Parkinson’s patients based on the Visual Impairment in

Parkinson’s Disease Questionnaire (VIPD-Q), identify the pathogens that lead

to visual impairment, and develop a predictive model for cognitive impairment

risk in Parkinson’s based on ophthalmic parameters.

Methods: A total of 205 patients with Parkinson’s disease and

200 age-matched controls completed the VIPD-Q and underwent

neuro-ophthalmologic examinations, including ocular fundus photography

and optical coherence tomography. We conducted nomogram analysis and

the predictive model was summarized using the multivariate logistic and

LASSO regression and verified via bootstrap validation.

Results: One or more ophthalmologic symptoms were present in 57% of

patients with Parkinson’s disease, compared with 14% of the controls (χ2-test;

p < 0.001). The visual impairment questionnaire showed good sensitivity and

specificity (area under the curve [AUC] = 0.918, p < 0.001) and a strong

correlation with MoCA scores (Pearson r = −0.4652, p < 0.001). Comparing

visual impairment scores between pre- and post-deep brain stimulation

groups showed that DBS improved visual function (U-test, p < 0.001). The

thickness of the retinal nerve fiber layer and vessel percentage area predicted

cognitive impairment in PD.

Interpretation: The study findings provide novel mechanistic insights into

visual impairment and cognitive decline in Parkinson’s disease. The results

inform an e�ective tool for predicting cognitive deterioration in Parkinson’s

based on ophthalmic parameters.

KEYWORDS

Parkinson’s disease, visual dysfunction, cognitive impairment, visual impairment in

Parkinson’s disease questionnaire, deep brain stimulation
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Introduction

Visual impairment is a common non-motor symptom

(NMS) in patients with Parkinson’s disease (PD), affecting

up to 78% of patients with PD (Hamedani et al., 2020).

Although vision is an important determinant of quality of

life, visual impairment is often underreported by patients and

overlooked by their physicians (Ekker et al., 2017). Deficits

in contrast sensitivity, color discrimination, and stereopsis

are widespread in patients with PD and are associated

with the risk of cognitive decline (Leyland et al., 2020;

Murueta-Goyena et al., 2021). These parameters are not

routinely assessed by ophthalmologists and neurologists. Visual

dysfunction in PD is subtle and unlikely to be captured

outside of the research setting. We introduced the Visual

Impairment in Parkinson’s Disease Questionnaire (VIPD-Q)

(Borm et al., 2020) to provide insight into the relationship

between ophthalmologic problems and cognitive impairment in

patients with PD.

The role of visual dysfunction as a biomarker of disease

and a predictor of cognitive impairment in PD has been

reported in previous studies (Weil et al., 2016). These studies

usually ascribe visual deficits to intracranial impairment. As the

understanding of the gut–brain axis deepens, the knowledge

basis for visual dysfunction in PD will likely change over

time. We conducted metatranscriptomic sequencing and 16s

rDNA sequencing in PD patients with and without visual

impairment to identify the relationship between ophthalmology

dysfunction and microbiota dysbiosis in patients with PD. To

our knowledge, we have conducted the first study focusing on

this issue.

We utilized optical coherence tomography (OCT) and

machine learning software to analyze the ocular characteristics

of patients with PD, such as retinal nerve fiber layer (RNFL)

thickness andmicrovascular density in the fundus. These indices

have been demonstrated to correlate with cognitive status in PD

within a few pioneering studies (with relatively small sample

sizes ranging from n = 17 to n = 63); only a limited number of

ophthalmologic symptoms have been evaluated in PD (Kwapong

et al., 2018; Murueta-Goyena et al., 2019, 2021).

We aimed to systematically determine the application value

of VIPD-Q in patients with PD and explore the link between

ophthalmology dysfunction and cognitive impairment.

Abbreviations: PD, Parkinson’s Disease; VIPD-Q, Visual Impairment in

Parkinson’s Disease Questionnaire; DBS, Deep Brain Stimulation; RBD,

rapid eye movement (REM) sleep behavior disorder; OCT, Optical

Coherence Tomography; RNFL, Retinal Nerve Fiber Layer; VPA, vessel

percentage area; UPDRS III, Unified Parkinson’s Disease Rating Scale

Section III; MoCA, Montreal Cognitive Assessment.

Methods

Study design

We used the VIPD-Q screening questionnaire to assess

ophthalmologic symptoms and UPDRSIII and MoCA scores

in patients with PD (Borm et al., 2020). The questionnaire

was administered by two university hospitals (Qilu Hospital,

First Affiliated Hospital) and scored by two clinicians (one

ophthalmologist, HW and one neurologist, CZ) between

June 2019 and July 2021. Participants underwent neuro-

ophthalmologic examinations, including ocular fundus

photography, automated perimetry, and OCT. Patients

undergoing deep brain stimulation (DBS) took an extra VIPD-

Q 3 months after the operation. Exclusion criteria included

secondary causes of parkinsonism, prior brain surgery (except

DBS), glaucoma, intraocular surgery, diabetes, and other

diseases that affected the visual field or neurologic systems, and

the current use of medications that affected visual function.

Ethical considerations

The study was conducted in accordance with the principles

of the Declaration of Helsinki. The Ethics Committees at

the Qilu Hospital (protocol KYLL-202008-065) and the First

Affiliated Hospital of Shandong First Medical University

(protocol S569) approved this study. Written informed consent

was obtained from all participants.

Measures

RNFL and retinal thickness were measured using the

Spectralis OCT device (CIRRUS 5000, Carl Zeiss, Oberkochen,

Germany). Scans were performed by the same operator

(HW). Image acquisition was conducted using the TruTrack

eye-tracking technology that recognizes, locks onto, and

follows the patient’s retina. Ocular fundus photography was

performed by an ophthalmologist using a digital ocular

fundus camera (VISUCAM 224, Carl Zeiss, Germany)

in both eyes in patients with PD. At least one reliable

picture per eye was acquired for each patient. Images

of ocular fundus vessels were extracted based on the U-

Net model (github.com/orobix/retina-unet#retina-blood-

vessel-segmentation-with-a-convolution-neural-network-u-net)

(Liskowski and Krawiec, 2016) using a novel software

(github.com/jellygrey/OVE/tree/master/bin). Vessel pictures

were measured via the Angiotool software (version 0.6a) to

obtain vessel-related data (Segarra et al., 2018).

We performed perivascular spaces (PVS) quantification in

slices containing the maximum amount of PVS in the basal
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ganglia (BG) region using ITK-SNAP software (version 3.8; the

University of Pennsylvania, the University of North Carolina at

Chapel Hill) (Shen et al., 2021). Boundaries of all identified PVS

were delineated manually. This software automatically provides

the voxel number for identified PVS in each region. PVS volume

was calculated as the sum of individual volumes of the identified

PVS in each region per mm3. We then obtained PVS counts and

volumes for each region.

Nomogram construction and validation

Multivariable logistic regression was applied according to

sex, age, disease duration, VIPD-Q score, RNFL thickness,

average vessel percentage, RBD status, hyposmia, and

constipation. The “glmnet” package was used to conduct

LASSO regression to screen meaningful variants, which were

verified by bootstrap validation. A nomogram was generated

via the “regplot” R package as a quantitative tool for predicting

the risk of cognitive impairment. Consistency between model

predictions and clinical outcomes was assessed using the

concordance index (C-index). A calibration plot was generated

to evaluate the accuracy of MoCA predictions. Decision curve

analysis (DCA) was applied to evaluate nomogram performance

using the “rmda” R package.

Statistical analysis

Statistical analyses were performed using the Prism software

(version 8.0.1; San Diego, CA, USA), R (version 3.6.1), and

RStudio (version 1.2.1335). Patients with PD were compared

with controls using χ
2-tests for categorical variables (education,

sex, comorbidity, and visual impairment) and Mann-Whitney

U-tests for nonparametric continuous variables (age, VIPD-Q

score, score per domain, MoCA score, UPDRSIII score, and

levodopa equivalent dose [LED]). To explore correlations, we

fit linear models and calculated Spearman’s r-value. Univariate

logistic regression was used to evaluate the statistical significance

(defined as p < 0.05) of associations between visual function

parameters and motor and non-motor symptoms.

Results

Participant characteristics

A total of 405 participants completed the questionnaire:

205 patients with PD and 200 age-matched controls (1:1 ratio).

Ophthalmologic symptoms were present in 57% of patients

with PD (vs. 14% of the controls; χ2-test: p < 0.001). Baseline

characteristics and prevalence of ophthalmologic symptoms are

summarized in Table 1. The groups were well balanced for age

and comorbidity.

VIPD-Q correlated with UPDRSIII, and
MoCA scores

The PD group experiencedmore ophthalmologic symptoms,

reflected by median total VIPD-Q scores (Mann-Whitney U-

test, p < 0.001; Figure 1A). Figure 1B shows the number of

ophthalmologic symptoms per domain (PD vs. control, χ2-test:

ocular surface, 51.7 vs. 13%; intraocular domain, 43.9 vs. 10%;

oculomotor domain, 58.1 vs. 13%; optic nerve domain, 46.3 vs.

5%; p < 0.001).

Based on a previous study (Borm et al., 2019), we reran tests

to identify the sensitivity and specificity of the VIPD-Q in the

Chinese population. A receiver operating characteristic (ROC)

curve indicated good sensitivity and specificity (AUC= 0.918, p

< 0.001; Figure 1C); this result was verified using the Hosmer–

Lemeshow test (p = 0.247). According to Youden’s index, the

optimal ROC cut-off value was 7 (sensitivity, 88.4%; specificity,

90.3%; Youden’s index, 0.787). We divided the population into a

low VIPD-Q group (score < 7; PD with normal visual function)

and a high VIPD-Q group (score ≥ 7; PD with impaired visual

function). The high VIPD-Q group showed higher UPDRSIII

scores (Mann-Whitney U-test, p = 0.0013) and lower MoCA

scores (Mann-Whitney U-test, p = 0.0004) than the low VIPD-

Q group (Figure 1D). VIPD-Q scores were positively associated

with UPDRSIII scores (Pearson r = 0.3675, p < 0.0001) and

negatively associated with MoCA scores (Pearson r = −0.4342,

p < 0.0001; Figure 1E).

STN-DBS and non-motor symptoms
a�ected VIPD-Q scores

To determine factors influencing VIPD-Q scores in PD, we

compared the LED between PD patients with and without visual

impairment. No statistically significant differences were found

(t-test, p = 0.2689; Figure 2A). As DBS is an option for PD

treatment, we compared the improvement efficiency between

the high- and low-VIPD-Q groups. The groups had similar

DBS improvement (t-test, p = 0.7503; Figure 2B). However, at

their 3-month follow-up, the post-DBS group showed a clear

decrease in the VIPD-Q score as compared to the pre-DBS group

(13.0 vs. 10.50, Mann-Whitney U-test, p < 0.001; Figure 2C).

As low-frequency stimulation was reported to improve axial

symptoms more effectively than high-frequency stimulation

(Xie et al., 2017), we compared groups with different stimulation

parameters via t-tests; no differences were found (Figure 2D).

Other NMS were shown to affect VIDP-Q scores in our

study. The RBD-positive group had a higher visual impairment

percentage (score > 6; chi-square: p = 0.0139), especially in the

constipation-positive group (p < 0.0001; Figure 2E). Hyposmia

did not seem to affect visual function (chi-square, p = 0.0599),

although the nerve fibers were anatomically close to each other.
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TABLE 1 Participant characteristics and Prevalence of ophthalmologic symptoms.

PD (n = 205) Con (n = 200) P-value

Men, n (%) 108, (53) 106, (53) NS

Age, y, median (IQR) [range] 63 (12) [21–82] 64 (10) [20–74] NS

Disease duration, y, median (IQR) [range] 8 (5) [2–30] NA NA

Levodopa dose equivalent, mg, median (IQR) [range] 562 (375) [0–2,000] NA NA

Hypertension 45, (22) 36, (18) NS

Stroke 16, (8) 14, (7) NS

COPD 44, (22) 44, (22) NS

Uses visual aid, n (%) 72, (35) 24, (12) <0.001

Using a walking aid outside, n (%) 70, (34) 14, (7) <0.001

Falls present (last 6 months) 20, (10) 4, (2) <0.001

Ophthalmologic symptoms reported weekly or daily, n (%)

Ocular surface

1. I have blurry vision when I read or work on a computer. 93, (45) 68, (34) <0.001

2. I have a burning sensation or gritty feeling in my eyes 24, (12) 16, (8) <0.001

3. I have mucus/slime or particles in my eyes or eyelids. 22, (11) 16, (8) <0.001

4. I have watery eyes. 31, (15) 34, (17) <0.001

Intraocular

1. When I read, some letters disappear 24, (12) 16, (8) <0.001

2. Lines that should be straight appear to be wavy or blurred. 26, (13) 6, (3) <0.001

3. I won’t go out alone in the evening or at night because my night vision is insufficient. 21, (10) 10, (5) <0.001

4. When I drive at night, the oncoming headlights cause more glare than before. 64, (31) 38, (19) <0.001

Oculomotor

1. Quick movements are hard to follow with my eyes. 112, (55) 32, (16) <0.001

2. I have double vision. 118, (58) 40, (20) <0.001

3. I can read better with one eye closed. 16, (8) 20, (10) <0.001

4. I have trouble with depth perception. I find it hard to say which one of 2 objects is closer. 18, (9) 8, (4) <0.001

Optic nerve

1. Colors seem to be paler than before. 18, (9) 16, (8) <0.001

2. I can’t read plain text on a colored or gray background. 54, (26) 22, (11) <0.001

3. I run into objects or people or feel that parts of my visual field are missing. 14, (7) 8, (4) <0.001

4. I have problems with rapid changes of light intensity. 60, (29) 10, (5) <0.001

5. I see things that other people do not see (hallucinations). 60, (29) 12, (6) <0.001

Thinner RNFL was found in PD patients
with visual impairment and cognitive
dysfunction

Patients with PD were divided into a cognitively impaired

group (MoCA<26) and a normal control group (MoCA≥26).

OCT examination was conducted to determine the thickness

of the RNFL (Figure 3A). The deviation map for RNFL is

summarized in Figure 3B. Results indicate that the superior

and inferior directions in the perifovea region presented a

higher deviation in the visually impaired group compared to

the Asian average RNFL thickness (Figure 3B). Thinner RNFL in

the ocular fundus was found in the cognitively impaired group

(t-test, p < 0.001; Figure 3C). We examined VIPD-Q scores

according to RNFL thickness via Spearman correlation analysis

(p < 0.001, Pearson r = −0.5302; Figure 3D). Correlations

between RNFL, MoCA, and UPDRSIII were analyzed, with

positive associations between RNFL thickness and MoCA score

(p < 0.001, Pearson r = 0.5513; Figure 3D), and a negative

correlation was found between UPDRSIII score and RNFL

thickness (p < 0.001, Pearson r =−0.4996; Figure 3E).

Vessel density in ocular fundus correlated
with MoCA score and PVS number in PD

The vessels in the ocular fundus were extracted and analyzed

via software (Figure 4A). Data showed the vessel percentage area

(VPA), which indicated that vessel density in the ocular fundus

was obviously lower in the cognitively impaired group (t-test,
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FIGURE 1

VIPD-Q scores for patients with PD in relation to MoCA and UPDRSIII scores. (A) Boxplot of the median total VIPD-Q score in the PD and control

groups. (B) Number of ophthalmologic symptoms reported per domain (compared between patients with PD and controls). (C) The validation of

sensitivity and specificity for the VIPD-Q via an ROC curve. (D,E) The VIPD-Q score was correlated with MoCA and UPDRSIII scores in PD.**p <

0.01 and ***p < 0.001. PD, Parkinson’s disease; ROC, receiver operating characteristic; VIPD-Q, Visual Impairment in Parkinson’s Disease

Questionnaire; UPDRS III, Unified Parkinson’s Disease Rating Scale Section III; MoCA, Montreal Cognitive Assessment.

p < 0.001; Figure 4B). We then evaluated the relation between

VIPD-Q scores and VPA via Spearman correlation analysis (p=

0.001, Pearson r = −0.3485; Figure 4C). Correlations between

VPA and MoCA were analyzed, with positive associations

between VPA and MoCA scores (p < 0.001, Pearson r =

0.3338; Figure 4C). When retrospect the MRI images, PVS

counts were likewise abnormal in the visually impaired group

(Figure 4D). PVS counts were higher in the high VIPD-Q

group than in the control group (t-test, p = 0.006; Figure 4E);

PVS volume did not differ (t-test, p = 0.2679; Figure 4E). We

found negative correlations between VPA and PVS count (p =

0.0278, Pearson r =−0.2009; Figure 4F). Thus, eye examination

may open a window for observing the process of intracranial

disease noninvasively.

Nomogram based on ophthalmic
parameters for predicting cognitive
impairment risk

To evaluate the prognostic effect of ophthalmologic factors

on cognitive impairment, numerous events (age, disease

duration, sex, VIPD-Q score, RNFL thickness, vessel percentage

area, etc.) were analyzed using multivariate logistic and LASSO

regression (Figure 5A). Age, VIPD-Q score, RNFL thickness,

and VPA were screened and verified via a bootstrap validation

(Figure 5B). A nomogram was constructed based on these

events (Figure 5C). The point scale in the nomogram was

utilized to generate points for these variables; the risk of

cognitive impairment (MoCA score < 26) was determined

by accumulating the total points for all variables. The C-

index of this nomogram was good, reaching 0.8373 (95%

CI: 0.766–0.908). Consistency between predicted and observed

clinical outcomes for patients with PD was confirmed via the

calibration plot (Figure 5D). DCA showed a higher overall

net benefit by applying the nomogram than either the “treat

all” or the “treat none” approach within a range of threshold

probabilities>10% (Figure 5E). These findings demonstrate that

the ophthalmic event-based nomogram is an optimal model

for predicting cognitive impairment in patients with PD in

clinical management.

Discussion

In this study, we demonstrated that the VIPD-Q could be

applied to the Chinese population. Results revealed that patients
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FIGURE 2

DBS and non-motor symptoms a�ected VIPD-Q scores in PD. (A,B) Groups with di�erent VIPD-Q score presented similar LED and DBS

improvements (C). DBS improved VIPD-Q scores. (D) Stimulation parameter changing did not a�ect the VIPD-Q score. (E) PD patients with RBD

or constipation had higher percentage of visual impairment (VIPD-Q>6). ns, no significant and ***p < 0.001. DBS, deep brain stimulation; RBD

rapid eye movement (REM) sleep behavior disorder; VIPD-Q, Visual Impairment in Parkinson’s Disease Questionnaire.

with PD have a higher prevalence of ophthalmologic symptoms,

as reflected by a high VIPD-Q score, suggesting that PD itself

or its treatment has an effect on an ophthalmologic function

beyond the normal aging process. These results are in agreement

with a previous European study (Borm et al., 2020).

To verify the sensitivity and specificity of the VIPD-Q, we

plotted the ROC curve and calculated the cut-off value. We were

thus able to screen PD patients with visual impairment in a

large population. To our knowledge, the ideal cut-off value has

not been reported previously and may provide a reference for

similar studies.

An earlier study reported that visual impairment is a

sensitive marker for PD (Weil et al., 2016); one study

showed better discriminatory power for the early diagnosis

of PD than any other NMS (Diederich et al., 2010). Our

results demonstrated the predictive value of VIPD-Q for

MoCA and UPDRSIII scores, echoing earlier findings that

visuospatial motion perception and RNFL thickness correlate

with movement disorders in PD (Beylergil et al., 2021; Murueta-

Goyena et al., 2021).

The VIPD-Q scores indicated that PD or its treatment

influence visual function. Studies report that oral levodopa

rescues retinal morphology and improves visual function in

amblyopia (Lee et al., 2019; Wang et al., 2020). We assumed that

PD patients without ophthalmologic symptoms would benefit

from a higher levodopa dose. However, our results conflict with

this hypothesis, as different VIPD-Q score groups shared similar

levodopa equivalents. DBS is another widespread treatment

for PD (Weil et al., 2016), and an attractive yet less explored

area is whether DBS could help patients with PD avoid visual

deficits. Studies report that DBS improves saccades, smooth eye

movements, and visual scanning (Murueta-Goyena et al., 2019).

Others showed contradictory results (a little effect was observed

after stimulation) (Kwapong et al., 2018). We evaluated the

effects of DBS on ophthalmologic symptoms using the VIPD-

Q. At a 3-month follow-up, we found that the VIPD-Q score

declined in the post-DBS group. As oculomotor parameters were

associated with axial symptoms and low frequency was reported

to have a stronger effect on axial symptoms (Sidiropoulos et al.,

2013; Xie et al., 2018), we compared groups with different
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FIGURE 3

Thinner RFNL in the ocular fundus was found in the cognitively impaired group. (A) Representative picture of a measured RNFL. (B) Deviation

map of RNFL indicating thinner thickness. (C) PD patients with cognitive impairment had, on average, a thinner RNFL. (D) VIPD-Q was related to

RNFL thickness. (E) RNFL was related to MoCA and UPDRSIII scores. **p < 0.01, ***p < 0.001, and r = Pearson r. RNFL, retinal nerve fiber layer;

PD, Parkinson’s disease; VIPD-Q, Visual Impairment in Parkinson’s Disease Questionnaire; UPDRS III, Unified Parkinson’s Disease Rating Scale

Section III; MoCA, Montreal Cognitive Assessment.

FIGURE 4

Vascular density in ocular density predicted PVS number and cognitive status in PD. (A) Typical procedure for calculating vascular density in

groups with or without cognitive impairment. (B) A table of vascular-related parameters in ocular fundus analyzed by angiotool. (C) The vessel

percentage area was correlated with VIPD-Q and MoCA scores. (D) Representative MRI images for VIPD-Q high and low groups. (E) PVS count

showed a discrepancy between VIPD-Q groups. (F) The vessel percentage area was correlated with PVS counts. **p < 0.01, ***p < 0.001,and r

= Pearson r. MRI, magnetic resonance imaging; PD, Parkinson’s disease; PVS, perivascular spaces; VIPD-Q, Visual Impairment in Parkinson’s

Disease Questionnaire; MoCA, Montreal Cognitive Assessment.
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FIGURE 5

Nomogram of ophthalmic parameters predicting the risk of cognitive impairment in PD. (A) LASSO regression analysis was conducted to screen

out MoCA score-related parameters. (B) Bootstrap validation was performed to verify the screened event. (C) A nomogram predicting the risk of

cognitive impairment in PD was constructed based on ophthalmic parameters. (D) A calibration curve was drawn to decrease the bias of the

nomogram. (E) A DCA curve showed that the nomogram would benefit patients with PD by accurately predicting the risk of cognitive

impairment. DCA, decision curve analysis; PD, Parkinson’s disease; MoCA, Montreal Cognitive Assessment.

stimulation parameters (voltage, pulse, frequency), which did

not seem to influence the VIPD-Q score.

The role of NMS in PD progression has been discussed

in many articles (Takeda et al., 2014; Hughes et al., 2018;

Postuma et al., 2019; Cryan et al., 2020). However, few studies

have focused on associations between NMS. We presumed that

hyposmia would relate to visual dysfunction, as the olfactory

and optic nerves are anatomically close. Strikingly, the hyposmia

group in our study did not show a higher percentage of visual

impairment than the control group. In contrast, the RBD-

positive group showed a higher risk of visual impairment,

consistent with a recently published study (Yang et al., 2016).

Another vital finding in our investigation is that constipation

was strongly correlated with visual impairment (percentage

of visual impairment, 89 vs. 19%, p < 0.001). Thus, visual

dysfunction in PD may originate peripherally.

Total VIPD-Q scores correlated with MoCA scores in

our study, consistent with the well-established knowledge that

visual dysfunction is associated with cognitive impairment. For

example, thinner RNFL has predictive value as a biomarker

of cognitive decline in PD (Murueta-Goyena et al., 2021). As

VIPD-Q is negatively related to RNFL thickness, we consider

that retinal neurodegeneration, neuronal loss, and anomalous

α-synuclein deposits within the inner retinal layers may mediate

this association. This hypothesis was supported by another study

(Veys et al., 2019). Interestingly, the bias of thickness mainly

occurred in the superior and inferior quadrants, as was observed

in other Lewy body studies (Garcia-Martin et al., 2014; Murueta-

Goyena et al., 2019, 2021).

Previous studies have reported that ocular microvascular

patterns differ in patients with PD compared to healthy controls

(Rascunà et al., 2020; Tsokolas et al., 2020; Robbins et al.,

2021). We developed a software to extract the vessel from ocular

fundus photography and analyze its morphology. The software

was developed based on the U-Net model and uploaded to

GitHub for free use. Our results showed that vessel density

declined in the cognitively impaired group. This may be another

explanation for the correlation between VIPD-Q scores and

cognitive impairment. We also found that the PVS count in

the higher VIPD-Q group exceeded that in the control group.

Recent studies have indicated that PVS plays a disease-predicting

role in PD, affecting cognitive status (Shibata et al., 2019;

Rascunà et al., 2020; Shen et al., 2021) and motor prognosis

(Chung et al., 2021). Our study demonstrated a relationship

between vessel density and PVS count in PD, which, to our

knowledge, has not been reported previously.

Our study was strengthened by a relatively large sample size

and extensive sequencing data. This study provides powerful

evidence for the positive effects of DBS on visual function.

We propose a novel hypothesis that dysbiotic gut microbiota

correlates with visual dysfunction in PD. Further investigation

is needed to determine whether probiotics or antibiotics may

help patients with PD avoid visual impairment. PVS was

associated with vessel density in the ocular fundus. This work
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has clinical implications, as our data suggest that ophthalmic

parameters are tightly correlated with cognitive status in

patients with PD. Clinicians can potentially predict the risk of

cognitive impairment in PD precisely and conveniently using

a nomogram.

The hypothesis that visual impairment in PD originates

from dysbiosis of microbiota should be investigated further

through cell-based functional studies. In addition, the follow-

up time was up to 3 months, and patients with PD receiving

STN-DBS may reduce their levodopa dose after this time point.

As levodopa was reported to rescue retinal morphology and

visual function in a murine model of human albinism (Lee

et al., 2019; Vagge et al., 2020), further investigation is needed

to determine whether the reduction of levodopa after DBS

aggravates visual impairment. Another limitation is that 50%

of the PD participants were recruited by the neurosurgery

department while waiting to undergo a DBS operation. This may

create selection bias regarding indications for DBS, including

disease duration over 3 years and sensitivity to the levodopa

challenge test. Finally, the nomogrammodel would benefit from

external validation in a separate PD population.

In conclusion, our study demonstrated that VIPD-Q can

be applied to the Chinese population and is a useful tool for

screening visual impairment among patients with PD. DBS

showed a positive effect on PD patients’ visual function, and

visual impairment was linked with cognitive decline. Thinner

RNFL and lower vessel density in the ocular fundus may explain

this correlation. Our study indicated that visual impairment

in patients with PD may originate from the dysbiotic gut

microbiota. This conclusion strongly supports the presence of

interactions between gut–eye and gut–brain axes.
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