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Certain individuals are able to resist Mycobacterium tuberculosis infection despite

persistent and intense exposure. These persons do not exhibit adaptive immune

priming as measured by tuberculin skin test (TST) and interferon-γ (IFN-γ) release assay

(IGRA) responses, nor do they develop active tuberculosis (TB). Genetic investigation

of individuals who are able to resist M. tuberculosis infection shows there are likely

a combination of genetic variants that contribute to the phenotype. The contribution

of the innate immune system and the exact cells involved in this phenotype remain

incompletely elucidated. Neutrophils are prominent candidates for possible involvement

as primers for microbial clearance. Significant variability is observed in neutrophil gene

expression and DNAmethylation. Furthermore, inter-individual variability is seen between

the mycobactericidal capacities of donor neutrophils. Clearance of M. tuberculosis

infection is favored by the mycobactericidal activity of neutrophils, apoptosis, effective

clearance of cells by macrophages, and resolution of inflammation. In this review we will

discuss the different mechanisms neutrophils utilize to clear M. tuberculosis infection.

We discuss the duality between neutrophils’ ability to clear infection and how increasing

numbers of neutrophils contribute to active TB severity andmortality. Further investigation

into the potential role of neutrophils in innate immune-mediatedM. tuberculosis infection

resistance is warranted since it may reveal clinically important activities for prevention as

well as vaccine and treatment development.
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INTRODUCTION

Not all individuals exposed to Mycobacterium tuberculosis become infected as inferred by a lack
of T cell memory response toM. tuberculosis antigens. Moreover, these individuals do not develop
signs and symptoms suggestive of ‘active tuberculosis’ (TB). Themajority ofM. tuberculosis infected
individuals remain asymptomatic with what is known as latent tuberculosis infection (LTBI).
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Only 5–15% of those infected will progress to active TB
disease, given they have no underlying co-morbidity which would
increase their risk further (1, 2). This resulted in an estimated
10.4 million new cases and 1,674 million TB deaths reported
in 2016 (3). The remaining 85–95% of persons with LTBI who
do not develop disease indicates that the majority of those
infected have a natural immunity to prevent the progression from
infection to disease. Similarly, certain individuals who are highly
exposed, never develop evidence of infection. This suggests that
they are naturally resistant to M. tuberculosis and can prevent
infection via an innate immune response prior to adaptive
immune cell priming, and are known as “innate resisters” (4).
The mechanisms that underlie the resistance to infection in
persons of the “innate resister” phenotype are not fully known.
In the present article, we explore the possible contribution of
neutrophils to innate infection resistance.

Evidence of M. tuberculosis Infection
LTBI is defined as the presence of M. tuberculosis-specific T-
cell sensitization in the absence of clinical signs and symptoms
of TB. Host sensitization is used as a proxy for this assumed
latent M. tuberculosis infection in human hosts and is measured
by reactivity to mycobacterial antigens using the tuberculin skin
test (TST) or interferon-γ (IFN-γ) release assays (IGRAs). The
TST is performed by injecting purified protein derivate (PPD)
intradermally (5). A delayed-type hypersensitivity reaction
occurs if the host is reactive to M. tuberculosis antigens. Due
to the limited M. tuberculosis specificity of TST, more specific
in vitro blood-based assays (T-SPOT.TB and QuantiFERON-
TB Gold) were developed using early secretory antigen target-
6 (ESAT-6), culture filtrate protein 10 (CFP-10), and TB-7.7
as M. tuberculosis antigens. These assays measure the ex-vivo
IFN-γ release by T cells in response to the aforementioned M.
tuberculosis peptide antigens (6). A disadvantage of TST and
IGRA for the diagnosis of infection is that they are unable
to distinguish between an amnestic response and persistent
infection. It is therefore possible that an unknown proportion
of persons who test positive in the immune assays are no
longer infected with M. tuberculosis. Conversely, persons who
test negative in the immune assays may be (i) not sufficiently
exposed toM. tuberculosis, (ii) anergic toM. tuberculosis antigens
used in the assays, or (iii) exposed but able to clear M.
tuberculosis infection without triggering the onset of acquired
anti-M. tuberculosis immunity.

Natural Immunity Against M. tuberculosis
While the lack of a direct assay for the determination of current
infection complicates studying resistance to infection, multiple
lines of evidence support human variability in resistance to
infection withM. tuberculosis. Historical epidemiological studies
have long supported the concept of infection resistance as a bona-
fide biological phenotype. During an outbreak on aUS naval ship,
66 sailors shared a cabin with 7 sailors who had active TB. Of
the 66 sailors, 13 (20%) remained TST negative after 6 months
(7). Fifty-seven (55%) of 104 elderly residents with a previously
TST negative result remained uninfected after being exposed for
at least 12 months to a fellow resident with sputum positive TB

(8). An average of 50% of close contacts of TB patients develop
positive TST or IGRA tests in overcrowded living conditions or
household contact studies (9, 10). In Uganda only 4.1% of adults
(age> 15 years old) with close household contacts remained PPD
negative (<10mm for HIV- adults, <5mm for all HIV+) over a
2 year follow up period (11). Other studies done in individuals in
environments with high exposure to M. tuberculosis, show that
10–20% do not become TST/IGRA positive (12–14). In South
African goldminers who have a documented high exposure to
M. tuberculosis and an estimated LTBI prevalence of 89% in
2006, 13% of the HIV-negative participants had a TST = 0mm
response (15). Together, these studies suggest that 5–20% of the
population may possess resistance toM. tuberculosis infection.

Molecular genetics studies support the concept of resistance
to M. tuberculosis infection. In a highly TB endemic area in
South Africa 20% of the highly exposed population remained
TST negative which was stringently defined as TST = 0mm.
This phenotype is linked to a major locus, TST1, which
represents T cell-independentM. tuberculosis infection resistance
(13). A genome-wide association study in HIV-infected persons
identified a locus on chromosome region 5q31.1 in proximity
of IL9 which significantly associates with TST positivity (16). In
addition, the study replicated associations in the region of TST1
as well as on chromosome regions 2q21-2q24 and 5p13-5q22 that
had been identified by genome-wide linkage analysis of Ugandan
families (13, 16, 17). Current genetic evidence suggests that the
resistance phenotype is likely due to a combination of genetic
variants synergistically contributing to the phenotype rather than
a single genetic variant.

THE HETEROGENEOUS NATURE OF
NEUTROPHILS

It is tempting to speculate that neutrophils of individuals
who exhibit M. tuberculosis infection resistance are a unique
subset of cells genetically or epigenetically programmed to
control infection and inflammation. Epigenetic reprogramming
of neutrophils offers an attractive avenue of investigation as
neutrophils show increased variability in both gene expression
and DNA methylation compared to phenotypically naïve T-
cells and classic monocytes (18). This observation supports the
concept of physiologically distinct inter-individual neutrophil
populations.

Different intra-individual neutrophil subsets have also been
defined in multiple studies investigating various diseases
including cancer, systemic lupus erythematosus (SLE), TB,
and HIV-1 (19–23). However, the heterogeneous nature of
neutrophils with subsets displaying functional as well as
phenotypic differences is still under debate and most subsets
remain incompletely defined and phenotyped (20, 24–29).

Genetic variants, which underlie epigenetic and
transcriptional variability, also contribute to differences in
neutrophil activity. For example, 21 neutrophil genes showed
significant differences in expression levels between males
and females while a SNP in SELL, which encodes the CD62L
receptor, strongly influenced expression levels of CD62L cell
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receptors on neutrophils (18, 30). Not surprisingly, genes of the
inflammasome pathway are significantly enriched in neutrophils
and play an important role in the regulation of interleukin 1
(IL-1)-dependent cytokine production (31). In murine studies,
IL-1 deficiency predisposes to a lack of M. tuberculosis infection
control and non-resolving inflammation (32). During persistent
infections, such as active TB, inflammasome activation correlates
with pathology (33, 34). Taken together, these data suggest that
if neutrophils contribute to M. tuberculosis infection resistance
the effector mechanisms involved are likely to be under both
genetic and epigenetic regulation. However, at least some of the
underlying variability may be ascribed to the inherent difficulties
in working with these cells since they cannot be cryopreserved,
are easily activated and are short-lived (35, 36). Possible genetic
variability is further highlighted by the conflicting results
published around the role of neutrophils in M. tuberculosis
infection.

NEUTROPHILS IN M. TUBERCULOSIS

INFECTION AND DISEASE

M. tuberculosis is an airborne pathogen and is transmitted via the
aerosol inhalation of transmitted droplets containing the bacteria
from an infected individual. M. tuberculosis enters the airways
and reaches the pulmonary alveolus where some of the first cells
encountered are resident alveolar macrophages (AM) (37) which
release pro-inflammatory cytokines tumor necrosis factor (TNF),
IL-6, IL-1α, and IL-1β (38). If this first line of defense fails,
M. tuberculosis enters the pulmonary interstitial tissue by either
using the infected AM as a host vehicle to migrate or by infecting
the epithelium or pneumocytes (2). Acute inflammatory signals
are released and the other phagocytes are recruited to the site of
infection. Local tissue macrophages recognize M. tuberculosis by
Toll-like receptors (TLR) and are also activated to release pro-
inflammatory cytokines including TNF, IL-6, and IL-1β (39, 40)
(Figure 1A).

Neutrophils are some of the first phagocytes recruited
from the pulmonary vasculature to the pulmonary interstitium
(41). Multiple receptors (including TLRs and C-type lectins
receptors (CLRs) and cytokine receptors) have been implicated
in the interaction between neutrophils, M. tuberculosis and
pro-inflammatory cytokines (42–46). Upon exposure to M.
tuberculosis neutrophil blood counts in human pulmonary TB
(PTB) contacts are initially higher than in unexposed control
subjects and subside after 6 weeks (47). Interestingly, low
neutrophil counts are associated with IGRA positivity in TB
contacts (47). The initial neutrophil peak seen in TB contacts,
implicates neutrophils in the acute inflammatory response to M.
tuberculosis.

Individuals in contact with patients with pulmonary TB are
less likely to be infected with M. tuberculosis if they have higher
peripheral blood neutrophil counts (47). One hour after in vitro
infection with virulentM. tuberculosis and stimulation with TNF,
neutrophils suppressed the growth of the inoculum by 50–95%
(48). Unstimulated neutrophils inhibit on average 40.6% of the
growth of the M. tuberculosis inoculum. Interestingly, there was

significant variability in this mycobactericidal capacity between
donor neutrophils. Neutrophils from some donors were capable
of inhibitingM. tuberculosis growth spontaneously while, despite
the addition of TNF or IFN-γ, others were not. Neutrophil-
depleted whole blood had a 3.1 fold decreased capacity to control
M. tuberculosis infection ex vivo (47). This finding was recently
confirmed and highlights the importance of neutrophils in M.
tuberculosis infection (49). Granulocyte (CD15+) depleted blood
does not control M. tuberculosis infection as efficiently as blood
depleted of CD4+, CD8+, or CD14+ cells. Addition of viable
CD15+ granulocytes significantly improved M. tuberculosis
control (49).

However, infection in highly susceptible strains of mice shows
the detrimental effect of uncontrolled neutrophil recruitment
on TB infection and inflammation control and eventually an
increase in TB disease severity (50). Most studies concur that
neutrophils are final mediators of lung damage and disease (51–
53). C57BL/6 mice with neutrophil and monocyte derived-cells
lacking Atg5 succumb after 30–40 days post M. tuberculosis
infection due to a massive influx of neutrophils, and increased
lesion number and bacterial load, that is not observed in wild
type mice (54, 55). Whilst ATG5 is normally associated with
autophagy, the neutrophilic influx associated with premature
death was independent of any autophagic response. Granulomas
of various susceptiblemouse strains contain a substantial number
of necrotic neutrophils (53, 56–58) in comparison to more
“resistant” mouse strains showing only scattered neutrophils and
little or no necrosis (59).

In humans, as in the mouse model, necrotic neutrophils are
unable to control M. tuberculosis infection (49). Phagocytosis
of M. tuberculosis-induced necrotic neutrophils by macrophages
promotes bacterial growth (60, 61). M. tuberculosis mostly
remains encapsulated in apoptotic neutrophils (60). This
enables fusion of neutrophil granular contents with macrophage
lysosomes after efferocytosis of the apoptotic neutrophil by
the macrophage (60). The neutrophil membranes surrounding
M. tuberculosis prevent direct contact between the bacillus
and the macrophage phagosomal membrane thus preventing
M. tuberculosis inhibition of phagolysosome maturation (60).
However, during neutrophil necrosis, M. tuberculosis is released
from the disintegrated phagosome and enters the phagocytosing
macrophage as extracellular bacteria (60). Once phagocytosed
by a macrophage, the bacillus is able to evade phagolysosomal
fusion in the macrophage and mycobacterial growth is promoted
(60, 61).

Necrotic neutrophils added to whole blood increased the
metabolism of M. tuberculosis, as measured by mycobacterial
luminescence, and released IL-10 as well as growth factors,
granulocyte- and granulocyte macrophage-colony-stimulating
factors (G-CSF and GM-CSF), and the monocyte chemotactic
protein chemokine ligand 2 (CCL2) (49). The predominant role
of these molecules is to attract and prime more cells (49).
G-CSF supports the growth and proliferation of neutrophils
and their precursors (62). GM-CSF has the potential to act on
earlier progenitor cells than G-CSF and therefore neutrophil
progenitors as well as monocytes proliferate (63). G-CSF and
GM-CSF not only drive the increased production of neutrophils
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FIGURE 1 | (A) Alveolar macrophages (AM) are the first cells to encounter M. tuberculosis after inhalation of the bacillus. Acute pro-inflammatory signals are released

by AM and local tissue macrophages to recruit neutrophils to the site of infection.(B) Neutrophils use a variety of mechanisms to mediate M. tuberculosis infection.

These included phagocytosis, degranulation, ROS formation and NET release. NETs transfer Hsp72 to adjacent macrophages inducing a pro-inflammatory

response.(C) Interaction of recruited neutrophils with M. tuberculosis mediates the activation of several pathways which contribute to inflammation and clearance of

M. tuberculosis infection. Interleukin-1β (IL-1β) release is mostly mediated in an inflammasome dependent manner. Tumour necrosis factor (TNF) induces NF-κB which

mediates the induction of gene expression of IL-1β in neutrophils. Interferon-γ (IFN-γ) may also regulate the release of IL-1β. IL-1β is a key player in mediating the

release of prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4) both of which contribute to inflammation and the recruitment of neutrophils. (D) PGE2 eventually

becomes a stop signal and has a negative feedback on cyclo-oxygenase-2 (COX-2) and 5-lipoxygenase (5-LO). The production of lipoxin A4 (LXA4) is favoured. In

addition, AnnexinA1 (ANX1) stimulates IL-10 release by macrophages. Neutrophils express inducible nitric oxide synthase (iNOS) which has a further negative

feedback on IL-1β release. The net effect is an increase in neutrophil apoptosis and clearance by tissue macrophages. More macrophages are recruited and further

neutrophil recruitment is inhibited and inflammation is resolved.
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and monocytes but also have the ability to indirectly affect
neutrophil function and phenotype (64–68). Both of these growth
factors delay neutrophil apoptosis and “prime” neutrophils for
enhanced oxidative effects that can lead to tissue destruction
(67, 69). In a setting where M. tuberculosis induces necrotic cell
death, the newly released cells would undergo the same cycle
of necrosis, release tissue damaging substances, recruit more
cells, and contribute to continuous inflammation as seen in TB
disease, with neutrophilia being an independent predictor of TB
mortality (70).

Neutrophil Mechanisms to Clear
M. tuberculosis Infection
Despite the involvement of neutrophils in tissue damage in
late stage clinical TB, they display an inter-individual ability to
control M. tuberculosis infection. Neutrophils can use oxidative
and non-oxidative mechanisms to clearM. tuberculosis infection.
Bothmechanisms are involved in either the direct clearance ofM.
tuberculosis or in the mediation thereof.

Oxidative Mechanisms

Neutrophils are primed or activated by M. tuberculosis and pro-
inflammatory cytokines, which in turn triggers degranulation
and respiratory burst (71–79). Proteases (e.g., elastase, cathepsin
G, and protease 3), hydrolyses, antimicrobial peptides and
oxidants are released. The oxidants mediate tissue breakdown
by activating matrix metalloproteinases (MMPs) (80, 81). These
effectors do not discriminate between pathogen and host tissue
and collateral damage is inevitable.

Neutrophil-produced reactive oxygen species (ROS) have
been shown to drive M. tuberculosis-induced necrosis (60).
Inhibiting myeloperoxidase (MPO) derived ROS prevents
neutrophil necrosis and improves efferocytosis of these cells
by macrophages and therein the control of M. tuberculosis
growth (60). Similarly, chronic granulomatous disease (CGD)
neutrophils are protected from necrosis after infection with
M. tuberculosis (79). One would therefore expect an improved
control of M. tuberculosis infection in CGD patients who are
characterized by an inability to produce ROS but this does not
always seem to be the case (82). Indeed, CGD patients are
more susceptible to active TB supporting the possible role of
neutrophils inmediatingM. tuberculosis infection resistance (83–
86). This view is supported by multiple studies that have shown
neutrophils to be protective in control of early infection (47–49).

The NOX2 complex is an isoform of the large family
of NAPDH oxidases (NOX) and is found in phagocytes
including neutrophils (87, 88). It is an enzyme that is involved
in infection and inflammation control and is activated by
neutrophil chemotactic factors such as IL-8 and leukotriene B4
(LTB4) (88, 89). Hydrogen peroxide (H2O2) that is produced
during respiratory burst contributes to neutrophil migration
and subsequently retention at the site of infection (89). CGD
patients have impaired neutrophil accumulation, in contrast
to the increase in granuloma formation seen in CGD (89).
Inflammatory leukotrienes are released by neutrophils in CGD
patients but due to a lack of ROS there is a lack of degradation

of these leukotrienes and delayed clearance of inflammation
(44, 89, 90).

Reactive oxygen species have been shown to affect
transcription factors such as NF-κβ (91, 92) which mediates
the induction of IL-1β and IL-8 expression. However, CGD
shows that NF-κβ activation is independent of ROS and is
also mediated by TNF and IL-1 (93, 94) and so neutrophils in
these individuals are still able to release these pro-inflammatory
factors and uncontrolled chronic inflammation ensues (95, 96).
Pro-inflammatory mediators alone, such as leukotrienes and
IL-1β, are not enough to control infection and it is likely that
the overproduction thereof augments the lack of M. tuberculosis
infection control in CGD patients (44).

M. tuberculosis is relatively resistant to the bactericidal effects
of H2O2 mediated by DNA damage (97). However, even if ROS
does not have a direct bactericidal effect onM. tuberculosis, it still
amplifies the neutrophil antimicrobial response. It does this by
activating the formation of neutrophil extracellular traps (NET,
discussed in 3.1.3), stimulating the release of pro-inflammatory
cytokines such as TNF and macrophage inflammatory protein 2
(MIP-2), as well as decondensed DNA to which the contents of
cytoplasmic granules adhere in a net-like structure (98–100). This
is extensively reviewed by Deffert et al. (44).

Non Oxidative Mechanisms

Neutrophil granules can fuse with the phagolysosome,
degranulate and release antimicrobial peptides (AMPs)
(Figure 1B). Antimicrobial peptides (AMPs) are classified
according to their amino acid motif and structure. Three classes
are found in humans: defensins, cathelicidins, and histatins
(101–103). Neutrophils contain α-defensins in azurophilic
granules and cathelicidin LL-37 in specific granules, as well
as other neutrophil specific AMPs as will be discussed below
(101, 104). Macrophages can traffic phagocytosed apoptotic
neutrophil debris, including neutrophil granules, to endosomes.
The purified neutrophil granules in the endosomes fuse with the
macrophage phagosome in which the M. tuberculosis bacillus
resides. This mechanism of cell-cell cooperation provides
an effective antimicrobial response to M. tuberculosis (105).
Although this efferocytosis occurs between macrophages and
apoptotic neutrophil debris, it is not known whether alveolar
macrophages do the same. AMPs can also be associated
extracellularly with NETs and facilitate in the clearing of
microbial infection.

a. AMPs in azurophilic granules
Azurophilic granules are poorly mobilized in response to M.

tuberculosis infection. Pathogenic mycobacteria block the fusion
of azurophil granules with the phagosome and consequentially
unlike specific granules they are unable to release their contents
in to the phagosome for antimicrobial effect (106). However,
azurophilic proteins obtained from apoptotic neutrophil debris,
increase macrophage ability to restrict M. tuberculosis growth
either by direct action or by lysosome fusion with thematuration-
arrested mycobacterial phagosome in the macrophage (107).

-Defensins: Human neutrophil peptide 1 (HNP-1), one of
four α-defensins found in the primary or azurophilic granules of
neutrophils (101) has the ability in vitro to reduce the growth
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of M. tuberculosis in culture as well as within macrophages
(105, 108, 109). Furthermore, HNP-1 also shows in vivo
antimycobacterial activity in mice (110).

-Azurocidin: Defensin depleted azurophilic granules at
100µg/ml were shown to restrict the growth of 55% of M.
tuberculosis in culture after 24 h of incubation. However, the
specific role of azurocidin in M. tuberculosis infection remains
unclear (107).

-Cathepsins: M. tuberculosis infection decreases cathepsin
gene expression in macrophages, with a parallel decrease in
cathepsin protein levels (111). Genetic linkage and association
studies have previously implicated cathepsin Z in susceptibility
to TB (112, 113). A likely alternative source of cathepsin for
macrophages is through the phagocytosis of apoptotic neutrophil
material. Uptake of liposomal encapsulated cathepsin G and
neutrophil elastase (NE) by alveolar macrophages in mice
improves antimicrobial activity against Mycobacterium bovis
bacillus Calmette-Guérin (BCG) (114).

b. Specific granules
-Cathelicidin: Neutrophils produce LL-37, the 37 amino acid

biologically active C-terminal domain cleaved from the human
cathelicidin propeptide (hCAP18) by proteinase 3, when infected
with M. tuberculosis (115). LL-37 has been shown to restrict
growth ofM. tuberculosis in neutrophils (47). Similarly it restricts
growth ofM. tuberculosis in infectedmacrophages when hCAP18
is exogenously activated by neutrophil proteinase 3, which has
only a low level of constitutive expression in macrophages
(107, 116).

c. Gelatinase granules
-Lipocalin 2: Lipocalin 2 binds mycobacterial siderophores

which scavenge iron for the bacillus in iron-limiting conditions
(47). Lipocalin 2 has a greater mycobacterial suppressive effect
(60%) in an iron-depleted broth (10 nM iron) compared to iron-
replete broth (150µM Fe) of 45%. It may be more effective in the
phagolysosome where the molar ratio to siderophores would be
higher.

d. Neutrophil cytoplasmic proteins
Calprotectin (S100A8/S110A9): Calprotectin is known as

a damage-associated molecular pattern (DAMP) molecule
and is a heterodimer of S100A8/A9. It sequesters free zinc
and limits mycobacterial growth (107, 117). M. tuberculosis
infection induces S100A8/A9 proteins. This is associated
with neutrophil accumulation and exacerbated inflammation
(52, 118).

NET Formation

During NETosis, neutrophils release their DNA contents coated
in cytoplasmic and granular proteins to trap and possibly clear
invading pathogens (119, 120). NETosis is an alternative form of
cell death, different to apoptosis and necrosis, and mediated by
phagocytosis and the generation of ROS by NADPH oxidase in
M. tuberculosis infection (121, 122). Once activated, neutrophils
lose their lobulated morphology (123). The nuclear membrane
initially remains intact whilst the chromatin (histones and
DNA) starts to decondense. Once the nuclear and granular
membranes rupture, the decondensed chromatin comes into
contact with the granular as well as cytoplasmic components
of the cell. The NET components are released extracellularly

when the cell membrane breaks (122). The most abundant
non-histone protein in NETs is NE (124). In addition to
this, NETs contain myeoloperoxidase (MPO) as well as other
proteins from intracellular neutrophil organelles. These include
substances from the primary neutrophil granule (cathepsin
G, defensins, BPI-bactericidal substance), the secondary
neutrophil granule (alcaic phosphatase, lactoferrins, lysozyme,
cathelicidins, collagenase), tertiary granules [gelatinase, matrix
metalloproteinase 9 (MMP-9)]; and catalase from peroxisomes
(125–128). Other components include calprotectin, constituents
of the neutrophil cytoskeleton and glycolytic enzymes (125, 128).

Although M. tuberculosis has been shown to induce NETosis,
no experimental evidence exists that NET formation improves
resolution of M. tuberculosis infection (129). However, the
AMP NET components have been shown to restrict M.
tuberculosis growth as discussed earlier. Also neutrophils can
assist macrophages to clear M. tuberculosis infection. During
infection, NET formation andM. tuberculosis-induced apoptosis
occur independently. M. tuberculosis-induced NETs transfer
the danger signal heat shock protein 72 (Hsp72) to adjacent
macrophages (121). This interaction induces a pro-inflammatory
response in macrophages leading to the release of IL-6, TNF, IL-
1β, IL-10. In addition to these cytokines, calprotectin is released
from the neutrophil cytoplasm into NETs (130). IL-10 is also
released as part of the anti-inflammatory regulatory response
via inhibiting IFN-γ and TNF production and downstream Th1
responses (121). It is possible that NETs play a role in trapping
and localizing the infection. The sequestration of AMPs in the
NET structures may also increase their effective concentrations.
Furthermore; NETs contain the release of cellular contents to
prevent distal tissue destruction (121, 123). Hence, NETs are
potentially an effective defensemechanism that neutrophils could
use to mediateM. tuberculosis infection resistance (Figure 1B).

NEUTROPHILS AND THE ROLE OF
CYTOKINES AND CHEMOKINES IN
INFLAMMATION IN M. TUBERCULOSIS

INFECTION RESISTANCE

Initial Inflammation
M. tuberculosis infection triggers TLR signaling and induces NF-
κB which mediates the induction of gene expression of pro-
inflammatory cytokines such as IL-1β and TNF in neutrophils
(42, 131). Inflammasomes are multimeric protein complexes
and play a key role in the activation of IL-1α, and IL-
1β (132). Neutrophils express components of the NOD-like
receptor protein 3 (NLRP3) and absent in melanoma 2 (AIM2)
inflammasomes (133). The latter are found in the cytoplasm
as well as secretory and tertiary granule compartments (133).
Neutrophils release IL-1βmostly in an inflammasome-dependent
manner and do not release IL-1α (133). The inflammasome
subunit caspase-1 activates pro-IL-1β to form IL-1β (132, 133).
IL-1β activation can also occur in a caspase-1 independent
manner via neutrophil proteases; NE, and proteinase 3 (PR3)
(133). Furthermore, it is of interest that inflammasome
components are found in neutrophil secretory vesicles. The
components may play a role in phagosomal functionality or may
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be released into the extracellular environment and utilized by
other phagocytes, but this remains to be proven in neutrophils
(133).

One of the key roles of IL-1β is to mediate the release
of prostaglandin E2 (PGE2), an eicosanoid. Eicosanoids are
important lipid mediators derived from arachidonic acid (AA)
and are rapidly synthesized by phagocytes after acute challenge
with M. tuberculosis (134, 135). Cyclo-oxygenase-2 (COX-2)
competes with 5-Lipoxygenase (5-LO) or 15-lipoxygenase (15-
LO) for the generation of each of the different eicosanoids.
During inflammation macrophages and other cells, including
neutrophils, can produce COX-2, which converts AA to PGE2.
5-Lipoxygenase (5-LO) converts AA to LTB4 from leukotriene
A4 (LTA4). PGE2 and LTB4 mainly have proinflammatory
effects and mediate the rapid recruitment of neutrophils to the
site of infection and inflammation (136, 137). LTB4 promotes
phagocytosis and the bactericidal activity of neutrophils (136,
138, 139) (Figure 1C).

Furthermore, neutrophils are a possible source of IL-
12 mediated IFN-γ release (140). However, whether this
occurs through direct M. tuberculosis stimulation is unknown.
Neutrophils release IFN-γ after stimulation by degranulating
agents which is due to an available small storage of IFN-γ
(140). In addition, neutrophil stimulation by IL-12 alone or
in combinations with lipopolysaccharide (LPS), IL-2, IL-18, or
IL-15, induces IFN-γ synthesis by neutrophils (140).

Neutrophils matured with IFN-γ have marked upregulation
of multiple transcripts where Guanylate Binding Protein (GBP)
showed the highest changes. GBPs are a subfamily of the IFN
inducible GTPase superfamily (141, 142). GBP-5, in particular,
is strongly upregulated in transcriptomes from an immature
myeloid cell line (PLB-985) matured in the presence of IFN-
γ (143). PLB-985 cells can differentiate into terminally mature
neutrophils and have the ability to mimic the physiological
conditions of stimulation (144). The exact role of GBP-5 has
not been described in neutrophils yet, but it is possible that it
enhances the NLRP3 inflammasome and IL-1β production, as in
macrophages (143) (Figure 1C).

IFN-γ may increase the half-life of neutrophils in culture by
being anti-apoptotic (143) and in this manner contributes to
the pro-inflammatory state. Pathology in pulmonary tuberculosis
is associated with neutrophils expressing IFN-γ and type I
IFNs (145). This transcriptional signature is found in patients
with active TB but infrequently in healthy individuals or those
with latent TB (145). Type 1 IFNs may contribute to disease
progression but the pro-inflammatory effect of IFN-γ from a
neutrophil perspective may be effective for short bursts and in a
setting whereM. tuberculosis is effectively killed. The promotion
of this initial pro-inflammatory state and release of TNF and IFN-
γ by neutrophils is essential to effectively clear M. tuberculosis
infection (48, 143).

The Resolution of Inflammation in
M. tuberculosis Infection
Apoptosis represents a pivotal point in the control of
inflammation as well as in the control of the cellular

immune response (146). A delicate balance exists between
apoptotic cell death, clearance of apoptotic cells and
ongoing inflammatory responses (80, 147, 148). Not only
does the efferocytosis of apoptotic neutrophils by tissue
resident macrophages prevent spillage of neutrophil content
into surrounding tissue (80, 147, 149, 150), but it also
decreases pro-inflammatory mediators (148). Clearance of
infection without a significant acquired immune response
is favored by early killing of M. tuberculosis by neutrophils,
followed by apoptotic neutrophil death, and an anti-
inflammatory response in the phagocytosing macrophage
(35, 105).

A hallmark of the anti-inflammatory response is the
production of TGF-β and PGE2, and the inhibition of
IL-6, IL-8, IL-12, and TNF release by the phagocytosing
macrophages (151). Studies have shown that cAMP-elevating
agents such as PGE2 result in increased levels of AnnexinA1
(ANXA1) (152). ANXA1, a protein found in neutrophils,
stimulates release of the anti-inflammatory cytokine, IL-10,
by macrophages, and inhibits neutrophil migration (153). In
addition, ANXA1 promotes efferocytosis of apoptotic cells (154,
155) (Figure 1D).

In addition to the release of endogenous anti-inflammatory
mediators, pro-resolution action is also required. Lipoxins,
protectins, resolvins and macrophage mediator in resolving
inflammation (maresins) are unique mediators fulfilling
this duality (137, 156, 157). Rising PGE2 levels eventually
act as a “lipid mediated class switch” by transcriptionally
inducing 15-LO in neutrophils and shifting the production of
PGE2 and LTB4 in favor of lipoxin A4 (LXA4) (158). LXA4
decreases neutrophil-mediated tissue damage, neutrophil
proliferation, and adhesion, and increases efferocytosis of
apoptotic neutrophils and IL-10 production by macrophages
(159). Resolvins, protectins and maresins are oxygenated
metabolites derived from eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) that is biosynthesized from
omega-3 essential polyunsaturated fatty acids (137, 160).
Collectively resolvins, protectins, and maresins regulate
neutrophil apoptosis, efferocytosis by macrophages,
inhibition of pro-inflammatory cytokines, release of IL-
10 by local macrophages and tissue regeneration (159)
(Figure 1D).

Finally, neutrophils express inducible nitric oxide synthase
(iNOS) which converts the amino acid L-arginine to L-citrulline
and nitric oxide (NO). iNOS/NO limits the production of
IL-1β and therefore limits further recruitment of neutrophils
(34, 161, 162). It is not known to what extent these
neutrophil anti-inflammatory mechanisms are at play during
early encounters of PMNs with M. tuberculosis in the lung
(Figure 1D).

CONCLUSION

At first glance, the association of uncontrolled neutrophil
recruitment and pathology in TB would argue against a
role of these cells in M. tuberculosis infection resistance.
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However, neutrophils are multi-functional cells with variable
roles in host defense. For example, there is documented inter-
individual variability in the ability of neutrophils to kill M.
tuberculosis suggesting that the role of neutrophils in an
early encounter with M. tuberculosis may differ from the
more integrated role in the presence of a strongly developed
acquired immune response to the bacillus. As reviewed, the
neutrophil has a large armamentarium of highly effective anti-
microbial effector mechanisms that may come into play during
the early stage of M. tuberculosis infection. Investigating the
possible role of neutrophils in persons who remain free of
M. tuberculosis infection despite documented high exposure to
the bacillus offer an interesting opportunity. It may be that
resisters possess a different ratio of neutrophil subpopulations,
predominated by effective killers with a propensity to undergo
apoptosis, compared to those who develop TB, predominated
by inflammatory necrotising damage causing neutrophils. By
comparing neutrophils and their anti-microbial responses
from “innate resisters” with those from M. tuberculosis
infection susceptible persons might illuminate if and how
neutrophils play a protective role in the very stage of M.
tuberculosis infection. Experiments along these lines will not
only provide a better understanding of TB pathogenesis but also
contribute to a better understanding of neutrophil biology in
general.
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