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ABSTRACT. Wild birds are recognized as disseminators of antimicrobial-resistant (AMR) bacteria 
into the environment. Here, we isolated AMR indicator bacteria from 198 Great Cormorant cloacal 
swabs collected in Shiga (n=90), Oita (n=52), Gifu (n=29), and Gunma (n=27) Prefectures, Japan, 
in 2018 and 2019. In total, 198 Aeromonas spp. and 194 Escherichia spp. were isolated, and their 
antimicrobial susceptibility was examined. Aeromonas spp. were resistant to colistin (8.6%), 
nalidixic acid (4%), and other antimicrobials (<2%), with 3.0% positivity for mcr-3. Escherichia spp. 
showed resistance to colistin (3.1%), ampicillin (2.6%), tetracycline (2.1%), and other antimicrobials 
(<2%). This study shows the presence of AMR bacteria in Great Cormorants, indicating that these 
birds potentially disseminate AMR bacteria.
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The emergence and spread of antimicrobial-resistant (AMR) bacteria are an increasing threat to human and animal health 
worldwide [17]. AMR bacteria arising from human societies are disseminated into environments by wild animals. Although wild 
animals rarely encounter antimicrobial agents, they may contract AMR bacteria from the environment [3, 8]. As the One Health 
approach has been promoted in Japan with a national action plan to tackle antimicrobial resistance [17], integrated surveillance 
has been recognized as an effective strategy for understanding the prevalence of AMR bacteria in humans, animals, food, and the 
environment.

AMR bacteria can be released into the aquatic environment via effluents from farms, households, municipalities, and healthcare 
industries [26]. In Japan, several studies have reported AMR bacterial contamination in aquatic environments [2, 26]. The Great 
Cormorant (Phalacrocorax carbo hanedae), a wild bird with an increasing population in Japan, is causing severe damage to 
the aquatic industry and the environment, especially in the woods adjacent to the riverside, where it discharges large amounts 
of feces [11]. Because of the aquatic lifestyle of the Great Cormorant, the AMR bacteria that they harbor may be from aquatic 
environments. However, the prevalence of AMR indicator bacteria in the Great Cormorant has not been clarified. Escherichia 
coli is widespread in humans and animals and is used as an indicator bacterium to investigate antimicrobial resistance [12, 23]. 
Furthermore, Aeromonas spp. have been suggested to be suitable indicator bacteria for investigating antimicrobial resistance in 
aquatic environments [24]. Therefore, this study was conducted to clarify the prevalence of AMR indicator bacteria (Aeromonas 
spp. and Escherichia spp.) in the Great Cormorant.

Cloacal swabs were collected from Great Cormorants that were culled using the sharp-shooting method in the lower northern 
part (Gunma Prefecture, n=27), central part (Shiga and Gifu Prefectures, n=90 and 29, respectively), and southern part (Oita 
Prefecture, n=52) of Japan in 2018 and 2019 (Table 1). No ethical permission was required as the birds were not specifically 
killed for this study. For bacterial isolation, each cloacal swab was directly streaked on deoxycholate-hydrogen sulfide-lactose 
(DHL) plates (Eiken Chemical Co., Ltd., Tokyo, Japan) and aerobically incubated for 16–18 hr at 37°C. The isolates (three distinct 
isolates picked from each plate) were identified using the API-20E system (Sysmex BioMérieux, Tokyo, Japan) and polymerase 
chain reaction (PCR) to identify Aeromonas spp. and Escherichia spp. [13, 18]. Minimum inhibitory concentrations (MICs) of 12 
antimicrobials were determined using the broth microdilution method with commercially available, custom-made plates (Eiken 
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Chemical Co., Ltd.) following the manufacturer’s instructions, as previously described [3]. Escherichia coli ATCC 25922 and 
Staphylococcus aureus ATCC 29213 were used for quality control, in accordance with the guidelines of the Clinical and Laboratory 
Standards Institute (CLSI) [5]. The resistance breakpoints for all antimicrobial agents (except for colistin (CST)) were determined 
based on the CLSI guidelines for Aeromonas spp. [6] and Escherichia spp. [5]. The resistance breakpoint of CST was based on the 
criteria of the European Committee on Antimicrobial Susceptibility Testing [9]. Isolates resistant to three or more antimicrobial 
classes were identified as multi-drug resistant [14]. The tetracycline (TET)-resistance genes tet(A), tet(B), tet(C), tet(D), tet(E), and 
tet(G) were investigated in all TET-resistant isolates by PCR using primers described elsewhere [10]. Additionally, the plasmid-
mediated mobile colistin resistance (mcr) genes mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-6, mcr-7, mcr-8, mcr-9, and mcr-10 were 
investigated in all CST-resistant isolates using primers described elsewhere [4, 20, 25, 28]. The obtained data were analyzed using 
Fisher’s exact test with a 2 × 4 table to assess statistical differences among the four sampling sites, and then Holm correction 
method was used to adjust for multiple testing using the statistical software R version 3.6.2 [19]. Differences were considered 
significant if the resultant P value was ≤0.05.

In total, 149 A. veronii and 49 A. hydrophila isolates were recovered from 76 and 32 cloacal swabs of the Great Cormorants, 
respectively. However, 11 samples from Shiga (4), Oita (4), and Gifu (3) Prefectures were positive for both A. veronii and A. 
hydrophila. In contrast, 144 E. coli and 50 E. albertii isolates were recovered from 72 and 32 swabs, respectively (Table 1), with 
16 samples from Shiga (4), Oita (8), Gifu (1), and Gunma (3) Prefectures positive for both E. coli and E. albertii. The frequent 
occurrence of A. veronii and A. hydrophila observed in this study is consistent with the finding of Miyagi et al. [15], who detected 
A. veronii and A. hydrophila predominantly in freshwater in Okinawa Prefecture, Japan. In this study, E. albertii was found in the 
four prefectures in addition to E. coli. Murakami et al. [16] also reported the isolation of E. albertii from wild birds across Japan, 
further suggesting its prevalence in free-living birds.

Thirty-two samples were positive for AMR Aeromonas spp. (21 samples) and Escherichia spp. (11 samples). Among the samples 
positive for Aeromonas spp. twenty samples were positive for AMR A. veronii and one was positive for AMR A. hydrophila. 
Among the samples positive for Escherichia spp., seven samples were positive for AMR E. coli and four were positive for E. 
albertii. Antimicrobial resistance was observed in A. veronii (27 isolates from 20 samples) from Shiga (5 isolates from 3 samples), 
Oita (2 isolates from 2 samples), Gifu (13 isolates from 9 samples), and Gunma (7 isolates from 6 samples) Prefectures. Regarding 
antimicrobial resistance in A. hydrophila, one isolate from a sample from Gifu was resistant. In E. coli, antimicrobial resistance was 
found in 8 isolates from 7 samples from Shiga (2 isolates from 2 samples), Oita (2 isolates from 2 samples), Gifu (1 isolate from 1 
sample), and Gunma (3 isolates from 2 samples) Prefectures. Antimicrobial resistance was observed in E. albertii (5 isolates from 
4 samples) from Shiga (3 isolates from 2 samples) and Gunma (2 isolates from 2 samples) Prefectures. No sample was positive for 
both AMR Aeromonas spp. and Escherichia spp. All isolates of Aeromonas spp. were susceptible to cefotaxime, chloramphenicol 
(CHL), ciprofloxacin (CIP), sulfamethoxazole-trimethoprim (SXT), gentamicin, and meropenem (Table 2). Furthermore, A. veronii 
was resistant to CST (16 isolates, 10.7%), nalidixic acid (NAL; 8 isolates, 5.4%), TET (3 isolates, 2.0%), and kanamycin (KAN; 
2 isolates, 1.3%). Aeromonas hydrophila was resistant to CST (1 isolate, 2.0%). In a previous study in Thailand, Aeromonas spp. 
from inland-cultured shrimps were resistant to NAL (22%) and TET (18%) [27]. Aeromonas hydrophila (80.8%) isolated from 
water bodies in the United States of America were resistant to both CIP and TET [22]. In this study, all three TET-resistant A. 
veronii isolates possessed tet(E). The tet(E) has been found to be responsible for TET resistance in Aeromonas spp., more than 
any other class of TET resistance genes [1]. Of the 16 CST-resistant A. veronii isolates, 6 possessed the mcr-3 gene, but no mcr 
gene was detected in the CST-resistant A. hydrophila (Table 3). In China, the prevalence of mcr-3 responsible for CST resistance 
in Aeromonas spp. from aquatic environments is 10% [21]. Although acquired resistance genes were observed in Aeromonas spp. 
isolated from freshwater in Japan [2], the resistance rate of Aeromonas spp. in this study was low compared with that in other 
countries.

E. coli was resistant to ampicillin (AMP; 5 isolates, 3.5%), TET (4 isolates, 2.8%), CHL (2 isolates, 1.4%), NAL (2 isolates, 
1.4%), SXT (2 isolates, 1.4%), CIP (1 isolate, 0.7%), and CST (1 isolate, 0.7%) (Table 2). All four TET-resistant E. coli isolates 
possessed tet(A) gene (Table 3). E. albertii isolates were susceptible to all the antimicrobial agents tested, except for CST (5 
isolates, 10%). None of the isolates had the mcr genes tested (Table 3). In the Czech Republic, E. coli isolated from black-headed 
gulls were resistant to TET (19.1%) and AMP (11.7%) [8]. Moreover, E. coli isolated from free-living Canada geese in a lagoon 
near a swine housing facility was resistant to TET (64%) and AMP (20%) [7]. A study conducted on wild cranes in 2010 in 
Japan reported that E. coli was resistant to AMP (2.9%), NAL (2.9%), and oxytetracycline (15.9%) [12]. A follow-up study 
reported that E. coli isolated from wild cranes was resistant to AMP (3.1% in 2016, 4.4% in 2017), NAL (2.9% in 2016, 7.7% 
in 2017), and oxytetracycline (10.9% in both 2016 and 2017) [23]. In this study, one isolate (0.7%) of E. coli showed resistance 
to fluoroquinolone (CIP). Kitadai et al. (2012) [12] reported that 1.4% of E. coli isolated from wild cranes showed resistance to 
fluoroquinolone (enrofloxacin). These results suggest the low prevalence of AMR E. coli in wild waterfowl in Japan.

Regarding regional differences, the antimicrobial resistance rates in A. veronii from Gifu and Oita, Gifu and Gunma, and Shiga 
and Oita were not significantly different (P>0.05). However, antimicrobial resistance in A. veronii from Gifu was significantly 
higher (P≤0.05) than that in A. veronii from Shiga, whereas antimicrobial resistance in A. veronii from Gunma was significantly 
higher (P≤0.05) than that in A. veronii from both Shiga and Oita. In contrast, antimicrobial resistance in A. hydrophila, E. coli, and 
E. albertii did not differ (P>0.05) among the locations. However, multi-drug resistant E. coli was found in the Great Cormorants 
collected from Shiga (AMP-CHL-TET), Oita (AMP-NAL-SXT), and Gunma (AMP-CHL-NAL-CIP-SXT) Prefectures (Table 3). 
TET-resistant E. coli harboring tet(A) was found in Gunma, Oita, and Shiga Prefectures, whereas TET-resistant Aeromonas spp. 
harboring tet(E) were found in Gunma and Shiga Prefectures. Furthermore, of the six isolates carrying mcr-3, five were from Gifu 
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Table 1. Bacterial isolates collected from clocal swabs of Great Cormorants

Location Sample no.
Positive sample No. (% positive) Positive sample No. (% positive)

A. veronii A. hydrophila Total* E. coli E. albertii Total*
Shiga Prefecture 90 37 (41.1) 16 (17.8) 49 (54.4) 24 (26.7) 11 (12.2) 31 (34.4)
Oita Prefecture 52 15 (28.8) 6 (11.5) 17 (32.7) 29 (55.8) 12 (23.1) 33 (63.5)
Gifu Prefecture 29 16 (55.2) 10 (34.5) 23 (79.3) 7 (24.1) 2 (6.9) 8 (27.6)
Gunma Prefecture 27 8 (29.6) 0 8 (29.6) 12 (44.4) 7 (25.9) 16 (59.3)
Total 198 76 (38.4) 32 (16.2) 97 (49.0) 72 (36.4) 32 (16.2) 88 (44.4)

*Samples positive for both bacteria were counted once in the total. Eleven samples from Shiga (4), Oita (4), and Gifu (3) were positive for both Aeromonas 
veronii and A. hydrophila. Sixteen samples from Shiga (4), Oita (8), Gifu (1), and Gunma (3) were positive for both Escherichia coli and E. albertii.

Table 2. Distribution of the minimum inhibitory concentration (MIC) of antimicrobial agents to the Aeromonas veronii (n=149), A. hydrophila 
(n=49), Escherichia coli (n=144), and E. albertii (n=50) isolated from Great Cormorants

Antimicrobial 
agents* Breakpoints Bacteria 

species
MIC (µg/ml)/ No. of isolates No. resistant 

isolates (%)≤0.5 1 2 4 8 16 32 64 128 >128
AMP ≥32 E. coli 60 73 5 1 1 4 5 (3.5)

≥32 E. albertii 1 20 29
CFZ ≥32 E. coli 90 50 3 1

≥32 E. albertii 36 14
CTX ≥4 A. veronii 148 1

≥4 A. hydrophila 48 1
≥4 E. coli 144
≥4 E. albertii 50

MEM ≥4 A. veronii 95 53 1
≥4 A. hydrophila 34 15
≥4 E. coli 144
≥4 E. albertii 50

GEN ≥16 A. veronii 25 80 38 6
≥16 A. hydrophila 14 28 7
≥16 E. coli 14 24 31 67 8
≥16 E. albertii 7 21 17 5

KAN ≥64 A. veronii 5 66 67 9 1 1 2 (1.3)
≥64 A. hydrophila 2 28 19
≥64 E. coli 2 30 39 70 3
≥64 E. albertii 10 26 14

TET ≥16 A. veronii 135 6 1 2 2 3 3 (2.0)
≥16 A. hydrophila 48 1
≥16 E. coli 5 72 62 1 2 2 4 (2.8)
≥16 E. albertii 43 5 1 1

NAL ≥32 A. veronii 135 4 2 1 7 8 (5.4)
≥32 A. hydrophila 48 1
≥32 E. coli 8 107 26 1 1 1 2 (1.4)
≥32 E. albertii 39 7 4

CIP ≥4 A. veronii 147 2
≥4 A. hydrophila 49
≥4 E. coli 143 1 1 (0.7)
≥4 E. albertii 50

CST ≥8 A. veronii 3 56 49 25 3 13 16 (10.7)
≥8 A. hydrophila 1 29 17 1 1 1 (2.0)
≥4 E. coli 59 66 18 1 1 (0.7)
≥4 E. albertii 7 21 17 5 5 (10)

CHL ≥32 A. veronii 139 3 2 4 1
≥32 A. hydrophila 47 1 1
≥32 E. coli 3 45 94 1 1 2 (1.4)
≥32 E. albertii 1 28 21

SXT ≤2.38/0.12 4.75/0.25 9.5/0.5 19/1 38/2 76/4 152/8
≥76/4 A. veronii 27 103 17 1 1
≥76/4 A. hydrophila 8 35 6
≥76/4 E. coli 111 26 4 1 2 2 (1.4)
≥76/4 E. albertii 50

*AMP, ampicillin; CFZ, cefazolin; CTX, cefotaxime; MEM, meropenem; GEN, gentamicin; KAN, kanamycin; TET, tetracycline; NAL, nalidixic acid; CIP, 
ciprofloxacin; CST, colistin; CHL, chloramphenicol; SXT, sulfamethoxazole-trimethoprim.



J. O. ODOI ET AL.

1194J. Vet. Med. Sci. 83(8):

prefecture. Thus, no clear trends in regional differences of AMR bacteria and resistance genes were seen across the locations. This 
observation highlights the complexity of AMR bacteria; hence, further investigation is needed to elucidate the contributing factors 
to AMR bacteria prevalence.

In conclusion, this study provides evidence of the presence of AMR bacteria in Great Cormorants. Therefore, these birds have 
the potential to harbor AMR bacteria and resistance genes and to disseminate them into the environment.
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